कुएट प्रवाह: Difference between revisions

From Vigyanwiki
m (Abhishek moved page कौएट प्रवाह to कुएट प्रवाह without leaving a redirect)
No edit summary
 
(3 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{short description|Model of viscous fluid flow between two surfaces moving relative to each other}}
{{short description|Model of viscous fluid flow between two surfaces moving relative to each other}}


द्रव गतिकी में, '''कौएट प्रवाह''' दो सतहों के बीच की जगह में एक चिपचिपापन द्रव का प्रवाह है, जिनमें से एक दूसरे के सापेक्ष [[स्पर्शरेखा]] से चल रहा है। इन सतहों की आपेक्षिक गति द्रव पर कौएट का दबाव डालती है और प्रवाह को प्रेरित करती है। इस शब्द की परिभाषा के आधार पर प्रवाह दिशा में अनुप्रयुक्त दाब प्रवणता भी हो सकती है।
द्रव गतिकी में, '''कुएट प्रवाह''' दो सतहों के बीच की जगह में एक चिपचिपापन द्रव का प्रवाह है, जिनमें से एक दूसरे के सापेक्ष [[स्पर्शरेखा]] से चल रहा है। इन सतहों की आपेक्षिक गति द्रव पर कौएट का दबाव डालती है और प्रवाह को प्रेरित करती है। इस शब्द की परिभाषा के आधार पर प्रवाह दिशा में अनुप्रयुक्त दाब प्रवणता भी हो सकती है।


कौएट संरचना कुछ व्यावहारिक समस्याओं का प्रारूप प्रदर्शित करता है, जैसे पृथ्वी का आवरण और [[पृथ्वी का वातावरण]],<ref>Zhilenko et al. (2018)</ref> और हल्के भारित [[द्रव असर]] में प्रवाहित करते हैं। यह [[विस्कोमीटर]] में भी कार्यरत है और [[समय प्रतिवर्तीता]] के अनुमानों को प्रदर्शित करता है।<ref>Guyon et al. (2001), p. 136</ref><ref>Heller (1960)</ref> इसका नाम 19वीं शताब्दी के अंत में फ्रेंच [[एंगर्स विश्वविद्यालय]] में भौतिकी के प्रोफेसर [[मौरिस डुवेट]] के नाम पर रखा गया है।
कौएट संरचना कुछ व्यावहारिक समस्याओं का प्रारूप प्रदर्शित करता है, जैसे पृथ्वी का आवरण और [[पृथ्वी का वातावरण]],<ref>Zhilenko et al. (2018)</ref> और हल्के भारित [[द्रव असर]] में प्रवाहित करते हैं। यह [[विस्कोमीटर]] में भी कार्यरत है और [[समय प्रतिवर्तीता]] के अनुमानों को प्रदर्शित करता है।<ref>Guyon et al. (2001), p. 136</ref><ref>Heller (1960)</ref> इसका नाम 19वीं शताब्दी के अंत में फ्रेंच [[एंगर्स विश्वविद्यालय]] में भौतिकी के प्रोफेसर [[मौरिस डुवेट]] के नाम पर रखा गया है।
Line 7: Line 7:
== प्लेनर डुवेट प्रवाह ==
== प्लेनर डुवेट प्रवाह ==


[[File:Laminar shear.svg|thumb|right|300px|दो अनंत समतल प्लेटों का उपयोग करते हुए सरल कौएट विन्यास।]]शियरिंग (भौतिकी) या कौएट चालित द्रव गति को दर्शाने के लिए अधिकांशतः अंडरग्रेजुएट भौतिकी और अभियांत्रिकी के पाठ्यक्रमों में कौएट प्रवाह का उपयोग किया जाता है। इस साधारण विन्यास दूरी से अलग दो अनंत, समांतर प्लेटों <math>h</math> से मेल खाता है, इसमें एक प्लेट निरंतर सापेक्ष वेग <math>U</math> के कारण अपने ही विमान में के साथ अनुवाद करती है। इन दबाव की प्रवणताओं की उपेक्षा करते हुए नेवियर-स्टोक्स समीकरण इस प्रकार सरलीकृत हो जाते हैं-
[[File:Laminar shear.svg|thumb|right|300px|दो अनंत समतल प्लेटों का उपयोग करते हुए सरल कौएट विन्यास।]]शियरिंग (भौतिकी) या कौएट चालित द्रव गति को दर्शाने के लिए अधिकांशतः अंडरग्रेजुएट भौतिकी और अभियांत्रिकी के पाठ्यक्रमों में कुएट प्रवाह का उपयोग किया जाता है। इस साधारण विन्यास दूरी से अलग दो अनंत, समांतर प्लेटों <math>h</math> से मेल खाता है, इसमें एक प्लेट निरंतर सापेक्ष वेग <math>U</math> के कारण अपने ही विमान में के साथ अनुवाद करती है। इन दबाव की प्रवणताओं की उपेक्षा करते हुए नेवियर-स्टोक्स समीकरण इस प्रकार सरलीकृत हो जाते हैं-


:<math>\frac{d^2 u}{d y^2} = 0,</math>
:<math>\frac{d^2 u}{d y^2} = 0,</math>
Line 31: Line 31:


=== दाब प्रवणता के साथ तलीय प्रवाह ===
=== दाब प्रवणता के साथ तलीय प्रवाह ===
एक अधिक सामान्य कौएट प्रवाह में एक स्थिर दबाव प्रवणता <math>G=-dp/dx=\mathrm{constant}</math> सम्मिलित है, इन प्लेटों के समानांतर दिशा में नेवियर-स्टोक्स समीकरण इस प्रकार उपयोग होता हैं-
अधिक सामान्य कुएट प्रवाह में एक स्थिर दबाव प्रवणता <math>G=-dp/dx=\mathrm{constant}</math> सम्मिलित है, इन प्लेटों के समानांतर दिशा में नेवियर-स्टोक्स समीकरण इस प्रकार उपयोग होता हैं-


:<math>  \frac{d^2 u}{d y^2}  =- \frac{G}{\mu},</math>
:<math>  \frac{d^2 u}{d y^2}  =- \frac{G}{\mu},</math>
जहाँ <math>\mu</math> गतिशील चिपचिपाहट है। उपरोक्त समीकरण को दो बार एकीकृत करना और सीमा शर्तों को लागू करने (दबाव प्रवणता के बिना कौएट प्रवाह के स्थितियोंमें समान) देता है
जहाँ <math>\mu</math> गतिशील चिपचिपाहट है। उपरोक्त समीकरण को दो बार एकीकृत करना और सीमा शर्तों को लागू करने (दबाव प्रवणता के बिना कुएट प्रवाह के स्थितियोंमें समान) देता है


:<math>u (y) = \frac{G}{2\mu} y \, (h-y) + U \frac{y}{h}.</math>
:<math>u (y) = \frac{G}{2\mu} y \, (h-y) + U \frac{y}{h}.</math>
Line 41: Line 41:
संपीड़ित कौएट के लिए प्रवाह <math>\mathrm{M}=0</math> संपीड़ित कौएट के लिए प्रवाह <math>\mathrm{M}^2\mathrm{Pr}=7.5</math>असम्पीडित प्रवाह में, वेग प्रोफ़ाइल रैखिक होती है क्योंकि द्रव का तापमान स्थिर होता है। जब ऊपरी और निचली दीवारों को अलग-अलग तापमान पर बनाए रखा जाता है, तो वेग प्रोफ़ाइल अधिक जटिल होती है। चूँकि, इसका एक त्रुटिहीन अंतर्निहित समाधान है जैसा कि 1950 में सी.आर. इलिंगवर्थ द्वारा दिखाया गया था।<ref>Lagerstrom (1996)</ref>
संपीड़ित कौएट के लिए प्रवाह <math>\mathrm{M}=0</math> संपीड़ित कौएट के लिए प्रवाह <math>\mathrm{M}^2\mathrm{Pr}=7.5</math>असम्पीडित प्रवाह में, वेग प्रोफ़ाइल रैखिक होती है क्योंकि द्रव का तापमान स्थिर होता है। जब ऊपरी और निचली दीवारों को अलग-अलग तापमान पर बनाए रखा जाता है, तो वेग प्रोफ़ाइल अधिक जटिल होती है। चूँकि, इसका एक त्रुटिहीन अंतर्निहित समाधान है जैसा कि 1950 में सी.आर. इलिंगवर्थ द्वारा दिखाया गया था।<ref>Lagerstrom (1996)</ref>


इस प्रकार स्थिर वेग के साथ निचली दीवार और ऊपरी दीवार के गति के साथ समतल कौएट प्रवाह <math>U</math> पर विचार करें, इस कारण सबस्क्रिप्ट के साथ निचली दीवार पर द्रव गुणों को <math>w</math> द्वारा निरूपित करते हैं और ऊपरी दीवार पर सबस्क्रिप्ट के साथ गुण <math>\infty</math> द्वारा प्रकट किया जाता हैं, इस प्रकार ऊपरी दीवार पर गुण और दबाव निर्धारित किया जाता है और संदर्भ मात्रा के रूप में लिया जाता है। होने देना <math>l</math> दो दीवारों के बीच की दूरी हैं। इस प्रकार इसकी सीमा शर्तें इस प्रकार हैं-
इस प्रकार स्थिर वेग के साथ निचली दीवार और ऊपरी दीवार के गति के साथ समतल कुएट प्रवाह <math>U</math> पर विचार करें, इस कारण सबस्क्रिप्ट के साथ निचली दीवार पर द्रव गुणों को <math>w</math> द्वारा निरूपित करते हैं और ऊपरी दीवार पर सबस्क्रिप्ट के साथ गुण <math>\infty</math> द्वारा प्रकट किया जाता हैं, इस प्रकार ऊपरी दीवार पर गुण और दबाव निर्धारित किया जाता है और संदर्भ मात्रा के रूप में लिया जाता है। होने देना <math>l</math> दो दीवारों के बीच की दूरी हैं। इस प्रकार इसकी सीमा शर्तें इस प्रकार हैं-


:<math>u=0, \ v =0, \ h=h_w=c_{pw} T_w \ \text{at} \ y=0,</math>
:<math>u=0, \ v =0, \ h=h_w=c_{pw} T_w \ \text{at} \ y=0,</math>
Line 60: Line 60:
:<math>\frac{q_w}{\tau_w U} = \frac{\tilde T_w-\tilde T_r}{(\gamma-1)\mathrm{M}^2 \mathrm{Pr}}, \quad \tilde T_r =1+ \frac{\gamma-1}{2} \mathrm{M}^2\mathrm{Pr},</math>
:<math>\frac{q_w}{\tau_w U} = \frac{\tilde T_w-\tilde T_r}{(\gamma-1)\mathrm{M}^2 \mathrm{Pr}}, \quad \tilde T_r =1+ \frac{\gamma-1}{2} \mathrm{M}^2\mathrm{Pr},</math>
:<math>\tilde h = \tilde h_w + (\tilde h_r-\tilde h_w) \tilde u - \frac{\gamma-1}{2}\mathrm{M}^2 \mathrm{Pr} \, \tilde u^2.</math>
:<math>\tilde h = \tilde h_w + (\tilde h_r-\tilde h_w) \tilde u - \frac{\gamma-1}{2}\mathrm{M}^2 \mathrm{Pr} \, \tilde u^2.</math>
यदि विशिष्ट ऊष्मा स्थिर है, तो <math>\tilde h=\tilde T</math>. कब <math>\mathrm{M}\rightarrow 0</math> और <math>T_w=T_\infty, \Rightarrow q_w= 0</math>, तब <math>T</math> और <math>\mu</math> हर स्थान पर स्थिर रहता हैं, इस प्रकार असंपीड़ित कौएट प्रवाह समाधान पुनर्प्राप्त कर रहे हैं। अन्यथा, किसी को पूर्ण तापमान निर्भरता <math>\tilde \mu(\tilde T)</math> का पता होना चाहिए, जबकि इसके लिए कोई सरल अभिव्यक्ति <math>\tilde \mu(\tilde T)</math> नहीं है, यह त्रुटिहीन और सामान्य दोनों है, कुछ सामग्रियों के लिए कई अनुमान हैं - देखें, उदाहरण के लिए, [[चिपचिपाहट की तापमान निर्भरता]] के कारण <math>\mathrm{M}\rightarrow 0</math> होने पर और <math>q_w\neq 0</math> मात्रा को एकीकृत <math>\tilde T_r=1</math> बनाती है, इस प्रकार हवा के लिए यह मान <math>\gamma=1.4, \ \tilde \mu(\tilde T) = \tilde T^{2/3}</math> सामान्यतः उपयोग किया जाता है, और इस स्थितियोंके परिणाम आंकड़े में दिखाए जाते हैं।
यदि विशिष्ट ऊष्मा स्थिर है, तो <math>\tilde h=\tilde T</math>. कब <math>\mathrm{M}\rightarrow 0</math> और <math>T_w=T_\infty, \Rightarrow q_w= 0</math>, तब <math>T</math> और <math>\mu</math> हर स्थान पर स्थिर रहता हैं, इस प्रकार असंपीड़ित कुएट प्रवाह समाधान पुनर्प्राप्त कर रहे हैं। अन्यथा, किसी को पूर्ण तापमान निर्भरता <math>\tilde \mu(\tilde T)</math> का पता होना चाहिए, जबकि इसके लिए कोई सरल अभिव्यक्ति <math>\tilde \mu(\tilde T)</math> नहीं है, यह त्रुटिहीन और सामान्य दोनों है, कुछ सामग्रियों के लिए कई अनुमान हैं - देखें, उदाहरण के लिए, [[चिपचिपाहट की तापमान निर्भरता]] के कारण <math>\mathrm{M}\rightarrow 0</math> होने पर और <math>q_w\neq 0</math> मात्रा को एकीकृत <math>\tilde T_r=1</math> बनाती है, इस प्रकार हवा के लिए यह मान <math>\gamma=1.4, \ \tilde \mu(\tilde T) = \tilde T^{2/3}</math> सामान्यतः उपयोग किया जाता है, और इस स्थितियोंके परिणाम आंकड़े में दिखाए जाते हैं।


रसायन विज्ञान और [[आयनीकरण]] के प्रभाव (अर्थात, <math>c_p</math> स्थिर नहीं है) का भी अध्ययन किया गया है; उस स्थिति में अणुओं के पृथक्करण से पुनर्प्राप्ति तापमान कम हो जाता है।<ref>Liepmann et al. (1956, 1957)</ref>
रसायन विज्ञान और [[आयनीकरण]] के प्रभाव (अर्थात, <math>c_p</math> स्थिर नहीं है) का भी अध्ययन किया गया है; उस स्थिति में अणुओं के पृथक्करण से पुनर्प्राप्ति तापमान कम हो जाता है।<ref>Liepmann et al. (1956, 1957)</ref>
=== आयताकार चैनल ===
=== आयताकार चैनल ===
कौएट प्रवाह h/l=0.1 के साथ आयामी प्रवाह <math>u(y)</math> मान्य है जब दोनों प्लेट धारा के अनुसार अधिकतः (<math>x</math>) और स्पैनवाइज (<math>z</math>) निर्देश के लिए लंबी होती हैं। जब स्पैनवाइज लंबाई परिमित होती है, तो प्रवाह द्वि-आयामी हो जाता है और <math>u</math> दोनों का कार्य है <math>y</math> और <math>z</math>. चूंकि, प्रवाह की यूनिडायरेक्शनल प्रकृति को सुनिश्चित करने के लिए स्ट्रीमवाइज दिशा में अनंत लंबाई को बनाए रखा जाना चाहिए।
कुएट प्रवाह h/l=0.1 के साथ आयामी प्रवाह <math>u(y)</math> मान्य है जब दोनों प्लेट धारा के अनुसार अधिकतः (<math>x</math>) और स्पैनवाइज (<math>z</math>) निर्देश के लिए लंबी होती हैं। जब स्पैनवाइज लंबाई परिमित होती है, तो प्रवाह द्वि-आयामी हो जाता है और <math>u</math> दोनों का कार्य है <math>y</math> और <math>z</math>. चूंकि, प्रवाह की यूनिडायरेक्शनल प्रकृति को सुनिश्चित करने के लिए स्ट्रीमवाइज दिशा में अनंत लंबाई को बनाए रखा जाना चाहिए।


एक उदाहरण के रूप में, अनुप्रस्थ ऊंचाई के साथ एक अधिकांशतः लंबे आयताकार चैनल पर विचार करें <math>h</math> और स्पैनवाइज चौड़ाई <math>l</math>  इस शर्त के अधीन कि शीर्ष दीवार एक स्थिर वेग <math>U</math> से चलती है, इस प्रकार प्रभावी रूप से दबाव प्रवणता के बिना, नेवियर-स्टोक्स समीकरण कम हो जाते हैं
एक उदाहरण के रूप में, अनुप्रस्थ ऊंचाई के साथ एक अधिकांशतः लंबे आयताकार चैनल पर विचार करें <math>h</math> और स्पैनवाइज चौड़ाई <math>l</math>  इस शर्त के अधीन कि शीर्ष दीवार एक स्थिर वेग <math>U</math> से चलती है, इस प्रकार प्रभावी रूप से दबाव प्रवणता के बिना, नेवियर-स्टोक्स समीकरण कम हो जाते हैं
Line 76: Line 76:


:<math>u(y,z) = \frac{4U}{\pi} \sum_{n=1}^\infty \frac{1}{2n-1} \frac{\sinh (\beta_n y)}{\sinh (\beta_n h)} \sin (\beta_n z), \quad \beta_n = \frac{(2n-1)\pi}{l}.</math>
:<math>u(y,z) = \frac{4U}{\pi} \sum_{n=1}^\infty \frac{1}{2n-1} \frac{\sinh (\beta_n y)}{\sinh (\beta_n h)} \sin (\beta_n z), \quad \beta_n = \frac{(2n-1)\pi}{l}.</math>
कब <math>h/l\ll 1</math>जैसा कि चित्र में दिखाया गया है, तलीय कौएट प्रवाह पुनर्प्राप्त किया गया है।
कब <math>h/l\ll 1</math>जैसा कि चित्र में दिखाया गया है, तलीय कुएट प्रवाह पुनर्प्राप्त किया गया है।


== समाक्षीय सिलेंडर ==
== समाक्षीय सिलेंडर ==
Line 84: Line 84:


=== परिमित लंबाई के समाक्षीय सिलेंडर ===
=== परिमित लंबाई के समाक्षीय सिलेंडर ===
मौलिक  टेलर-कौएट प्रवाह समस्या अधिकांशतः लंबे सिलेंडर मानती है, यदि सिलेंडरों की नगण्य परिमित लंबाई <math>l</math> है, तो विश्लेषण को संशोधित किया जाना चाहिए (चूंकि प्रवाह अभी भी यूनिडायरेक्शनल है)। के लिए <math>\Omega_2=0</math>, परिमित-लंबाई की समस्या को चर या अभिन्न परिवर्तन के पृथक्करण का उपयोग करके हल किया जा सकता है:<ref>Wendl (1999)</ref>
मौलिक  टेलर-कुएट प्रवाह समस्या अधिकांशतः लंबे सिलेंडर मानती है, यदि सिलेंडरों की नगण्य परिमित लंबाई <math>l</math> है, तो विश्लेषण को संशोधित किया जाना चाहिए (चूंकि प्रवाह अभी भी यूनिडायरेक्शनल है)। के लिए <math>\Omega_2=0</math>, परिमित-लंबाई की समस्या को चर या अभिन्न परिवर्तन के पृथक्करण का उपयोग करके हल किया जा सकता है:<ref>Wendl (1999)</ref>
:<math>
:<math>
v_\theta(r,z) = \frac{4R_1\Omega_1}{\pi} \sum_{n=1}^\infty \frac{1}{2n-1} \frac{I_1(\beta_n  R_2) K_1(\beta_n  r) - K_1(\beta_n  R_2) I_1(\beta_n  r)}{I_1(\beta_n  R_2) K_1(\beta_n  R_1) - K_1(\beta_n  R_2) I_1(\beta_n  R_1)} \sin (\beta_n  z), \quad \beta_n = \frac{(2n-1)\pi}{l},  
v_\theta(r,z) = \frac{4R_1\Omega_1}{\pi} \sum_{n=1}^\infty \frac{1}{2n-1} \frac{I_1(\beta_n  R_2) K_1(\beta_n  r) - K_1(\beta_n  R_2) I_1(\beta_n  r)}{I_1(\beta_n  R_2) K_1(\beta_n  R_1) - K_1(\beta_n  R_2) I_1(\beta_n  R_1)} \sin (\beta_n  z), \quad \beta_n = \frac{(2n-1)\pi}{l},  
Line 125: Line 125:
* [https://archive.today/20130818143441/http://thelab.photophysics.com/circular-dichroism/the-science-behind-the-couette-cell-accessory/ A rheologists perspective: the science behind the couette cell accessory]
* [https://archive.today/20130818143441/http://thelab.photophysics.com/circular-dichroism/the-science-behind-the-couette-cell-accessory/ A rheologists perspective: the science behind the couette cell accessory]


{{DEFAULTSORT:Couette Flow}}[[Category: प्रवाह शासन]] [[Category: द्रव गतिविज्ञान]]
{{DEFAULTSORT:Couette Flow}}


 
[[Category:Created On 18/04/2023|Couette Flow]]
 
[[Category:Lua-based templates|Couette Flow]]
[[Category: Machine Translated Page]]
[[Category:Machine Translated Page|Couette Flow]]
[[Category:Created On 18/04/2023]]
[[Category:Pages with script errors|Couette Flow]]
[[Category:Templates Vigyan Ready|Couette Flow]]
[[Category:Templates that add a tracking category|Couette Flow]]
[[Category:Templates that generate short descriptions|Couette Flow]]
[[Category:Templates using TemplateData|Couette Flow]]
[[Category:द्रव गतिविज्ञान|Couette Flow]]
[[Category:प्रवाह शासन|Couette Flow]]

Latest revision as of 11:38, 26 April 2023

द्रव गतिकी में, कुएट प्रवाह दो सतहों के बीच की जगह में एक चिपचिपापन द्रव का प्रवाह है, जिनमें से एक दूसरे के सापेक्ष स्पर्शरेखा से चल रहा है। इन सतहों की आपेक्षिक गति द्रव पर कौएट का दबाव डालती है और प्रवाह को प्रेरित करती है। इस शब्द की परिभाषा के आधार पर प्रवाह दिशा में अनुप्रयुक्त दाब प्रवणता भी हो सकती है।

कौएट संरचना कुछ व्यावहारिक समस्याओं का प्रारूप प्रदर्शित करता है, जैसे पृथ्वी का आवरण और पृथ्वी का वातावरण,[1] और हल्के भारित द्रव असर में प्रवाहित करते हैं। यह विस्कोमीटर में भी कार्यरत है और समय प्रतिवर्तीता के अनुमानों को प्रदर्शित करता है।[2][3] इसका नाम 19वीं शताब्दी के अंत में फ्रेंच एंगर्स विश्वविद्यालय में भौतिकी के प्रोफेसर मौरिस डुवेट के नाम पर रखा गया है।

प्लेनर डुवेट प्रवाह

दो अनंत समतल प्लेटों का उपयोग करते हुए सरल कौएट विन्यास।

शियरिंग (भौतिकी) या कौएट चालित द्रव गति को दर्शाने के लिए अधिकांशतः अंडरग्रेजुएट भौतिकी और अभियांत्रिकी के पाठ्यक्रमों में कुएट प्रवाह का उपयोग किया जाता है। इस साधारण विन्यास दूरी से अलग दो अनंत, समांतर प्लेटों से मेल खाता है, इसमें एक प्लेट निरंतर सापेक्ष वेग के कारण अपने ही विमान में के साथ अनुवाद करती है। इन दबाव की प्रवणताओं की उपेक्षा करते हुए नेवियर-स्टोक्स समीकरण इस प्रकार सरलीकृत हो जाते हैं-

जहाँ स्थानिक समन्वय प्लेटों के लिए सामान्य है और वेग क्षेत्र है। यह समीकरण इस धारणा को दर्शाता है कि प्रवाह यूनिडायरेक्शनल है - अर्थात, वेग के तीन घटकों में से केवल एक गैर तुच्छ है। यदि निचली प्लेट से मेल खाती है, और इसकी सीमा शर्तों को प्रदर्शित करता हैं, इसके लिए उक्त समीकरण का उपयोग करते हैं-

इसे दो बार समाकलित करके और सीमा शर्तों का उपयोग करके स्थिरांकों को हल करके पाया जा सकता है। इस प्रवाह का उल्लेखनीय पहलू यह है कि कौएट तनाव पूरे डोमेन में स्थिर रहता है। विशेष रूप से वेग का पहला व्युत्पन्न स्थिर है। श्यानता के अनुसार न्यूटन का श्यानता का नियम (न्यूटोनियन द्रव), अपरूपण प्रतिबल इस अभिव्यक्ति और (निरंतर) द्रव श्यानता का उत्पाद है।

स्टार्टअप

वास्तविकता में कौएट का हल तुरंत नहीं पहुंचता है। इसकी स्थिर अवस्था के दृष्टिकोण का वर्णन करने वाली स्टार्टअप समस्या किसके द्वारा दी गई है

प्रारंभिक शर्त के अधीन

और स्थिर प्रवाह के समान सीमा शर्तों के साथ:

स्थिर समाधान को घटाकर समस्या को समांगी अवकल समीकरण बनाया जा सकता है। इसे फिर चरों के पृथक्करण को लागू करने से समाधान प्राप्त होता है:[4]

.

स्थिर अवस्था में विश्राम का वर्णन करने वाला टाइमस्केल है, जैसा कि चित्र में दिखाया गया है। इस प्रकार स्थिर अवस्था तक पहुँचने में लगने वाला समय केवल प्लेटों के बीच की दूरी पर निर्भर करता है और तरल पदार्थ की कीनेमेटिक चिपचिपाहट चालू नहीं रहता हैं।

दाब प्रवणता के साथ तलीय प्रवाह

अधिक सामान्य कुएट प्रवाह में एक स्थिर दबाव प्रवणता सम्मिलित है, इन प्लेटों के समानांतर दिशा में नेवियर-स्टोक्स समीकरण इस प्रकार उपयोग होता हैं-

जहाँ गतिशील चिपचिपाहट है। उपरोक्त समीकरण को दो बार एकीकृत करना और सीमा शर्तों को लागू करने (दबाव प्रवणता के बिना कुएट प्रवाह के स्थितियोंमें समान) देता है

दाब प्रवणता धनात्मक (प्रतिकूल दाब प्रवणता) या ऋणात्मक (अनुकूल दाब प्रवणता) हो सकती है। स्थिर प्लेटों के सीमित स्थितियोंमें (), प्रवाह को हेगन-पॉइज़्यूइल समीकरण#प्लेन पॉइज़्यूइल प्रवाह के रूप में संदर्भित किया जाता है, और इसमें एक सममित (क्षैतिज मध्य-विमान के संदर्भ में) परवलयिक वेग प्रोफ़ाइल है।[5]

संकुचित प्रवाह

संपीड़ित कौएट के लिए प्रवाह संपीड़ित कौएट के लिए प्रवाह असम्पीडित प्रवाह में, वेग प्रोफ़ाइल रैखिक होती है क्योंकि द्रव का तापमान स्थिर होता है। जब ऊपरी और निचली दीवारों को अलग-अलग तापमान पर बनाए रखा जाता है, तो वेग प्रोफ़ाइल अधिक जटिल होती है। चूँकि, इसका एक त्रुटिहीन अंतर्निहित समाधान है जैसा कि 1950 में सी.आर. इलिंगवर्थ द्वारा दिखाया गया था।[6]

इस प्रकार स्थिर वेग के साथ निचली दीवार और ऊपरी दीवार के गति के साथ समतल कुएट प्रवाह पर विचार करें, इस कारण सबस्क्रिप्ट के साथ निचली दीवार पर द्रव गुणों को द्वारा निरूपित करते हैं और ऊपरी दीवार पर सबस्क्रिप्ट के साथ गुण द्वारा प्रकट किया जाता हैं, इस प्रकार ऊपरी दीवार पर गुण और दबाव निर्धारित किया जाता है और संदर्भ मात्रा के रूप में लिया जाता है। होने देना दो दीवारों के बीच की दूरी हैं। इस प्रकार इसकी सीमा शर्तें इस प्रकार हैं-

जहाँ विशिष्ट तापीय धारिता है और विशिष्ट ऊष्मा है। द्रव्यमान का संरक्षण और -गति पर की आवश्यकता है प्रवाह डोमेन में सभी स्थानों पर ऊर्जा संरक्षण और -गति को कम करना आवश्यक होता हैं। इस प्रकार-

जहाँ दीवार कौएट तनाव है। प्रवाह रेनॉल्ड्स संख्या पर निर्भर नहीं करता है, बल्कि प्रान्तल संख्या पर और मच संख्या , जहाँ तापीय चालकता है, ध्वनि की गति है और विशिष्ट ऊष्मा अनुपात है। गैर-आयामी चरों का परिचय दें

इन मात्राओं के संदर्भ में, समाधान हैं

जहाँ निचली दीवार से प्रति इकाई क्षेत्र में प्रति इकाई समय में हस्तांतरित ऊष्मा है। इस प्रकार के निहित कार्य हैं, इस प्रकार पुनर्प्राप्ति तापमान के संदर्भ में कोई भी समाधान लिख सकता है। इस प्रकार और रिकवरी थैलेपी एक इन्सुलेटेड दीवार के तापमान पर मूल्यांकन किया जाता है अर्थात, के मान और जिसके लिए होने पर समाधान इस प्रकार है-

यदि विशिष्ट ऊष्मा स्थिर है, तो . कब और , तब और हर स्थान पर स्थिर रहता हैं, इस प्रकार असंपीड़ित कुएट प्रवाह समाधान पुनर्प्राप्त कर रहे हैं। अन्यथा, किसी को पूर्ण तापमान निर्भरता का पता होना चाहिए, जबकि इसके लिए कोई सरल अभिव्यक्ति नहीं है, यह त्रुटिहीन और सामान्य दोनों है, कुछ सामग्रियों के लिए कई अनुमान हैं - देखें, उदाहरण के लिए, चिपचिपाहट की तापमान निर्भरता के कारण होने पर और मात्रा को एकीकृत बनाती है, इस प्रकार हवा के लिए यह मान सामान्यतः उपयोग किया जाता है, और इस स्थितियोंके परिणाम आंकड़े में दिखाए जाते हैं।

रसायन विज्ञान और आयनीकरण के प्रभाव (अर्थात, स्थिर नहीं है) का भी अध्ययन किया गया है; उस स्थिति में अणुओं के पृथक्करण से पुनर्प्राप्ति तापमान कम हो जाता है।[7]

आयताकार चैनल

कुएट प्रवाह h/l=0.1 के साथ आयामी प्रवाह मान्य है जब दोनों प्लेट धारा के अनुसार अधिकतः () और स्पैनवाइज () निर्देश के लिए लंबी होती हैं। जब स्पैनवाइज लंबाई परिमित होती है, तो प्रवाह द्वि-आयामी हो जाता है और दोनों का कार्य है और . चूंकि, प्रवाह की यूनिडायरेक्शनल प्रकृति को सुनिश्चित करने के लिए स्ट्रीमवाइज दिशा में अनंत लंबाई को बनाए रखा जाना चाहिए।

एक उदाहरण के रूप में, अनुप्रस्थ ऊंचाई के साथ एक अधिकांशतः लंबे आयताकार चैनल पर विचार करें और स्पैनवाइज चौड़ाई इस शर्त के अधीन कि शीर्ष दीवार एक स्थिर वेग से चलती है, इस प्रकार प्रभावी रूप से दबाव प्रवणता के बिना, नेवियर-स्टोक्स समीकरण कम हो जाते हैं

सीमा शर्तों के साथ

चरों के पृथक्करण का उपयोग करके समाधान दिया जाता है

कब जैसा कि चित्र में दिखाया गया है, तलीय कुएट प्रवाह पुनर्प्राप्त किया गया है।

समाक्षीय सिलेंडर

टेलर-कूएट प्रवाह दो घूर्णन, अधिकांशतः लंबे समाक्षीय सिलेंडरों के बीच का प्रवाह को प्रदर्शित करता है।[8] 1845 में सर जॉर्ज स्टोक्स, प्रथम बैरोनेट द्वारा मूल समस्या का समाधान किया गया था।[9] किन्तु जेफ्री इनग्राम टेलर का नाम प्रवाह से जुड़ा था, क्योंकि उन्होंने 1923 के एक प्रसिद्ध पत्र में इसकी स्थिरता का अध्ययन किया था।[10] इस समस्या को बेलनाकार निर्देशांक में हल किया जा सकता है। इस प्रकार आंतरिक और बाहरी सिलेंडरों की त्रिज्या को और द्वारा निरूपित करते हैं। इस कारण मान लीजिए कि सिलेंडर निरंतर कोणीय गति और से घूमते हैं, इस स्थिति में वेग -दिशा है[11]

यह समीकरण दर्शाता है कि वक्रता के प्रभाव अब प्रवाह क्षेत्र में निरंतर कौएट की अनुमति नहीं देते हैं।

परिमित लंबाई के समाक्षीय सिलेंडर

मौलिक टेलर-कुएट प्रवाह समस्या अधिकांशतः लंबे सिलेंडर मानती है, यदि सिलेंडरों की नगण्य परिमित लंबाई है, तो विश्लेषण को संशोधित किया जाना चाहिए (चूंकि प्रवाह अभी भी यूनिडायरेक्शनल है)। के लिए , परिमित-लंबाई की समस्या को चर या अभिन्न परिवर्तन के पृथक्करण का उपयोग करके हल किया जा सकता है:[12]

जहाँ पहले और दूसरे प्रकार के संशोधित बेसेल कार्य हैं।

यह भी देखें

  • लामिना का प्रवाह
  • स्टोक्स समस्या स्टोक्स-कूएट प्रवाह या स्टोक्स-कूएट प्रवाह
  • हेगन-पॉइज़ुइल समीकरण
  • टेलर-कूएट प्रवाह
  • नेवियर-स्टोक्स समीकरणों से हेगन-पॉइज़्यूइल प्रवाह

संदर्भ

  1. Zhilenko et al. (2018)
  2. Guyon et al. (2001), p. 136
  3. Heller (1960)
  4. Pozrikidis (2011), pp. 338–339
  5. Kundu et al. (2016), p. 415
  6. Lagerstrom (1996)
  7. Liepmann et al. (1956, 1957)
  8. Landau and Lifshitz (1987)
  9. Stokes (1845)
  10. Taylor (1923)
  11. Guyon et al. (2001), pp. 163–166
  12. Wendl (1999)


स्रोत

बाहरी संबंध