परीक्षण कण: Difference between revisions
No edit summary |
No edit summary |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 52: | Line 52: | ||
== संदर्भ == | == संदर्भ == | ||
{{Reflist}} | {{Reflist}} | ||
[[Category:Created On 25/11/2022]] | [[Category:Created On 25/11/2022]] | ||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:सामान्य सापेक्षता में गणितीय विधियाँ]] |
Latest revision as of 15:40, 27 April 2023
सैद्धांतिक भौतिकी में, परीक्षण कण या परीक्षण आवेश वस्तु का आदर्श मॉडल है, जिसके भौतिक गुणों (सामान्यतः द्रव्यमान, आवेश (भौतिकी), या आयतन) को अध्ययन किये जा रहे गुण को छोड़कर नगण्य माना जाता है, जिसे अध्ययन के लिए अपर्याप्त माना जाता है शेष प्रणाली के व्यवहार को परिवर्तित करने के लिए अपर्याप्त हो परीक्षण कण की अवधारणा अधिकांशतः समस्याओं को सरल करती है, और भौतिक घटनाओं के लिए अच्छा सन्निकटन प्रदान कर सकती है। विशेष सीमाओं में प्रणाली की गतिशीलता के सरलीकरण में इसके उपयोग के अतिरिक्त यह भौतिक प्रक्रियाओं के कंप्यूटर सिमुलेशन में निदान के रूप में भी प्रयोग किया जाता है।
मौलिक गुरुत्वाकर्षण
न्यूटन के सार्वभौमिक गुरुत्वाकर्षण के नियम में परीक्षण कण के आवेदन के लिए सबसे सरल स्थितियां उत्पन्न होता है। किन्हीं दो बिंदु द्रव्यमानों के बीच गुरुत्वाकर्षण बल के लिए सामान्य व्यंजक तथा है:
- ,
जहाँ तथा अंतरिक्ष में प्रत्येक कण की स्थिति का प्रतिनिधित्व करते हैं। इस समीकरण के सामान्य समाधान में दोनों द्रव्यमान इस विशिष्ट स्थितियों में द्रव्यमान R के अपने केंद्र के चारों ओर घूमते हैं:[1]
- .
ऐसे स्थितियों में जहां द्रव्यमान में से एक दूसरे की तुलना में बहुत बड़ा होता है (), कोई यह मान सकता है कि बड़े द्रव्यमान द्वारा उत्पन्न मौलिक क्षेत्र सिद्धांत में परीक्षण कण के रूप में छोटा द्रव्यमान चलता है, जो गति नहीं करता है। हम गुरुत्वाकर्षण क्षेत्र को इस प्रकार परिभाषित कर सकते हैं।
- ,
साथ भारी वस्तु और परीक्षण कण के बीच की दूरी के रूप में, और विशाल वस्तु से परीक्षण द्रव्यमान तक जाने की दिशा में इकाई सदिश है। न्यूटन के गति के नियम न्यूटन के छोटे द्रव्यमान की गति के दूसरे नियम में कमी आती है।
- ,
और इस प्रकार केवल चर होता है, जिसके लिए समाधान की अधिक सरलता से गणना की जा सकती है। यह दृष्टिकोण कई व्यावहारिक समस्याओं के लिए बहुत अच्छा सन्निकटन देता है, उदाहरण: उपग्रहों की कक्षाएँ, जिनका द्रव्यमान पृथ्वी की तुलना में अपेक्षाकृत कम है।
इलेक्ट्रोस्टैटिक्स
विद्युत क्षेत्र के अनुकरण में परीक्षण कण की सबसे महत्वपूर्ण विशेषता इसका विद्युत आवेश और इसका द्रव्यमान है। इस स्थिति में इसे अधिकांशतः परीक्षण आवेश के रूप में जाना जाता है।
मौलिक गुरुत्वाकर्षण के स्थितियों के समान, बिंदु आवेश 'q' द्वारा निर्मित विद्युत क्षेत्र द्वारा परिभाषित किया गया है
- ,
जहाँ k कूलम्ब स्थिरांक है।
इस क्षेत्र को परीक्षण शुल्क से गुणा करना परीक्षण आवेश पर क्षेत्र द्वारा लगाया गया विद्युत बल (कूलॉम्ब का नियम) देता है। ध्यान दें कि बल और विद्युत क्षेत्र दोनों सदिश राशियाँ हैं, इसलिए धनात्मक परीक्षण आवेश विद्युत क्षेत्र की दिशा में बल का अनुभव करेगा।
सामान्य सापेक्षता
गुरुत्वाकर्षण के मीट्रिक सिद्धांतों में, विशेष रूप से सामान्य सापेक्षता में, परीक्षण कण छोटी वस्तु का आदर्श मॉडल होता है जिसका द्रव्यमान इतना छोटा होता है कि यह परिवेशी गुरुत्वाकर्षण क्षेत्र को प्रशंसनीय रूप से विवश नहीं करता है।
आइंस्टीन क्षेत्र समीकरणों के अनुसार, गुरुत्वाकर्षण क्षेत्र स्थानीय रूप से न केवल गैर-गुरुत्वाकर्षण द्रव्यमान-ऊर्जा के वितरण के लिए, किन्तु संवेग और तनाव (भौतिकी) के वितरण (जैसे दबाव, द्रव समाधान में चिपचिपा तनाव) के वितरण के लिए भी जुड़ा हुआ है।
वैक्यूम समाधान या इलेक्ट्रोवैक्यूम समाधान में परीक्षण कणों के स्थितियों में, इसका अर्थ यह निकलता है कि स्पिन बल - परीक्षण कणों (कताई या नहीं) के छोटे बादलों द्वारा अनुभव किए जाने वाले ज्वारीय त्वरण के अतिरिक्त, स्पिनिंग परीक्षण कणों को स्पिन के कारण अतिरिक्त त्वरण का अनुभव हो सकता है।[2]
यह भी देखें
संदर्भ
- ↑ Herbert Goldstein (1980). शास्त्रीय यांत्रिकी, दूसरा एड।. Addison-Wesley. p. 5.
- ↑ Poisson, Eric. "द मोशन ऑफ़ पॉइंट पार्टिकल्स इन कर्व्ड स्पेसटाइम". Living Reviews in Relativity. Retrieved March 26, 2004.