मिलर प्रमेय: Difference between revisions

From Vigyanwiki
No edit summary
 
(6 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{original research|date=August 2010}}
{{original research|date=August 2010}}
मिलर की प्रमेय समतुल्य परिपथ बनाने की प्रक्रिया को संदर्भित करता है  इसमें श्रृंखला में जुड़े दो विभवान्तर स्रोतों द्वारा आपूर्ति की जाने वाली एक अस्थिर प्रतिबाधा तत्व के साथ जुड़े दो क्षेत्र तत्वों में विभाजित हो सकती है तथा समानांतर में जुड़े दो स्थित स्रोतों द्वारा आपूर्ति की गई प्रतिबाधा के संबंध में एक मिलर प्रमेय भी है यह दो संस्करण तथा दो किरचॉफ के परिपथ कानूनों पर आधारित हैं।
मिलर की प्रमेय समतुल्य परिपथ बनाने की प्रक्रिया को संदर्भित करता है  इसमें श्रृंखला में जुड़े दो विभवान्तर स्रोतों द्वारा आपूर्ति की जाने वाली एक अस्थिर प्रतिबाधा तत्व के साथ जुड़े दो क्षेत्र तत्वों में विभाजित हो सकती है तथा समानांतर में जुड़े दो स्थित स्रोतों द्वारा आपूर्ति की गई प्रतिबाधा के संबंध में एक मिलर प्रमेय भी है यह दो संस्करण तथा दो किरचॉफ के परिपथ कानूनों पर आधारित है।


मिलर प्रमेय केवल शुद्ध गणितीय अभिव्यक्तियाँ ही नहीं बल्कि ये व्यवस्थाएँ प्रतिबाधा को संशोधित करने के लिए महत्वपूर्ण परिपथ में घटनाओं की व्याख्या करती हैं और विभिन्न सामान्य परिपथों को बनावट करने और समझने में मदद करती हैं प्रमेय परिपथ विश्लेषण में विशेष रूप से प्रतिक्रिया के साथ परिपथ का विश्लेषण करने के लिए उपयोगी होते हैं<ref>{{cite web |url=http://www.netlecturer.com/NTOnLine/T08_THEOREMS/p06MiscTheorems.htm#G7 |title=विविध नेटवर्क प्रमेय|publisher=Netlecturer.com |accessdate=2013-02-03 |url-status=dead |archiveurl=https://web.archive.org/web/20120321134013/http://www.netlecturer.com/NTOnLine/T08_THEOREMS/p06MiscTheorems.htm#G7 |archivedate=2012-03-21 }}</ref> और उच्च आवृत्तियों पर कुछ अर्धचालक उपकरण और प्रवर्धक <ref name = "sandiego">{{cite web|url=http://home.sandiego.edu/~ekim/e194rfs01/millers.pdf |title=EEE 194RF: Miller's theorem |date= |accessdate=2013-02-03}}</ref>मिलर प्रमेय और मिलर प्रभाव के बीच घनिष्ठ संबंध रखते हैं प्रमेय के प्रभाव को सामान्यीकरण के रूप में जाना जा सकता है और प्रभाव को प्रमेय के एक विशेष जगहों के रूप में जाना जा सकता है।
मिलर प्रमेय केवल शुद्ध गणितीय अभिव्यक्तियाँ ही नहीं बल्कि ये व्यवस्थाएँ प्रतिबाधा को संशोधित करने के लिए महत्वपूर्ण परिपथ में घटनाओं की व्याख्या करती हैं और विभिन्न सामान्य परिपथों को बनावट करने और समझने में मदद करती हैं प्रमेय परिपथ विश्लेषण में विशेष रूप से प्रतिक्रिया के साथ परिपथ का विश्लेषण करने के लिए उपयोगी होते हैं<ref>{{cite web |url=http://www.netlecturer.com/NTOnLine/T08_THEOREMS/p06MiscTheorems.htm#G7 |title=विविध नेटवर्क प्रमेय|publisher=Netlecturer.com |accessdate=2013-02-03 |url-status=dead |archiveurl=https://web.archive.org/web/20120321134013/http://www.netlecturer.com/NTOnLine/T08_THEOREMS/p06MiscTheorems.htm#G7 |archivedate=2012-03-21 }}</ref> और उच्च आवृत्तियों पर कुछ अर्धचालक उपकरण और प्रवर्धक <ref name = "sandiego">{{cite web|url=http://home.sandiego.edu/~ekim/e194rfs01/millers.pdf |title=EEE 194RF: Miller's theorem |date= |accessdate=2013-02-03}}</ref>मिलर प्रमेय तथा मिलर प्रभाव के बीच घनिष्ठ संबंध रखते हैं प्रमेय के प्रभाव को सामान्यीकरण के रूप में जाना जा सकता है


== मिलर प्रमेय विभवान्तर के लिए ==
== मिलर प्रमेय विभवान्तर के लिए ==
Line 8: Line 8:
=== परिभाषा ===
=== परिभाषा ===


मिलर प्रमेय स्थापित करता है कि एक रैखिक परिपथ में यदि प्रतिबाधा वाली शाखा स्थित है तो <math>Z</math> ग्रन्थि विभवान्तर के साथ दो ग्रन्थि <math>V_1</math> और <math>V_2</math> को जोड़ा जाता है इस शाखा को क्रमशः प्रतिबाधाओं द्वारा संबंधित ग्रन्थि को जमीन से जोड़ने वाली दो शाखाओं द्वारा प्रतिस्थापित कर सकते हैं <math>\frac{Z}{1 - K}</math> और <math>\frac{KZ}{K - 1}</math> जब <math>K = \frac{V_2} {V_1}</math> मिलर प्रमेय को समतुल्य चाल तकनीक का उपयोग करके चाल को उसके समकक्ष से बदलने और स्रोत अवशोषण प्रमेय को लागू करके सिद्ध किया जा सकता है <ref name = "paginas">{{cite web|url=http://paginas.fe.up.pt/~fff/eBook/MDA/Teo_Miller.html |title=मिलर की प्रमेय|publisher=Paginas.fe.up.pt |date= |accessdate=2013-02-03}}</ref> मिलर प्रमेय का यह संस्करण किरचॉफ के विभवान्तर नियम पर आधारित है इस कारण इसे विभवान्तर की मिलर प्रमेय भी कहा जाता है।
मिलर प्रमेय स्थापित करता है कि एक रैखिक परिपथ में यदि प्रतिबाधा वाली शाखा स्थित है तो <math>Z</math> ग्रन्थि विभवान्तर के साथ दो ग्रन्थि <math>V_1</math> और <math>V_2</math> को जोड़ा जाता है इस शाखा को क्रमशः प्रतिबाधाओं द्वारा संबंधित ग्रन्थि को जमीन से जोड़ने वाली दो शाखाओं द्वारा प्रतिस्थापित कर सकते हैं <math>\frac{Z}{1 - K}</math> और <math>\frac{KZ}{K - 1}</math> जब <math>K = \frac{V_2} {V_1}</math> मिलर प्रमेय को समतुल्य चाल तकनीक का उपयोग करके चाल को उसके समकक्ष से बदलने और स्रोत अवशोषण प्रमेय को लागू करके सिद्ध किया जा सकता है <ref name = "paginas">{{cite web|url=http://paginas.fe.up.pt/~fff/eBook/MDA/Teo_Miller.html |title=मिलर की प्रमेय|publisher=Paginas.fe.up.pt |date= |accessdate=2013-02-03}}</ref> मिलर प्रमेय का यह संस्करण किरचॉफ के विभवान्तर नियम पर आधारित है इस कारण इसे विभवान्तर की मिलर प्रमेय भी कहा जाता है।


=== स्पष्टीकरण ===
=== स्पष्टीकरण ===
[[File:Miller's theorem schematic.jpg|thumb|मिलर के प्रमेय पर एक योजनाबद्ध]]मिलर प्रमेय का तात्पर्य है कि एक प्रतिबाधा तत्व की आपूर्ति दो स्वैच्छिक विभवान्तर स्रोतों द्वारा की जाती है जो आम जमीन के माध्यम से श्रृंखला में जुड़े होते हैं तथा व्यवहार में उनमें से एक विभवान्तर के साथ मुख्य विभवान्तर स्रोत के रूप में कार्य करता है पहला <math>V_1</math> और दूसरा v2  
[[File:Miller's theorem schematic.jpg|thumb|मिलर के प्रमेय पर एक योजनाबद्ध]]मिलर प्रमेय का तात्पर्य है कि एक प्रतिबाधा तत्व की आपूर्ति दो स्वैच्छिक विभवान्तर स्रोतों द्वारा की जाती है जो श्रृंखला माध्यम से जुड़े होते हैं तथा उनमें से एक विभवान्तर के साथ मुख्य विभवान्तर स्रोत के रूप में कार्य करता है पहला <math>V_1</math> और दूसरा v2  


अगर <math>V_2</math> शून्य थे तो तत्व के माध्यम से बहने वाली इनपुट धारा ओम के नियम के अनुसार <math>V_1</math>द्वारा निर्धारित की जायेगी
अगर <math>V_2</math> शून्य थे तो तत्व के माध्यम से बहने वाली इनपुट धारा ओम के नियम के अनुसार <math>V_1</math>द्वारा निर्धारित की जायेगी
Line 32: Line 32:
=== कार्यान्वयन ===
=== कार्यान्वयन ===


[[Image:Miller cir.png|right|frame|सिंगल-एंड वोल्टेज एम्पलीफायर के आधार पर मिलर प्रमेय का एक विशिष्ट कार्यान्वयन]]सबसे अधिक बार मिलर प्रमेय को प्रतिबाधा वाले तत्व से युक्त व्यवस्था में देखा और कार्यान्वित किया जा सकता है <math>Z</math> एक क्षेत्र सामान्य निर्जीव नेटवर्क के दो टर्मिनलों के बीच जुड़ा हुआ है <ref name="sandiego"/>आमतौर पर एक विभवान्तर प्रवर्धक के लाभ के साथ <math>A_V = K</math> इस तरह के एक रैखिक नेटवर्क के रूप में कार्य करता है लेकिन अन्य डिवाइस भी इस भूमिका को निभा सकते हैंजिसे विभवमापी यंत्र कहते हैं
[[Image:Miller cir.png|right|frame|सिंगल-एंड वोल्टेज एम्पलीफायर के आधार पर मिलर प्रमेय का एक विशिष्ट कार्यान्वयन]]सबसे अधिक बार मिलर प्रमेय को प्रतिबाधा वाले तत्व से युक्त व्यवस्था में देखा और कार्यान्वित किया जा सकता है <math>Z</math> एक क्षेत्र सामान्य निर्जीव नेटवर्क के दो टर्मिनलों के बीच जुड़ा हुआ है <ref name="sandiego"/>आमतौर पर एक विभवान्तर प्रवर्धक के लाभ के साथ <math>A_V = K</math> इस तरह के एक रैखिक नेटवर्क के रूप में कार्य करता है लेकिन अन्य डिवाइस भी इस भूमिका को निभा सकते हैं जिसे विभवमापी यंत्र कहते हैं


विभवमापी यंत्र में इनपुट विभवान्तर <math>V_i</math> है जैसे <math>V_1</math> और आउटपुट विभवान्तर <math>V_o</math> जैसा <math>V_2</math>. कई जगहों में इनपुट विभवान्तर स्रोत में कुछ आंतरिक प्रतिबाधा उत्पन्न होती है <math>Z_{int}</math> या एक अतिरिक्त इनपुट प्रतिबाधा इससे जुड़ी है जिसके संयोजन में <math>Z</math> प्रतिक्रिया प्रस्तुत करता है विभवमापी  के प्रकार के आधार पर प्रतिपुष्टि सकारात्मक या नकारात्मक तथा मिश्रित हो सकती है।
विभवमापी यंत्र में इनपुट विभवान्तर <math>V_i</math> है जैसे <math>V_1</math> और आउटपुट विभवान्तर <math>V_o</math> जैसा <math>V_2</math>. कई जगहों में इनपुट विभवान्तर स्रोत में कुछ आंतरिक प्रतिबाधा उत्पन्न होती है <math>Z_{int}</math> या एक अतिरिक्त इनपुट प्रतिबाधा इससे जुड़ी है जिसके संयोजन में <math>Z</math> प्रतिक्रिया प्रस्तुत करता है विभवमापी  के प्रकार के आधार पर प्रतिपुष्टि सकारात्मक या नकारात्मक तथा मिश्रित हो सकती है।
Line 67: Line 67:




समानांतर नकारात्मक प्रतिक्रिया वाले इन सभपरिचालक प् वर्धकटपरिपथ  करट को अधधारा ब जाता है।ेवल ओम के नियम े अनुसार इनपुट वोल्टेज और इनपुट प्रदिभवान्तरनिर्धारित किया जाता है; यह प्रतिबाधा पर निर्भर नहंनक op-p एम्पलीफायर के लिए नकारात्मक और सकारात्मक प्रतिक्रिया दोनों को लागू करके कार्यान्वित की जाती है। इनपुट वोल्टेज स्रोत में आंतरिक प्रतिबाधा होनी चाहिए <math>Z_{int} > 0</math> या इसे किसी अन्य प्रतिबाधा तत्व के माध्यम से इनपुट से जोड़ा जाना है। इन शर्तों के तहत, इनपुट वोल्टेज <math>V_i</math> जैसे ही आउटपुट वोल्टेज वोल्टेज ड्रॉप से ​​अधिक होता है, सर्किट की ध्रुवता बदल जाती है <math>V_z</math> प्रतिबाधा के पार (<math>V_i = V_z - V_o < 0</math>).


=== मिलर व्यवस्था का सामान्यीकरण ===
=== मिलर व्यवस्था का सामान्यीकरण ===


मूल मिलर प्रभाव दो नोड्स के बीच जुड़े कैपेसिटिव प्रतिबाधा द्वारा कार्यान्वित किया जाता है। मिलर प्रमेय मिलर प्रभाव का सामान्यीकरण करता है क्योंकि यह मनमाना प्रतिबाधा दर्शाता है <math>Z</math> नोड्स के बीच जुड़ा हुआ है। इसे एक स्थिर गुणांक भी माना जाता है <math>K</math>; तब भाव #स्पष्टीकरण मान्य हैं। लेकिन मिलर प्रमेय के संशोधित गुण तब भी मौजूद होते हैं जब इन आवश्यकताओं का उल्लंघन किया जाता है और प्रतिबाधा और गुणांक को गतिशील करके इस व्यवस्था को और सामान्यीकृत किया जा सकता है।
मूल मिलर प्रभाव के बीच जुड़ी धरितीय प्रतिबाधा द्वारा कार्यान्वित किया जाता है मिलर प्रमेय प्रभाव का सामान्यीकरण करता है क्योंकि यह प्रतिबाधा को दर्शाता है तथा <math>Z</math> नोड्स के बीच जुड़ा हुआ है इसे एक स्थिर गुणांक भी माना जाता है तब <math>K</math> स्पष्टीकरण मान्य हैं लेकिन मिलर प्रमेय के संशोधित गुण तब भी स्थित होते हैं जब इन आवश्यकताओं का उल्लंघन किया जाता है तथा प्रतिबाधा और गुणांक को गतिशील करके इस व्यवस्था को और सामान्यीकृत किया जा सकता है।


गैर रेखीय तत्व। प्रतिबाधा के अलावा, मिलर व्यवस्था एक मनमाने तत्व की IV विशेषता को संशोधित कर सकती है। एक परिचालन प्रवर्धक अनुप्रयोगों का सर्किट #लॉगरिदमिक आउटपुट एक गैर-रैखिक #शून्य का एक उदाहरण है जहां लॉगरिदमिक डायोड#वर्तमान-वोल्टेज विशेषता को एक लंबवत सीधी रेखा में बदल दिया जाता है <math>y</math> एक्सिस।
गैर रेखीय तत्व प्रतिबाधा के अलावा मिलर व्यवस्था एक मनमाने तत्व की IV विशेषता को संशोधित कर सकती है एक परिचालन प्रवर्धक अनुप्रयोगों का परिपथ प्रारूप आउटपुट एक गैर-रैखिक शून्य का एक उदाहरण है जहां प्रारूप या डायोड दिया जाता है
   
   
स्थिर गुणांक नहीं। यदि गुणांक <math>K</math> भिन्न होता है, कुछ विदेशी आभासी तत्व प्राप्त किए जा सकते हैं। एक गाइरेटर # अनुप्रयोग: एक सिम्युलेटेड प्रारंभ करनेवाला ऐसे आभासी तत्व का एक उदाहरण है जहां प्रतिरोध <math>R_L</math> अधिष्ठापन, समाई या उलटा प्रतिरोध की नकल करने के लिए संशोधित किया गया है।
यदि गुणांक <math>K</math> भिन्न होता है तो कुछ विदेशी आभासी तत्व प्राप्त किए जा सकते हैं जहां प्रतिरोध <math>R_L</math> अधिष्ठापन या उलटा प्रतिरोध की नकल करने के लिए संशोधित किया गया है।


== दोहरी मिलर प्रमेय (धाराओं के लिए) ==
== दोहरी मिलर प्रमेय धाराओं के लिए ==


=== परिभाषा ===
=== परिभाषा ===
मिलर प्रमेय का एक दोहरा संस्करण भी है जो किरचॉफ के वर्तमान कानून (धाराओं के लिए मिलर प्रमेय) पर आधारित है: यदि प्रतिबाधा वाले सर्किट में एक शाखा है <math>Z</math> एक नोड को जोड़ना, जहां दो धाराएं <math>I_1</math> और <math>I_2</math> जमीन पर अभिसरण, हम इस शाखा को संदर्भित धाराओं के दो संवाहक द्वारा प्रतिस्थापित कर सकते हैं, प्रतिबाधा के साथ क्रमशः बराबर <math>(1 + \alpha)Z</math> और <math>\frac{(1 + \alpha)Z}{\alpha}</math>, कहाँ <math>\alpha = \frac{I_2}{I_1}</math>. दोहरे प्रमेय को दो-पोर्ट नेटवर्क को उसके समतुल्य द्वारा प्रतिस्थापित करके और स्रोत अवशोषण प्रमेय को लागू करके सिद्ध किया जा सकता है।<ref name = "paginas" />
मिलर प्रमेय का एक दोहरा संस्करण है जो किरचॉफ के वर्तमान कानून पर आधारित है यदि प्रतिबाधा वाले परिपथ में एक शाखा <math>Z</math> एक नोड को जोड़ना जहां दो धाराएं <math>I_1</math> और <math>I_2</math> जमीन पर अभिसरण करती हैं प्रतिबाधा के साथ क्रमशः बराबर <math>(1 + \alpha)Z</math> और <math>\frac{(1 + \alpha)Z}{\alpha}</math> तब <math>\alpha = \frac{I_2}{I_1}</math>. दोहरे प्रमेय को दो-पोर्ट नेटवर्क को उसके समतुल्य द्वारा प्रतिस्थापित करके और स्रोत अवशोषण प्रमेय को लागू करके सिद्ध किया जा सकता है।<ref name = "paginas" />




=== स्पष्टीकरण ===
=== स्पष्टीकरण ===
दोहरी मिलर प्रमेय वास्तव में इस तथ्य को व्यक्त करता है कि एक दूसरे वर्तमान स्रोत को जोड़ने से आनुपातिक धारा उत्पन्न होती है <math>I_2 = K I_1</math> मुख्य इनपुट स्रोत के समानांतर और प्रतिबाधा तत्व इसके माध्यम से बहने वाली धारा, वोल्टेज और तदनुसार, इनपुट स्रोत की तरफ से देखे जाने वाले सर्किट प्रतिबाधा को बदलता है। दिशा के आधार पर, <math>I_2</math> मुख्य वर्तमान स्रोत की मदद या विरोध करने वाले पूरक वर्तमान स्रोत के रूप में कार्य करता है <math>I_1</math> प्रतिबाधा भर में वोल्टेज बनाने के लिए। वास्तविक तत्व और दूसरे वर्तमान स्रोत के संयोजन को गतिशील रूप से संशोधित प्रतिबाधा के साथ एक नए आभासी तत्व के रूप में सोचा जा सकता है।
दोहरी मिलर प्रमेय वास्तव में इस तथ्य को व्यक्त करता है कि एक दूसरे वर्तमान स्रोत को जोड़ने से आनुपातिक धारा उत्पन्न होती है <math>I_2 = K I_1</math> मुख्य इनपुट स्रोत के समानांतर और प्रतिबाधा तत्व इसके माध्यम से बहने वाली धारा विभवान्तर और इनपुट स्रोत की तरफ से देखे जाने वाले परिपथ प्रतिबाधा को बदलता है दिशा के आधार पर <math>I_2</math> मुख्य वर्तमान स्रोत की मदद या विरोध करने वाले पूरक वर्तमान स्रोत के रूप में कार्य करता है <math>I_1</math> प्रतिबाधा में विभवान्तर बनाने के लिए वास्तविक तत्व और दूसरे वर्तमान स्रोत के संयोजन को गतिशील रूप से संशोधित प्रतिबाधा के साथ एक नए आभासी तत्व के रूप में जोड़ा जा सकता है।


=== कार्यान्वयन ===
=== कार्यान्वयन ===
दोहरी मिलर प्रमेय आमतौर पर एक व्यवस्था द्वारा कार्यान्वित किया जाता है जिसमें दो वोल्टेज स्रोत शामिल होते हैं जो ग्राउंडेड प्रतिबाधा की आपूर्ति करते हैं <math>Z</math> फ्लोटिंग प्रतिबाधाओं के माध्यम से ([http://www.maxim-ic.com/app-notes/index.mvp/id/1155 चित्र 3] देखें)। वोल्टेज स्रोतों और संबंधित प्रतिबाधाओं का संयोजन दो वर्तमान स्रोतों - मुख्य और सहायक एक का निर्माण करता है। मुख्य मिलर प्रमेय के मामले में, दूसरा वोल्टेज आमतौर पर वोल्टेज एम्पलीफायर द्वारा उत्पादित किया जाता है। एम्पलीफायर के प्रकार (इनवर्टिंग, नॉन-इनवर्टिंग या डिफरेंशियल) और लाभ के आधार पर, सर्किट इनपुट प्रतिबाधा वस्तुतः बढ़ सकती है, अनंत, घट सकती है, शून्य या नकारात्मक हो सकती है।
दोहरी मिलर प्रमेय एक व्यवस्था द्वारा कार्यान्वित किया जाता है जिसमें दो विभवान्तर स्रोत सम्मिलित होते हैं जो क्षेत्र प्रतिबाधा की आपूर्ति करते हैं <math>Z</math> अस्थिर प्रतिबाधाओं के माध्यम से विभवान्तर स्रोतों और संबंधित प्रतिबाधाओं का संयोजन दो वर्तमान स्रोतों मुख्य और सहायक एक का निर्माण करता है मुख्य मिलर प्रमेय के स्थान पर दूसरा विभवान्तर आमतौर पर विभवमापी द्वारा उत्पादित किया जाता है विभवमापी के प्रकार और लाभ के आधार पर परिपथ इनपुट प्रतिबाधा वस्तुतः बढ़ सकती है अनंत घट सकती है तथा शून्य या नकारात्मक हो सकती है।


=== अनुप्रयोग ===
=== अनुप्रयोग ===
मुख्य मिलर प्रमेय के रूप में, सर्किट विश्लेषण प्रक्रिया में मदद करने के अलावा, दोहरी संस्करण अतिरिक्त वर्तमान द्वारा प्रतिबाधा को संशोधित करने के आधार पर सर्किट को डिजाइन करने और समझने के लिए एक शक्तिशाली उपकरण है। विशिष्ट अनुप्रयोग लोड कैंसिलर के रूप में नकारात्मक प्रतिबाधा वाले कुछ विदेशी सर्किट हैं,<ref name="load canceller">[http://electronicdesign.com/power/negative-resistance-load-canceller-helps-drive-heavy-loads Negative-resistance load canceller helps drive heavy loads]</ref> समाई न्यूट्रलाइज़र,<ref>{{ Citation |url=http://www.philbrickarchive.org/1964-1_v12_no1_the_lightning_empiricist.htm |title=Impedance and admittance transformations using operational amplifiers |author=D. H. Sheingold |date=1964-01-01 |volume=12 |issue=1 |journal=The Lightning Empiricist |accessdate=2014-06-22}}</ref> हाउलैंड करंट सोर्स और इसका डेरिवेटिव डेबू इंटीग्रेटर।<ref>{{cite web|url=http://www.maximintegrated.com/en/app-notes/index.mvp/id/1155 |title="डीबू" एकल-आपूर्ति इंटीग्रेटर पर विचार करें|publisher=Maxim-ic.com |date=2002-08-29 |accessdate=2013-02-03}}</ref> पिछले उदाहरण में (चित्र 1 देखें), हाउलैंड वर्तमान स्रोत में एक इनपुट वोल्टेज स्रोत होता है <math>V_{in}</math>, एक सकारात्मक अवरोधक <math>R</math>, एक भार (संधारित्र <math>C</math> प्रतिबाधा के रूप में कार्य करना <math>Z</math>) और एक नकारात्मक प्रतिबाधा परिवर्तक INIC (<math>R_1 = R_2 = R_3 = R</math> और ऑप-एम्प)। इनपुट वोल्टेज स्रोत और रोकनेवाला <math>R</math> करंट पासिंग एक अपूर्ण वर्तमान स्रोत का गठन <math>I_R</math> लोड के माध्यम से (स्रोत में चित्र 3 देखें)। आईएनआईसी करंट की मदद से गुजरने वाले दूसरे करंट सोर्स के रूप में काम करता है <math>I_{-R}</math> भार के माध्यम से। नतीजतन, लोड के माध्यम से बहने वाली कुल धारा स्थिर होती है और इनपुट स्रोत द्वारा देखी जाने वाली सर्किट प्रतिबाधा बढ़ जाती है। एक तुलना के रूप में, एक [http://www.elecdesign.com/Articles/Index.cfm?AD=1&ArticleID=4128 लोड कैंसिलर] में{{dead link|date=January 2018 |bot=InternetArchiveBot |fix-attempted=yes }}, INIC लोड के माध्यम से सभी आवश्यक करंट पास करता है; इनपुट स्रोत (लोड प्रतिबाधा) की ओर से देखा जाने वाला सर्किट प्रतिबाधा लगभग अनंत है।
मुख्य मिलर प्रमेय के रूप में परिपथ विश्लेषण प्रक्रिया में मदद करने के अलावा दोहरी संस्करण वर्तमान द्वारा प्रतिबाधा को संशोधित करने के आधार पर परिपथ को बनावट करने और समझने के लिए एक शक्तिशाली उपकरण है विशिष्ट अनुप्रयोग भार के रूप में नकारात्मक प्रतिबाधा वाले कुछ विदेशी परिपथ हैं <ref name="load canceller">[http://electronicdesign.com/power/negative-resistance-load-canceller-helps-drive-heavy-loads Negative-resistance load canceller helps drive heavy loads]</ref> <math>R_1 = R_2 = R_3 = R</math> इनपुट विभवान्तर स्रोत और रोकनेवाला <math>R</math> धारा एक अपूर्ण वर्तमान स्रोत का गठन <math>I_R</math> भार के माध्यम से आईएनआईसी धारा की मदद से गुजरने वाले दूसरे धारा के रूप में काम करता है और इनपुट स्रोत द्वारा देखी जाने वाली परिपथ प्रतिबाधा बढ़ जाती है एक तुलना के रूप में एक   में{{dead link|date=January 2018 |bot=InternetArchiveBot |fix-attempted=yes }}, आइएनआइसी भार के माध्यम से सभी आवश्यक धारायें पास करता है इनपुट स्रोत की ओर से देखा जाने वाला परिपथ लगभग अनंत है।


== मिलर प्रमेयों के आधार पर विशिष्ट अनुप्रयोगों की सूची ==
== मिलर प्रमेयों के आधार पर विशिष्ट अनुप्रयोगों की सूची ==


नीचे दो मिलर प्रमेयों पर आधारित परिपथ समाधानों, परिघटनाओं और तकनीकों की सूची दी गई है।
नीचे दो मिलर प्रमेयों पर आधारित परिपथ समाधानों परिघटनाओं और तकनीकों की सूची दी गई है।


{{hidden begin|toggle=left|title=Circuit solutions|titlestyle=padding-left: 4em;}}
{{hidden begin}}.भार रद्द करना। .मिलर प्राभाव। {{hidden begin}}
 
* पोटेंशियोमेट्रिक नल-बैलेंस मीटर
* एक पोटेंशियोमेट्रिक सर्वो सिस्टम के साथ इलेक्ट्रोमैकेनिकल डेटा रिकॉर्डर
* एमिटर (स्रोत, कैथोड) अनुयायी
* एमिटर (स्रोत, कैथोड) अध: पतन के साथ ट्रांजिस्टर एम्पलीफायर
* ट्रांजिस्टर बूटस्ट्रैप बायसिंग सर्किट
* ट्रांजिस्टर इंटीग्रेटर
* कॉमन-एमिटर (कॉमन-सोर्स, कॉमन-कैथोड) आवारा कैपेसिटेंस के साथ चरणों को बढ़ाना
* Op-amp अनुयायी
* Op-amp नॉन-इनवर्टिंग एम्पलीफायर
* उच्च इनपुट प्रतिबाधा के साथ Op-amp बूटस्ट्रैप्ड एसी अनुयायी
* द्विपक्षीय वर्तमान स्रोत
* वर्तमान व्युत्क्रम (INIC) के साथ नकारात्मक प्रतिबाधा परिवर्तक
* नकारात्मक प्रतिबाधा लोड कैंसिलर
* नकारात्मक प्रतिबाधा इनपुट कैपेसिटेंस कैंसिलर
* हावलैंड वर्तमान स्रोत
* डेबू इंटीग्रेटर
* ऑप-एम्प इन्वर्टिंग एमीटर
* Op-amp वोल्टेज-टू-करंट कन्वर्टर (ट्रांसकंडक्शन एम्पलीफायर)
* Op-amp करंट-टू-वोल्टेज कन्वर्टर (ट्रांसिमेडेंस एम्पलीफायर)
* Op-amp प्रतिरोध-से-वर्तमान कनवर्टर
* Op-amp प्रतिरोध-से-वोल्टेज कनवर्टर
* Op-amp inverting एम्पलीफायर
* ऑप-एम्पी इनवर्टिंग समर
* Op-amp inverting कैपेसिटिव इंटीग्रेटर (वर्तमान इंटीग्रेटर, चार्ज एम्पलीफायर)
* Op-amp inverting प्रतिरोधक-कैपेसिटिव इंटीग्रेटर
* Op-amp inverting कैपेसिटिव डिफरेंशिएटर
* Op-amp inverting कैपेसिटिव-रेसिस्टिव डिफरेंशिएटर
* ऑप-एम्प इनवर्टिंग इंडक्टिव इंटीग्रेटर
* Op-amp inverting आगमनात्मक-प्रतिरोधक विभेदक, आदि।
* Op-amp डायोड लॉग कन्वर्टर
* Op-amp डायोड एंटी-लॉग कन्वर्टर
* Op-amp inverting डायोड सीमक (परिशुद्धता डायोड)
* वोल्टेज उलटा (वीएनआईसी), आदि के साथ नकारात्मक प्रतिबाधा कनवर्टर।
{{hidden end}}
 
{{hidden begin|toggle=left|title=Circuit phenomena and techniques|titlestyle=padding-left: 4em;}}
* बूटस्ट्रैपिंग
* उच्च प्रतिबाधा ऑप-एम्प सर्किट की इनपुट गार्डिंग
* इनपुट-कैपेसिटेंस न्यूट्रलाइजेशन
* आभासी मैदान
* मिलर प्रभाव
* फ्रीक्वेंसी ऑप-एम्प मुआवजा
* नकारात्मक प्रतिबाधा
* लोड रद्द करना
{{hidden end}}


== यह भी देखें ==
== यह भी देखें ==


* मिलर प्रभाव
* मिलर प्रभाव।
* [[नकारात्मक प्रतिक्रिया एम्पलीफायर]]
* [[नकारात्मक प्रतिक्रिया एम्पलीफायर|नकारात्मक प्रतिक्रिया प्रभावमापी ।]]
* परिचालन प्रवर्धक अनुप्रयोग
*शक्तिशाली प्रतिक्रिया।
* बूटस्ट्रैपिंग (इलेक्ट्रॉनिक्स) # एम्पलीफायर
* परिचालन प्रवर्धक अनुप्रयोग।
* विद्युतीय प्रभाव।


== संदर्भ ==
== संदर्भ ==
Line 169: Line 123:
* [https://doi.org/10.1080/002072198133860 The Feedback Decomposition Theorem (FDT): The evolution of Miller's Theorem]
* [https://doi.org/10.1080/002072198133860 The Feedback Decomposition Theorem (FDT): The evolution of Miller's Theorem]
* [https://doi.org/10.1109/TCSII.2005.848986 An Accurate Calculation of Miller Effect on the Frequency Response and on the Input and Output Impedances of Feedback Amplifiers (using FDT)]
* [https://doi.org/10.1109/TCSII.2005.848986 An Accurate Calculation of Miller Effect on the Frequency Response and on the Input and Output Impedances of Feedback Amplifiers (using FDT)]
[[Category: इलेक्ट्रॉनिक डिजाइन]] [[Category: एनालॉग सर्किट]] [[Category: सर्किट प्रमेय]]


[[Category: Machine Translated Page]]
[[Category:All articles that may contain original research]]
[[Category:All articles with dead external links]]
[[Category:Articles that may contain original research from August 2010]]
[[Category:Articles with dead external links from January 2018]]
[[Category:Articles with invalid date parameter in template]]
[[Category:Articles with permanently dead external links]]
[[Category:Created On 25/03/2023]]
[[Category:Created On 25/03/2023]]
[[Category:Machine Translated Page]]
[[Category:Pages with broken file links]]
[[Category:Templates Vigyan Ready]]
[[Category:इलेक्ट्रॉनिक डिजाइन]]
[[Category:एनालॉग सर्किट]]
[[Category:सर्किट प्रमेय]]

Latest revision as of 16:00, 27 April 2023

मिलर की प्रमेय समतुल्य परिपथ बनाने की प्रक्रिया को संदर्भित करता है इसमें श्रृंखला में जुड़े दो विभवान्तर स्रोतों द्वारा आपूर्ति की जाने वाली एक अस्थिर प्रतिबाधा तत्व के साथ जुड़े दो क्षेत्र तत्वों में विभाजित हो सकती है तथा समानांतर में जुड़े दो स्थित स्रोतों द्वारा आपूर्ति की गई प्रतिबाधा के संबंध में एक मिलर प्रमेय भी है यह दो संस्करण तथा दो किरचॉफ के परिपथ कानूनों पर आधारित है।

मिलर प्रमेय केवल शुद्ध गणितीय अभिव्यक्तियाँ ही नहीं बल्कि ये व्यवस्थाएँ प्रतिबाधा को संशोधित करने के लिए महत्वपूर्ण परिपथ में घटनाओं की व्याख्या करती हैं और विभिन्न सामान्य परिपथों को बनावट करने और समझने में मदद करती हैं प्रमेय परिपथ विश्लेषण में विशेष रूप से प्रतिक्रिया के साथ परिपथ का विश्लेषण करने के लिए उपयोगी होते हैं[1] और उच्च आवृत्तियों पर कुछ अर्धचालक उपकरण और प्रवर्धक [2]मिलर प्रमेय तथा मिलर प्रभाव के बीच घनिष्ठ संबंध रखते हैं प्रमेय के प्रभाव को सामान्यीकरण के रूप में जाना जा सकता है ।

मिलर प्रमेय विभवान्तर के लिए

परिभाषा

मिलर प्रमेय स्थापित करता है कि एक रैखिक परिपथ में यदि प्रतिबाधा वाली शाखा स्थित है तो ग्रन्थि विभवान्तर के साथ दो ग्रन्थि और को जोड़ा जाता है इस शाखा को क्रमशः प्रतिबाधाओं द्वारा संबंधित ग्रन्थि को जमीन से जोड़ने वाली दो शाखाओं द्वारा प्रतिस्थापित कर सकते हैं और जब मिलर प्रमेय को समतुल्य चाल तकनीक का उपयोग करके चाल को उसके समकक्ष से बदलने और स्रोत अवशोषण प्रमेय को लागू करके सिद्ध किया जा सकता है [3] मिलर प्रमेय का यह संस्करण किरचॉफ के विभवान्तर नियम पर आधारित है इस कारण इसे विभवान्तर की मिलर प्रमेय भी कहा जाता है।

स्पष्टीकरण

मिलर के प्रमेय पर एक योजनाबद्ध

मिलर प्रमेय का तात्पर्य है कि एक प्रतिबाधा तत्व की आपूर्ति दो स्वैच्छिक विभवान्तर स्रोतों द्वारा की जाती है जो श्रृंखला माध्यम से जुड़े होते हैं तथा उनमें से एक विभवान्तर के साथ मुख्य विभवान्तर स्रोत के रूप में कार्य करता है पहला और दूसरा v2

अगर शून्य थे तो तत्व के माध्यम से बहने वाली इनपुट धारा ओम के नियम के अनुसार द्वारा निर्धारित की जायेगी

जहॉं

और परिपथ का इनपुट इस प्रकार है-

जैसे ही दूसरा विभवान्तर स्रोत में सम्मिलित होता है तो इनपुट धारा दोनों विभवान्तरों पर निर्भर करता है इसकी ध्रुवीयता के अनुसार घटाया या जोड़ा जाता है इसलिए इनपुट धारा को घटता या बढ़ता है जहाँ

तब

मिलर प्रमेय इस तथ्य को व्यक्त करता है कि दूसरे विभवान्तर स्रोत को आनुपातिक विभवान्तर से जोड़ना तथा इनपुट विभवान्तर स्रोत के साथ श्रृंखला में प्रभावी विभवान्तर वर्तमान में इनपुट स्रोत से देखा जाने वाला परिपथ प्रतिबाधा बदलता है या नहीं ध्रुवीयता के आधार पर प्रतिबाधा के माध्यम से धारा पास करने के लिए मुख्य विभवान्तर स्रोत की मदद या विरोध करने वाले पूरक विभवान्तर स्रोत के रूप में कार्य करता है।

दो विभवान्तर स्रोतों के संयोजन को एक नए विभवान्तर स्रोत के रूप में प्रस्तुत करने के अलावा प्रमेय को वास्तविक तत्व और दूसरे विभवान्तर स्रोत को गतिशील रूप से संशोधित प्रतिबाधा के साथ एक नए आभासी तत्व में जोड़कर समझाया जा सकता है इस दृष्टिकोण से एक अतिरिक्त विभवान्तर है जो कृत्रिम रूप से बढ़ाता या घटाता है प्रतिबाधा प्रकार के विभवान्तर वर्तमान में घटया बढ़ रहा है विभवान्तर के बीच का अनुपात प्राप्त प्रतिबाधा के मूल्य को निर्धारित करता है और विशिष्ट अनुप्रयोगों के कुल छह समूहों में यह सम्मिलित है।


कार्यान्वयन

सिंगल-एंड वोल्टेज एम्पलीफायर के आधार पर मिलर प्रमेय का एक विशिष्ट कार्यान्वयन

सबसे अधिक बार मिलर प्रमेय को प्रतिबाधा वाले तत्व से युक्त व्यवस्था में देखा और कार्यान्वित किया जा सकता है एक क्षेत्र सामान्य निर्जीव नेटवर्क के दो टर्मिनलों के बीच जुड़ा हुआ है [2]आमतौर पर एक विभवान्तर प्रवर्धक के लाभ के साथ इस तरह के एक रैखिक नेटवर्क के रूप में कार्य करता है लेकिन अन्य डिवाइस भी इस भूमिका को निभा सकते हैं जिसे विभवमापी यंत्र कहते हैं

विभवमापी यंत्र में इनपुट विभवान्तर है जैसे और आउटपुट विभवान्तर जैसा . कई जगहों में इनपुट विभवान्तर स्रोत में कुछ आंतरिक प्रतिबाधा उत्पन्न होती है या एक अतिरिक्त इनपुट प्रतिबाधा इससे जुड़ी है जिसके संयोजन में प्रतिक्रिया प्रस्तुत करता है विभवमापी के प्रकार के आधार पर प्रतिपुष्टि सकारात्मक या नकारात्मक तथा मिश्रित हो सकती है।

मिलर प्रवर्धक व्यवस्था के दो पहलू हैं

  • प्रवर्धक को एक अतिरिक्त विभवान्तर स्रोत के रूप में जाना जा सकता है जो वास्तविक प्रतिबाधा को आभासी प्रतिबाधा में परिवर्तित करता है
  • आभासी प्रतिबाधा को विभवमापी इनपुट के समानांतर जुड़े तत्व के रूप में सोचा जा सकता है जो आभासी प्रतिबाधा विभवमापी इनपुट प्रतिबाधा को संशोधित करती है।

अनुप्रयोग

एक प्रतिबाधा का परिचय जो विभवमापी इनपुट और आउटपुट को जोड़ता है मिलर प्रमेय कम करने में मदद करता है तथा विशेष रूप से प्रतिपुष्टि के साथ कुछ परिपथ में जटिलता[2] के समतुल्य परिपथों में परिवर्तित करके मिलर प्रमेय परिपथ एक प्रभावी उपकरण है यह अतिरिक्त विभवान्तर द्वारा प्रतिबाधा को संशोधित करने के आधार पर परिपथ को समझने का एक शक्तिशाली उपकरण भी है।

घटाव पर आधारित अनुप्रयोग से

इन अनुप्रयोगों में आउटपुट विभवान्तर के संबंध में एक विपरीत ध्रुवता के साथ डाला जाता है

बढ़ी हुई प्रतिबाधा एक गैर-प्रतिलोम प्रवर्धक द्वारा कार्यान्वित की जाती है

ऑप-एम्प गैर-इनवर्टिंग एम्पलीफायर मिलर प्रमेय के आधार पर श्रृंखला नकारात्मक प्रतिक्रिया के साथ एक विशिष्ट सर्किट है, जहां ऑप-एम्प अंतर इनपुट प्रतिबाधा स्पष्ट रूप से अनंत तक बढ़ जाती है।

अनंत प्रतिबाधा एक गैर-प्रतिलोम प्रवर्धक का उपयोग करती है . आउटपुट विभवान्तर इनपुट के बराबर है इसे पूरी तरह से निष्प्रभावी कर देता है

नकारात्मक प्रतिबाधा एक गैर-विभवमापी द्वारा कार्यान्वित की जाती है अपनी दिशा बदलता है क्योंकि आउटपुट विभवान्तर इनपुट विभवान्तर से अधिक होता है।

को जोड़ने के आधार पर आवेदन

इन अनुप्रयोगों में आउटपुट विभवान्तर इनपुट विभवान्तर के संबंध में समान ध्रुवता के साथ डाला जाता है

यह प्रत्यावर्ती प्रवर्धक द्वारा कार्यान्वित की जाती है

मिलर प्रमेय के आधार पर समानांतर नकारात्मक प्रतिक्रिया के साथ ऑप-एम्पी इन्वर्टिंग एम्पलीफायर एक विशिष्ट सर्किट है, जहां ऑप-एम्प अंतर इनपुट प्रतिबाधा स्पष्ट रूप से शून्य तक कम हो जाती है।

इसमें शून्य प्रतिबाधा अत्यधिक उच्च लाभ के साथ एक प्रतिलोम विभवमापी का उपयोग करती है . आउटपुट विभवान्तर लगभग बराबर है प्रतिबाधा परिपथ एक छोटे जोड़ के रूप में व्यवहार करता है और इनपुट पर आभाषी क्षेत्र दिखाई देता है इसलिए इसे निरंतर विभवान्तर स्रोत द्वारा संचालित नहीं किया जाना चाहिए इस उद्देश्य के लिए कुछ परिपथ निरंतर वर्तमान स्रोत या आंतरिक प्रतिबाधा के साथ वास्तविक विभवान्तर स्रोत द्वारा संचालित होते हैं ।


मिलर व्यवस्था का सामान्यीकरण

मूल मिलर प्रभाव के बीच जुड़ी धरितीय प्रतिबाधा द्वारा कार्यान्वित किया जाता है मिलर प्रमेय प्रभाव का सामान्यीकरण करता है क्योंकि यह प्रतिबाधा को दर्शाता है तथा नोड्स के बीच जुड़ा हुआ है इसे एक स्थिर गुणांक भी माना जाता है तब स्पष्टीकरण मान्य हैं लेकिन मिलर प्रमेय के संशोधित गुण तब भी स्थित होते हैं जब इन आवश्यकताओं का उल्लंघन किया जाता है तथा प्रतिबाधा और गुणांक को गतिशील करके इस व्यवस्था को और सामान्यीकृत किया जा सकता है।

गैर रेखीय तत्व प्रतिबाधा के अलावा मिलर व्यवस्था एक मनमाने तत्व की IV विशेषता को संशोधित कर सकती है एक परिचालन प्रवर्धक अनुप्रयोगों का परिपथ प्रारूप आउटपुट एक गैर-रैखिक शून्य का एक उदाहरण है जहां प्रारूप या डायोड दिया जाता है ।

यदि गुणांक भिन्न होता है तो कुछ विदेशी आभासी तत्व प्राप्त किए जा सकते हैं जहां प्रतिरोध अधिष्ठापन या उलटा प्रतिरोध की नकल करने के लिए संशोधित किया गया है।

दोहरी मिलर प्रमेय धाराओं के लिए

परिभाषा

मिलर प्रमेय का एक दोहरा संस्करण है जो किरचॉफ के वर्तमान कानून पर आधारित है यदि प्रतिबाधा वाले परिपथ में एक शाखा एक नोड को जोड़ना जहां दो धाराएं और जमीन पर अभिसरण करती हैं प्रतिबाधा के साथ क्रमशः बराबर और तब . दोहरे प्रमेय को दो-पोर्ट नेटवर्क को उसके समतुल्य द्वारा प्रतिस्थापित करके और स्रोत अवशोषण प्रमेय को लागू करके सिद्ध किया जा सकता है।[3]


स्पष्टीकरण

दोहरी मिलर प्रमेय वास्तव में इस तथ्य को व्यक्त करता है कि एक दूसरे वर्तमान स्रोत को जोड़ने से आनुपातिक धारा उत्पन्न होती है मुख्य इनपुट स्रोत के समानांतर और प्रतिबाधा तत्व इसके माध्यम से बहने वाली धारा विभवान्तर और इनपुट स्रोत की तरफ से देखे जाने वाले परिपथ प्रतिबाधा को बदलता है दिशा के आधार पर मुख्य वर्तमान स्रोत की मदद या विरोध करने वाले पूरक वर्तमान स्रोत के रूप में कार्य करता है प्रतिबाधा में विभवान्तर बनाने के लिए वास्तविक तत्व और दूसरे वर्तमान स्रोत के संयोजन को गतिशील रूप से संशोधित प्रतिबाधा के साथ एक नए आभासी तत्व के रूप में जोड़ा जा सकता है।

कार्यान्वयन

दोहरी मिलर प्रमेय एक व्यवस्था द्वारा कार्यान्वित किया जाता है जिसमें दो विभवान्तर स्रोत सम्मिलित होते हैं जो क्षेत्र प्रतिबाधा की आपूर्ति करते हैं अस्थिर प्रतिबाधाओं के माध्यम से विभवान्तर स्रोतों और संबंधित प्रतिबाधाओं का संयोजन दो वर्तमान स्रोतों मुख्य और सहायक एक का निर्माण करता है मुख्य मिलर प्रमेय के स्थान पर दूसरा विभवान्तर आमतौर पर विभवमापी द्वारा उत्पादित किया जाता है विभवमापी के प्रकार और लाभ के आधार पर परिपथ इनपुट प्रतिबाधा वस्तुतः बढ़ सकती है अनंत घट सकती है तथा शून्य या नकारात्मक हो सकती है।

अनुप्रयोग

मुख्य मिलर प्रमेय के रूप में परिपथ विश्लेषण प्रक्रिया में मदद करने के अलावा दोहरी संस्करण वर्तमान द्वारा प्रतिबाधा को संशोधित करने के आधार पर परिपथ को बनावट करने और समझने के लिए एक शक्तिशाली उपकरण है विशिष्ट अनुप्रयोग भार के रूप में नकारात्मक प्रतिबाधा वाले कुछ विदेशी परिपथ हैं [4] इनपुट विभवान्तर स्रोत और रोकनेवाला धारा एक अपूर्ण वर्तमान स्रोत का गठन भार के माध्यम से आईएनआईसी धारा की मदद से गुजरने वाले दूसरे धारा के रूप में काम करता है और इनपुट स्रोत द्वारा देखी जाने वाली परिपथ प्रतिबाधा बढ़ जाती है एक तुलना के रूप में एक में[permanent dead link], आइएनआइसी भार के माध्यम से सभी आवश्यक धारायें पास करता है इनपुट स्रोत की ओर से देखा जाने वाला परिपथ लगभग अनंत है।

मिलर प्रमेयों के आधार पर विशिष्ट अनुप्रयोगों की सूची

नीचे दो मिलर प्रमेयों पर आधारित परिपथ समाधानों परिघटनाओं और तकनीकों की सूची दी गई है।

.भार रद्द करना। .मिलर प्राभाव।

यह भी देखें

संदर्भ

  1. "विविध नेटवर्क प्रमेय". Netlecturer.com. Archived from the original on 2012-03-21. Retrieved 2013-02-03.
  2. 2.0 2.1 2.2 "EEE 194RF: Miller's theorem" (PDF). Retrieved 2013-02-03.
  3. 3.0 3.1 "मिलर की प्रमेय". Paginas.fe.up.pt. Retrieved 2013-02-03.
  4. Negative-resistance load canceller helps drive heavy loads


अग्रिम पठन

  • Fundamentals of Microelectronics by Behzad Razavi
  • Microelectronic Circuits by Adel Sedra and Kenneth Smith
  • Fundamentals of RF Circuit Design by Jeremy Everard


बाहरी संबंध