रेखा-गोलाकार चौराहा: Difference between revisions
From Vigyanwiki
No edit summary |
No edit summary |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 54: | Line 54: | ||
{{Reflist}} | {{Reflist}} | ||
{{DEFAULTSORT:Line-sphere intersection}} | {{DEFAULTSORT:Line-sphere intersection}} | ||
[[Category:Created On 11/04/2023|Line-sphere intersection]] | |||
[[Category:Machine Translated Page|Line-sphere intersection]] | |||
[[Category: Machine Translated Page]] | [[Category:Pages with script errors|Line-sphere intersection]] | ||
[[Category: | [[Category:Templates Vigyan Ready]] | ||
[[Category:गोलाकार ज्यामिति|Line-sphere intersection]] | |||
[[Category:ज्यामितीय एल्गोरिदम|Line-sphere intersection]] | |||
[[Category:ज्यामितीय चौराहा|Line-sphere intersection]] | |||
[[Category:विश्लेषणात्मक ज्यामिति|Line-sphere intersection]] |
Latest revision as of 17:01, 26 April 2023
विश्लेषणात्मक ज्यामिति में, एक रेखा (गणित) और एक वृत्त तीन विधियोंं से प्रतिच्छेद कर सकता है:
- कोई प्रतिच्छेदन नहीं |
- केवल एक बिंदु में प्रतिच्छेदन |
- दो बिंदुओं में प्रतिच्छेदन।
इन स्थितियों को अलग करने की विधियाँ, और बाद के स्थितियों में बिंदुओं के लिए निर्देशांक निर्धारित करना, कई परिस्थितियों में उपयोगी होते हैं। उदाहरण के लिए, किरण अनुरेखण (ग्राफिक्स) के समय प्रदर्शन करना एक सामान्य गणना है। [1]
3डी में सदिश का उपयोग कर गणना
सदिश संकेतन में, समीकरण इस प्रकार हैं:
वृत्त के लिए समीकरण
-
- : वृत्त पर बिंदु
- : केंद्र बिंदु
- : वृत्त की त्रिज्या
से प्रारम्भ होने वाली रेखा के लिए समीकरण
-
- : रेखा पर बिंदु
- : रेखा की उत्पत्ति
- : रेखा की उत्पत्ति से दूरी
- : रेखा की दिशा (एक गैर-शून्य सदिश)
उन बिंदुओं की खोज करना जो रेखा पर हैं और वृत्त पर हैं, का अर्थ है समीकरणों को जोड़ना और हल करना , सदिश के आदिश-गुणनफल को सम्मिलित करना:
- संयुक्त समीकरण
- विस्तारित और पुनर्व्यवस्थित:
- द्विघात सूत्र का रूप अब देखने योग्य है। (यह द्विघात समीकरण जोआकिमस्थल के समीकरण का एक उदाहरण है।) [2]
- कहाँ
- सरलीकृत
- ध्यान दें कि विशिष्ट स्थिति में जहां एक इकाई सदिश है, और इस प्रकार , हम इसे और सरल कर सकते हैं (लिखने के लिए के अतिरिक्त एक इकाई सदिश इंगित करने के लिए):
- यदि , तो यह स्पष्ट है कि कोई समाधान उपस्थित नहीं है, अर्थात रेखा वृत्त को नहीं काटती है (स्थिति 1)।
- यदि , तो वास्तव में एक समाधान उपस्थित है, अर्थात रेखा सिर्फ एक बिंदु (स्थिति 2) में वृत्त को छूती है।
- यदि , दो समाधान उपस्थित हैं, और इस प्रकार रेखा दो बिंदुओं (स्थिति 3) में वृत्त को छूती है।
यह भी देखें
- प्रतिच्छेदन (ज्यामिति) ए रेखा और एक वृत्त
- विश्लेषणात्मक ज्यामिति
- रेखा-समतल प्रतिच्छेदन
- समतल-समतल प्रतिच्छेदन
- समतल-वृत्ताकार प्रतिच्छेदन
संदर्भ
- ↑ Eberly, David H. (2006). 3D game engine design: a practical approach to real-time computer graphics, 2nd edition. Morgan Kaufmann. p. 698. ISBN 0-12-229063-1.
- ↑ "Joachimsthal's Equation".