अपरिवर्तनीय मापन: Difference between revisions

From Vigyanwiki
No edit summary
 
(4 intermediate revisions by 4 users not shown)
Line 5: Line 5:
== परिभाषा ==
== परिभाषा ==


अनुमान <math>(X, \Sigma)</math> एक मापने योग्य समष्टि हो और <math>f : X \to X</math> को <math>X</math> से स्वयं के लिए एक मापने योग्य फलन होने दें। <math>(X, \Sigma)</math> पर एक माप <math>\mu</math> को <math>f</math> के अंतर्गत अपरिवर्तनीय कहा जाता है, यदि प्रत्येक मापने योग्य समुच्चय <math>A</math> के लिए <math>\Sigma</math> में, <math display=block>\mu\left(f^{-1}(A)\right) = \mu(A).</math><br />पुशफॉरवर्ड मापक के संदर्भ में, यह बताता है कि <math>f_*(\mu) = \mu</math><math>X</math> पर मापकों का संग्रह (सामान्यतः प्रायिकता मापक) जो <math>f</math> के अंतर्गत अपरिवर्तनीय हैं, कभी-कभी <math>M_f(X)</math> को निरूपित किया जाता है। ऊर्जापंथी मापकों का संग्रह, <math>E_f(X),</math> <math>M_f(X)</math> का उपसमुच्चय है। इसके अलावा, दो अपरिवर्तनीय उपायों का कोई भी [[उत्तल संयोजन|अवमुखसंयोजन]] भी अपरिवर्तनीय है, इसलिए <math>M_f(X)</math> एक [[उत्तल सेट|अवमुख समुच्चय]] है; <math>E_f(X)</math> में <math>M_f(X)</math> के चरम बिंदु सम्मिलित है।
अनुमान <math>(X, \Sigma)</math> एक मापने योग्य समष्टि हो और <math>f : X \to X</math> को <math>X</math> से स्वयं के लिए एक मापने योग्य फलन होने दें। <math>(X, \Sigma)</math> पर एक माप <math>\mu</math> को <math>f</math> के अंतर्गत अपरिवर्तनीय कहा जाता है, यदि प्रत्येक मापने योग्य समुच्चय <math>A</math> के लिए <math>\Sigma</math> में, <math display=block>\mu\left(f^{-1}(A)\right) = \mu(A).</math><br />पुशफॉरवर्ड मापक के संदर्भ में, यह बताता है कि <math>f_*(\mu) = \mu</math><math>X</math> पर मापकों का संग्रह (सामान्यतः प्रायिकता मापक) जो <math>f</math> के अंतर्गत अपरिवर्तनीय हैं, कभी-कभी <math>M_f(X)</math> को निरूपित किया जाता है। ऊर्जापंथी मापकों का संग्रह, <math>E_f(X),</math> <math>M_f(X)</math> का उपसमुच्चय है। इसके अतिरिक्त, दो अपरिवर्तनीय उपायों का कोई भी [[उत्तल संयोजन|अवमुखसंयोजन]] भी अपरिवर्तनीय है, इसलिए <math>M_f(X)</math> एक [[उत्तल सेट|अवमुख समुच्चय]] है; <math>E_f(X)</math> में <math>M_f(X)</math> के चरम बिंदु सम्मिलित है।  
एक [[गतिशील प्रणाली (परिभाषा)|गतिशील प्रणाली]] <math>(X, T, \varphi)</math> के प्रकरण में, जहाँ <math>(X, \Sigma)</math> पहले की तरह मापने योग्य समष्टि है, <math>T</math> एक [[मोनोइड|एकाभ]] है और <math>\varphi : T \times X \to X</math> प्रवाह मानचित्र है, एक मापक <math>\mu</math> है <math>(X, \Sigma)</math> को एक अपरिवर्तनीय मापक कहा जाता है यदि यह प्रत्येक मानचित्र <math>\varphi_t : X \to X</math> के लिए एक अपरिवर्तनीय उपाय है। स्पष्ट रूप से, <math>\mu</math> अपरिवर्तनीय है [[अगर और केवल अगर]]<math display="block">\mu\left(\varphi_{t}^{-1}(A)\right) = \mu(A) \qquad \text{ for all }  t \in T, A \in \Sigma.</math><br />दूसरे प्रकार से रखें, <math>\mu</math> यादृच्छिक चर <math>\left(Z_t\right)_{t \geq 0}</math> (संभवतः एक [[मार्कोव श्रृंखला]] या एक प्रसंभाव्य अंतर समीकरण के समाधान) के अनुक्रम के लिए एक अपरिवर्तनीय उपाय है, अगर, जब भी प्रारंभिक स्थिति <math>Z_0</math>को <math>\mu</math> के अनुसार वितरित किया जाता है, तो <math>Z_t</math> किसी भी बाद के समय <math>t</math> के लिए होता है।


जब गतिकीय प्रणाली को [[ट्रांसफर ऑपरेटर|स्थानान्तरण प्रचालक]] द्वारा वर्णित किया जा सकता है, तो अपरिवर्तनीय उपाय प्रचालक का एक अभिलक्षणिक सदिश होता है, जो <math>1</math> के अभिलक्षणिक मान के अनुरूप होता है, यह [[फ्रोबेनियस-पेरोन प्रमेय]] द्वारा दिया गया सबसे बड़ा अभिलक्षणिक मान है।
[[गतिशील प्रणाली (परिभाषा)|गतिशील प्रणाली]] <math>(X, T, \varphi)</math> के प्रकरण में, जहाँ <math>(X, \Sigma)</math> पहले की तरह मापने योग्य समष्टि है, <math>T</math> एक [[मोनोइड|एकाभ]] है और <math>\varphi : T \times X \to X</math> प्रवाह मानचित्र है, एक मापक <math>\mu</math> है <math>(X, \Sigma)</math> को एक अपरिवर्तनीय मापक कहा जाता है यदि यह प्रत्येक मानचित्र <math>\varphi_t : X \to X</math> के लिए एक अपरिवर्तनीय उपाय है। स्पष्ट रूप से, <math>\mu</math> अपरिवर्तनीय है [[अगर और केवल अगर]]<math display="block">\mu\left(\varphi_{t}^{-1}(A)\right) = \mu(A) \qquad \text{ for all }  t \in T, A \in \Sigma.</math><br />दूसरे प्रकार से रखें, <math>\mu</math> यादृच्छिक चर <math>\left(Z_t\right)_{t \geq 0}</math> (संभवतः एक [[मार्कोव श्रृंखला]] या एक प्रसंभाव्य अंतर समीकरण के समाधान) के अनुक्रम के लिए एक अपरिवर्तनीय उपाय है, अगर, जब भी प्रारंभिक स्थिति <math>Z_0</math>को <math>\mu</math> के अनुसार वितरित किया जाता है, तो <math>Z_t</math> किसी भी बाद के समय <math>t</math> के लिए होता है।
 
जब गतिकीय प्रणाली को स्थानान्तरण प्रचालक द्वारा वर्णित किया जा सकता है, तो अपरिवर्तनीय उपाय प्रचालक का एक अभिलक्षणिक सदिश होता है, जो <math>1</math> के अभिलक्षणिक मान के अनुरूप होता है, यह [[फ्रोबेनियस-पेरोन प्रमेय]] द्वारा दिया गया सबसे बड़ा अभिलक्षणिक मान है।


== उदाहरण ==
== उदाहरण ==
Line 14: Line 15:
[[File:Hyperbolic sector squeeze mapping.svg|250px|right|thumb|अधिसंकुचन मानचित्रण अतिपरवलीय कोण को अपरिवर्तित छोड़ देता है क्योंकि यह [[ अतिशयोक्तिपूर्ण क्षेत्र |अतिपरवलीय क्षेत्र]] (बैंगनी) को उसी क्षेत्र में से एक में ले जाता है। नीले और हरे आयत भी समान क्षेत्रफल रखते हैं]]
[[File:Hyperbolic sector squeeze mapping.svg|250px|right|thumb|अधिसंकुचन मानचित्रण अतिपरवलीय कोण को अपरिवर्तित छोड़ देता है क्योंकि यह [[ अतिशयोक्तिपूर्ण क्षेत्र |अतिपरवलीय क्षेत्र]] (बैंगनी) को उसी क्षेत्र में से एक में ले जाता है। नीले और हरे आयत भी समान क्षेत्रफल रखते हैं]]


* इसके सामान्य [[बोरेल σ-बीजगणित]] के साथ [[वास्तविक रेखा]] <math>\R</math> पर विचार करें; <math>a \in \R</math> को निर्धारित करें और अनुवाद मानचित्र <math>T_a : \R \to \R</math> पर विचार करें:<math display="block">T_a(x) = x + a.</math>फिर एक आयामी लेबेस्गु मापक <math>\lambda</math> <math>T_a</math> के लिए एक अपरिवर्तनीय उपाय है।   
* इसके सामान्य बोरेल σ-बीजगणित के साथ वास्तविक रेखा <math>\R</math> पर विचार करें; <math>a \in \R</math> को निर्धारित करें और अनुवाद मानचित्र <math>T_a : \R \to \R</math> पर विचार करें:<math display="block">T_a(x) = x + a.</math>फिर एक आयामी लेबेस्गु मापक <math>\lambda</math> <math>T_a</math> के लिए एक अपरिवर्तनीय उपाय है।   


* अधिक सामान्यतः पर, <math>n</math>-आयामी [[यूक्लिडियन अंतरिक्ष|यूक्लिडियन समष्टि]] <math>\R^n</math> पर अपने सामान्य बोरेल σ-बीजगणित के साथ, <math>n</math>-आयामी लेबेस्गु मापक <math>\lambda^n</math> यूक्लिडियन समष्टि के किसी भी [[आइसोमेट्री|सममिति]] के लिए एक अपरिवर्तनीय उपाय है, जो कि एक मानचित्र <math>T : \R^n \to \R^n</math> जिसे इस रूप में लिखा जा सकता है। <math display="block">T(x) = A x + b</math> कुछ <math>n \times n</math> के लिए [[ऑर्थोगोनल मैट्रिक्स|लांबिक आव्यूह]] <math>A \in O(n)</math> और एक सदिश <math>b \in \R^n</math> के लिए है।
* अधिक सामान्यतः पर, <math>n</math>-आयामी [[यूक्लिडियन अंतरिक्ष|यूक्लिडियन समष्टि]] <math>\R^n</math> पर अपने सामान्य बोरेल σ-बीजगणित के साथ, <math>n</math>-आयामी लेबेस्गु मापक <math>\lambda^n</math> यूक्लिडियन समष्टि के किसी भी [[आइसोमेट्री|सममिति]] के लिए एक अपरिवर्तनीय उपाय है, जो कि एक मानचित्र <math>T : \R^n \to \R^n</math> जिसे इस रूप में लिखा जा सकता है। <math display="block">T(x) = A x + b</math> कुछ <math>n \times n</math> के लिए [[ऑर्थोगोनल मैट्रिक्स|लांबिक आव्यूह]] <math>A \in O(n)</math> और एक सदिश <math>b \in \R^n</math> के लिए है।

Latest revision as of 15:54, 17 October 2023

गणित में, अपरिवर्तनीय उपाय एक मापक है जो किसी फलन द्वारा परिरक्षित होता है। फलन एक ज्यामितीय रूपांतरण हो सकता है। उदाहरण के लिए, घूर्णन के अंतर्गत कोण अपरिवर्तनीय है, निष्पीडन मानचित्रण के अंतर्गत अतिपरवलयिक कोण अपरिवर्तनीय है, और अपरूपण मानचित्रण के अंतर्गत ढलानों का अंतर अपरिवर्तनीय है।[1]

एर्गोडिक सिद्धांत गतिशील प्रणालियों में अपरिवर्तनीय उपायों का अध्ययन है। क्रायलोव-बोगोलीबॉव प्रमेय विचाराधीन फलन और समष्टि पर कुछ प्रतिबंध के अंतर्गत अपरिवर्तनीय उपायों के अस्तित्व को सिद्ध करता है।

परिभाषा

अनुमान एक मापने योग्य समष्टि हो और को से स्वयं के लिए एक मापने योग्य फलन होने दें। पर एक माप को के अंतर्गत अपरिवर्तनीय कहा जाता है, यदि प्रत्येक मापने योग्य समुच्चय के लिए में,


पुशफॉरवर्ड मापक के संदर्भ में, यह बताता है कि पर मापकों का संग्रह (सामान्यतः प्रायिकता मापक) जो के अंतर्गत अपरिवर्तनीय हैं, कभी-कभी को निरूपित किया जाता है। ऊर्जापंथी मापकों का संग्रह, का उपसमुच्चय है। इसके अतिरिक्त, दो अपरिवर्तनीय उपायों का कोई भी अवमुखसंयोजन भी अपरिवर्तनीय है, इसलिए एक अवमुख समुच्चय है; में के चरम बिंदु सम्मिलित है।

गतिशील प्रणाली के प्रकरण में, जहाँ पहले की तरह मापने योग्य समष्टि है, एक एकाभ है और प्रवाह मानचित्र है, एक मापक है को एक अपरिवर्तनीय मापक कहा जाता है यदि यह प्रत्येक मानचित्र के लिए एक अपरिवर्तनीय उपाय है। स्पष्ट रूप से, अपरिवर्तनीय है अगर और केवल अगर


दूसरे प्रकार से रखें, यादृच्छिक चर (संभवतः एक मार्कोव श्रृंखला या एक प्रसंभाव्य अंतर समीकरण के समाधान) के अनुक्रम के लिए एक अपरिवर्तनीय उपाय है, अगर, जब भी प्रारंभिक स्थिति को के अनुसार वितरित किया जाता है, तो किसी भी बाद के समय के लिए होता है।

जब गतिकीय प्रणाली को स्थानान्तरण प्रचालक द्वारा वर्णित किया जा सकता है, तो अपरिवर्तनीय उपाय प्रचालक का एक अभिलक्षणिक सदिश होता है, जो के अभिलक्षणिक मान के अनुरूप होता है, यह फ्रोबेनियस-पेरोन प्रमेय द्वारा दिया गया सबसे बड़ा अभिलक्षणिक मान है।

उदाहरण

अधिसंकुचन मानचित्रण अतिपरवलीय कोण को अपरिवर्तित छोड़ देता है क्योंकि यह अतिपरवलीय क्षेत्र (बैंगनी) को उसी क्षेत्र में से एक में ले जाता है। नीले और हरे आयत भी समान क्षेत्रफल रखते हैं
  • इसके सामान्य बोरेल σ-बीजगणित के साथ वास्तविक रेखा पर विचार करें; को निर्धारित करें और अनुवाद मानचित्र पर विचार करें:
    फिर एक आयामी लेबेस्गु मापक के लिए एक अपरिवर्तनीय उपाय है।
  • अधिक सामान्यतः पर, -आयामी यूक्लिडियन समष्टि पर अपने सामान्य बोरेल σ-बीजगणित के साथ, -आयामी लेबेस्गु मापक यूक्लिडियन समष्टि के किसी भी सममिति के लिए एक अपरिवर्तनीय उपाय है, जो कि एक मानचित्र जिसे इस रूप में लिखा जा सकता है।
    कुछ के लिए लांबिक आव्यूह और एक सदिश के लिए है।
  • पहले उदाहरण में अपरिवर्तनीय उपाय एक स्थिर कारक के साथ साधारण पुनर्संरचना तक अद्वितीय है। यह आवश्यक रूप से प्रकरण नहीं है: केवल दो बिंदु और सर्वसमिका मानचित्र से मिलकर एक समुच्चय पर विचार करें जो प्रत्येक बिंदु को स्थिर छोड़ देता है। तब कोई प्रायिकता माप अपरिवर्तनीय है। ध्यान दें कि तुच्छ रूप से -अपरिवर्तनीय घटकों और में अपघटन है।
  • यूक्लिडियन समतल में क्षेत्र मापक निर्धारक के वास्तविक आव्यूहों के विशेष रैखिक समूह के अंतर्गत अपरिवर्तनीय है।
  • प्रत्येक स्थानीय रूप से संक्षिप्त समूह में एक हार मापक होता है जो समूह क्रिया के अंतर्गत अपरिवर्तनीय होता है।

यह भी देखें

संदर्भ

  • John von Neumann (1999) Invariant measures, American Mathematical Society ISBN 978-0-8218-0912-9