द्विध्रुवी निर्देशांक: Difference between revisions

From Vigyanwiki
No edit summary
 
(One intermediate revision by one other user not shown)
Line 130: Line 130:


{{Orthogonal coordinate systems}}
{{Orthogonal coordinate systems}}
[[Category: द्वि-आयामी समन्वय प्रणाली]] [[Category: ऑर्थोगोनल समन्वय प्रणाली]]


 
[[Category:Articles with hatnote templates targeting a nonexistent page]]
 
[[Category:Collapse templates]]
[[Category: Machine Translated Page]]
[[Category:Created On 11/04/2023]]
[[Category:Created On 11/04/2023]]
[[Category:Vigyan Ready]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages with script errors]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates generating microformats]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that are not mobile friendly]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:Wikipedia metatemplates]]
[[Category:ऑर्थोगोनल समन्वय प्रणाली]]
[[Category:द्वि-आयामी समन्वय प्रणाली]]

Latest revision as of 17:04, 26 April 2023

द्विध्रुवी समन्वय प्रणाली

द्विध्रुवी निर्देशांक जो अपोलोनियन मंडलियों पर आधारित एक द्वि-आयामी ऑर्थोगोनल निर्देशांक समन्वय प्रणाली है। [1] भ्रामक रूप से, एक ही शब्द का उपयोग कभी-कभी दो-केंद्र द्विध्रुवी निर्देशांक के लिए भी किया जाता है। एक तीसरी प्रणाली भी है, जो दो ध्रुवों (द्विकोणीय निर्देशांक) पर आधारित है।

द्विध्रुवीय शब्द का उपयोग अवसर पर अन्य वक्रों का वर्णन करने के लिए किया जाता है, जिसमें दो एकवचन बिंदु (फोकस), जैसे दीर्घवृत्त, अतिशयोक्ति और कैसिनी अंडाकार होते हैं। हालाँकि, द्विध्रुवी निर्देशांक शब्द यहाँ वर्णित निर्देशांक के लिए आरक्षित है, और कभी भी अन्य वक्रों से जुड़े प्रणाली के लिए उपयोग नहीं किया जाता है, जैसे कि अण्डाकार निर्देशांक है।

द्विध्रुवी निर्देशांक की ज्यामितीय व्याख्या। कोण σ दो नाभियों और बिंदु P से बनता है, जबकि τ नाभियों से दूरियों के अनुपात का लघुगणक है। स्थिर σ और τ के संगत वृत्त क्रमशः लाल और नीले रंग में दिखाए जाते हैं, और समकोण पर मिलते हैं (मैजेंटा बॉक्स); वे ओर्थोगोनल हैं।

परिभाषा

प्रणाली दो फोकस (ज्यामिति) F1 और F2 पर आधारित है. दाईं ओर की आकृति का संदर्भ देते हुए, एक बिंदु P का σ-निर्देशांक कोण F1 P F2 के बराबर होता है, और τ-निर्देशांक दूरी d1 और d2 के अनुपात के प्राकृतिक लघुगणक के बराबर है:

अगर, कार्तीय प्रणाली में, फोकस को (−a, 0) और (a, 0) पर ले जाया जाता है, तो बिंदु P के निर्देशांक हैं

निर्देशांक τ (F1 के करीब बिंदुओं के लिए) से लेकर (F के करीब बिंदुओं के लिए2) तक होता है. निर्देशांक σ केवल परिभाषित मॉड्यूल 2π है, और इसे -π से π तक की सीमा में ले जाना सबसे अच्छा है इसे तीव्र कोण F1 P F2 के ऋणात्मक के रूप में लेकर यदि P निचले आधे विमान में है।

सबूत है कि समन्वय प्रणाली ऑर्थोगोनल है

x और y के समीकरणों को मिलाकर दिया जा सकता है

[2][3] इस समीकरण से पता चलता है कि σ और τ x+iy के विश्लेषणात्मक कार्य के वास्तविक और काल्पनिक भाग हैं (फोकस पर लघुगणक शाखा बिंदुओं के साथ), जो बदले में (अनुरूप मानचित्रण के सामान्य सिद्धांत के लिए अपील द्वारा) सिद्ध करता है (कॉची- रीमैन समीकरण) कि σ और τ के ये विशेष वक्र समकोण पर प्रतिच्छेद करते हैं, यानी कि समन्वय प्रणाली ऑर्थोगोनल है।

निरंतर σ और τ के वक्र

Bipolar sigma isosurfaces.png
Bipolar tau isosurfaces.png

स्थिर σ के वक्र गैर-केंद्रित वृत्तों के संगत होते हैं

जो दो केन्द्रों पर प्रतिच्छेद करता है। स्थिर-σ वृत्तों के केंद्र y-अक्ष पर स्थित हैं। धनात्मक σ के वृत्त x-अक्ष के ऊपर केंद्रित होते हैं, जबकि ऋणात्मक σ के वृत्त अक्ष के नीचे स्थित होते हैं। जैसे-जैसे परिमाण |σ|- π/2 घटता है, वृत्तों की त्रिज्या घटती जाती है और केंद्र मूल बिंदु (0, 0) तक पहुंचता है, जो कि |σ| = π/2. (प्रारंभिक ज्यामिति से, एक व्यास के विपरीत सिरों पर 2 कोने वाले वृत्त पर सभी त्रिभुज समकोण त्रिभुज हैं।)

स्थिरांक के वक्र विभिन्न त्रिज्याओं के अप्रतिच्छेदी वृत्त हैं

जो फोकस को घेरते हैं किन्तु फिर से संकेंद्रित नहीं होते हैं। नियत-τ वृत्तों के केंद्र x-अक्ष पर स्थित हैं। धनात्मक τ के वृत्त समतल (x > 0) के दाईं ओर स्थित होते हैं, जबकि ऋणात्मक τ के वृत्त तल के बाईं ओर स्थित होते हैं (x < 0)। τ = 0 वक्र y-अक्ष (x = 0) के संगत है। जैसे-जैसे τ का परिमाण बढ़ता है, वृत्तों की त्रिज्या घटती जाती है और उनके केंद्र नाभियों की ओर बढ़ते हैं।

पारस्परिक संबंध

कार्तीय निर्देशांक से द्विध्रुवी निर्देशांक की ओर मार्ग निम्नलिखित सूत्रों के माध्यम से किया जा सकता है:

और

निर्देशांकों की भी पहचान होती है:

और

उपरोक्त अनुभाग में परिभाषा से एक x = 0 प्राप्त करने की सीमा क्या है। और सभी सीमाएँ x = 0 पर बहुत साधारण दिखती हैं।

पैमाने के कारक

द्विध्रुवी निर्देशांक के पैमाने कारक प्राप्त करने के लिए, हम समीकरण के अंतर को लेते हैं , जो देता है

इस समीकरण को इसकी जटिल संयुग्म उपज के साथ गुणा करना

ज्या और कोज्या के गुणनफल के लिए त्रिकोणमितीय सर्वसमिका का उपयोग करके, हम प्राप्त करते हैं

जिससे यह अनुसरण करता है

इसलिए σ और τ के स्केल कारक बराबर हैं, और द्वारा दिए गए हैं

कई परिणाम अब ऑर्थोगोनल निर्देशांक के लिए सामान्य सूत्रों से त्वरित उत्तराधिकार में अनुसरण करते हैं।

इस प्रकार, अतिसूक्ष्म क्षेत्र तत्व बराबर है

और लाप्लासियन द्वारा दिया गया है

के लिए भाव , , और ऑर्थोगोनल निर्देशांक में पाए जाने वाले सामान्य सूत्रों में स्केल कारकों को प्रतिस्थापित करके प्राप्त किया जा सकता है।

अनुप्रयोग

द्विध्रुवी निर्देशांक के मौलिक अनुप्रयोग आंशिक अंतर समीकरण को हल करने में हैं, उदाहरण के लिए, लाप्लास का समीकरण या हेल्महोल्ट्ज़ समीकरण, जिसके लिए द्विध्रुवी निर्देशांक एक अलग ऑफ वेरिएबल्स पीडीई की अनुमति देते हैं। एक उदाहरण असमान व्यास वाले दो समानांतर बेलनाकार कंडक्टरों के आसपास का विद्युत क्षेत्र है।

3-आयामों तक विस्तार

द्विध्रुवी निर्देशांक त्रि-आयामी ऑर्थोगोनल निर्देशांक के कई सेटों का आधार बनाते हैं।

  • ध्रुवीय बेलनाकार निर्देशांक z-अक्ष के साथ द्विध्रुवी निर्देशांकों का अनुवाद करके निर्मित होते हैं, अर्थात, समतल अक्ष के बाहर होते है।
  • ध्रुवीय निर्देशांक x-अक्ष के चारों ओर द्विध्रुवीय निर्देशांक को घुमाकर उत्पन्न होते हैं, अर्थात, फ़ोकस को जोड़ने वाली धुरी होती है।
  • टॉरॉयडल निर्देशांक y-अक्ष के चारों ओर द्विध्रुवी निर्देशांक को घुमाकर निर्मित किए जाते हैं, अर्थात, फ़ोकस को अलग करने वाली धुरी होती है।

संदर्भ

  1. Eric W. Weisstein, Concise Encyclopedia of Mathematics CD-ROM, Bipolar Coordinates, CD-ROM edition 1.0, May 20, 1999 "Bipolar Coordinates". Archived from the original on December 12, 2007. Retrieved December 9, 2006.
  2. Polyanin, Andrei Dmitrievich (2002). Handbook of linear partial differential equations for engineers and scientists. CRC Press. p. 476. ISBN 1-58488-299-9.
  3. Happel, John; Brenner, Howard (1983). Low Reynolds number hydrodynamics: with special applications to particulate media. Mechanics of fluids and transport processes. Vol. 1. Springer. p. 497. ISBN 978-90-247-2877-0.