फॉक समष्टि: Difference between revisions

From Vigyanwiki
(Created page with "{{Use American English|date = February 2019}} {{Short description|Multi particle state space}} फॉक स्पेस एक बीजगणितीय निर्म...")
 
 
(7 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{Use American English|date = February 2019}}
{{Use American English|date = February 2019}}
{{Short description|Multi particle state space}}
{{Short description|Multi particle state space}}
फॉक स्पेस एक [[बीजगणित]]ीय निर्माण है जिसका उपयोग [[क्वांटम यांत्रिकी]] में एक एकल कण [[हिल्बर्ट अंतरिक्ष]] से एक चर या अज्ञात संख्या के समान उपपरमाण्विक कण के क्वांटम राज्यों के स्थान के निर्माण के लिए किया जाता है। {{mvar|H}}. इसका नाम व्लादिमीर फॉक | वी। ए. फॉक ने पहली बार इसे अपने 1932 के पेपर कॉन्फिगरेशन्स्रम und ज़्वेइट क्वांटेलुंग ([[विन्यास स्थान (गणित)]]गणित) और [[दूसरा परिमाणीकरण]]) में पेश किया।<ref>{{cite journal | last=Fock | first=V. |author-link=Vladimir Fock| title=विन्यास स्थान और दूसरा परिमाणीकरण| journal=Zeitschrift für Physik | publisher=Springer Science and Business Media LLC | volume=75 | issue=9–10 | year=1932 | issn=1434-6001 | doi=10.1007/bf01344458 | pages=622–647 | bibcode=1932ZPhy...75..622F | s2cid=186238995 | language=de}}</ref><ref>[[Michael C. Reed|M.C. Reed]], [[Barry Simon|B. Simon]], "Methods of Modern Mathematical Physics, Volume II", Academic Press 1975. Page 328.</ref>
'''फॉक समष्टि''' एक [[बीजगणित|बीजगणितीय]] संरचना है जिसका उपयोग [[क्वांटम यांत्रिकी]] में एक कण [[हिल्बर्ट अंतरिक्ष|हिल्बर्ट समष्टि]] {{mvar|H}} से एक चर या अज्ञात संख्या के समान कणों मे क्वांटम यांत्रिकी समष्टि के निर्माण के लिए किया जाता है इसका नाम "वीए फॉक" के नाम पर रखा गया है जिन्होंने पहली बार इसे अपने 1932 के पेपर "विन्यास श्रम जेडव्हाइट क्वांटेलुंग" अर्थात "विन्यास समष्टि और दूसरा परिमाणीकरण" में प्रस्तुत किया था।<ref>{{cite journal | last=Fock | first=V. |author-link=Vladimir Fock| title=विन्यास स्थान और दूसरा परिमाणीकरण| journal=Zeitschrift für Physik | publisher=Springer Science and Business Media LLC | volume=75 | issue=9–10 | year=1932 | issn=1434-6001 | doi=10.1007/bf01344458 | pages=622–647 | bibcode=1932ZPhy...75..622F | s2cid=186238995 | language=de}}</ref><ref>[[Michael C. Reed|M.C. Reed]], [[Barry Simon|B. Simon]], "Methods of Modern Mathematical Physics, Volume II", Academic Press 1975. Page 328.</ref>
अनौपचारिक रूप से, फॉक स्पेस शून्य कण राज्यों, एक कण राज्यों, दो कण राज्यों, और इसी तरह का प्रतिनिधित्व करने वाले हिल्बर्ट रिक्त स्थान के एक सेट का योग है। यदि समान कण बोसोन हैं, तो {{mvar|n}}-कण अवस्थाएँ एक सममित टेन्सर टेन्सर उत्पाद में सदिश होती हैं {{mvar|n}} एकल-कण हिल्बर्ट रिक्त स्थान {{mvar|H}}. यदि समान कण [[फरमिओन्स]] हैं, तो {{mvar|n}}-पार्टिकल स्टेट्स के एक [[एंटीसिमेट्रिक टेंसर]] टेंसर उत्पाद में वैक्टर हैं {{mvar|n}} एकल-कण हिल्बर्ट रिक्त स्थान {{mvar|H}} (क्रमशः [[सममित बीजगणित]] और [[बाहरी बीजगणित]] देखें)। फॉक स्पेस में एक सामान्य स्थिति का एक [[रैखिक संयोजन]] है {{mvar|n}}-कण अवस्थाएँ, प्रत्येक के लिए एक {{mvar|n}}.


तकनीकी रूप से, फॉक स्पेस एक कण हिल्बर्ट स्पेस के हिल्बर्ट स्पेस के टेन्सर उत्पाद में सममित या एंटीसिमेट्रिक टेन्सर के [[मॉड्यूल का प्रत्यक्ष योग]] (हिल्बर्ट स्पेस पूर्णता (मैट्रिक स्पेस)) है। {{mvar|H}},
अनौपचारिक रूप से, फॉक समष्टि शून्य कण अवस्थाओ जैसे एक कण अवस्था, दो कण अवस्था और इसी प्रकार का प्रतिनिधित्व करने वाले हिल्बर्ट रिक्त समष्टि के समुच्चय का योग है यदि समान कण बोसॉन हैं तो n-कण अवस्थाएँ n एकल कण हिल्बर्ट रिक्त समष्टि H के सममित प्रदिश उत्पाद में सदिश हैं यदि समान कण फर्मिऑन हैं तो n-कण अवस्थाएँ {{mvar|n}} एकल कण के एक [[एंटीसिमेट्रिक टेंसर|सममित प्रदिश]] उत्पाद में सदिश हैं n-कण हिल्बर्ट समष्टि {{mvar|H}} (क्रमशः [[सममित बीजगणित]] और [[बाहरी बीजगणित|बाह्य बीजगणित]] देखें)फॉक समष्टि में सामान्य स्थिति n-कण अवस्थाओ का एक [[रैखिक संयोजन]] है जो प्रत्येक {{mvar|n}} के लिए समान है।
<math display="block">F_\nu(H)=\overline{\bigoplus_{n=0}^{\infty}S_\nu H^{\otimes n}} ~.</math>
यहाँ <math>S_\nu</math> [[ऑपरेटर (भौतिकी)]] है जो हिल्बर्ट स्पेस बोस-आइंस्टीन आंकड़ों का पालन करने वाले कणों का वर्णन करता है या नहीं, इस पर निर्भर करता है कि समरूपता या एंटीसिमेट्रिक टेंसर <math>(\nu = +)</math> या फर्मी-डिराक सांख्यिकी <math>(\nu = -)</math> आँकड़े, और ओवरलाइन अंतरिक्ष के पूरा होने का प्रतिनिधित्व करता है। बोसोनिक (प्रतिक्रिया। फर्मीओनिक) फॉक स्पेस को वैकल्पिक रूप से सममित टेन्सर के रूप में (हिल्बर्ट स्पेस पूर्णता) के रूप में बनाया जा सकता है। <math>F_+(H) = \overline{S^*H}</math> (प्रतिक्रिया। बारी-बारी से टेंसर <math display="inline">F_-(H) = \overline{ {\bigwedge}^* H}</math>). हर आधार के लिए {{mvar|H}} [[फॉक राज्य]] का प्राकृतिक आधार है, फॉक कहता है।


== परिभाषा ==
तकनीकी रूप से, फॉक समष्टि कण हिल्बर्ट समष्टि के हिल्बर्ट समष्टि प्रदिश उत्पाद में सममित या सममित प्रदिश के [[मॉड्यूल का प्रत्यक्ष योग]] हिल्बर्ट समष्टि पूर्णता (आव्यूह समष्टि) {{mvar|H}} है:<math display="block">F_\nu(H)=\overline{\bigoplus_{n=0}^{\infty}S_\nu H^{\otimes n}} ~.</math>


फॉक स्पेस (हिल्बर्ट) एकल-कण हिल्बर्ट स्पेस की प्रतियों के टेंसर उत्पादों के मॉड्यूल का प्रत्यक्ष योग है <math>H</math>
जहाँ <math>S_\nu</math> [[ऑपरेटर (भौतिकी)|संक्रियक]] है जो हिल्बर्ट समष्टि आइंस्टीन आंकड़ों का अनुसरण करने वाले कणों का वर्णन करता है यह इस पर निर्भर करता है कि समरूपता या सममित प्रदिश <math>(\nu = +)</math> या फर्मी-डिराक सांख्यिकी आँकड़े <math>(\nu = -)</math> और चित्र शीर्षक समष्टि के पूरा होने का प्रतिनिधित्व करता है बोसोनिक (फर्मीओनिक) फॉक समष्टि को वैकल्पिक रूप से (हिल्बर्ट समष्टि पूर्णता) सममित प्रदिश <math>F_+(H) = \overline{S^*H}</math> और प्रत्यावर्ती प्रदिश <math display="inline">F_-(H) = \overline{ {\bigwedge}^* H}</math>) के रूप में बनाया जा सकता है प्रत्येक आधार के लिए {{mvar|H}} [[फॉक राज्य|फॉक समष्टि]] का प्राकृतिक आधार है जिसे सामान्यतः फॉक समष्टि कहा जाता है।


<math display="block">F_\nu(H)=\bigoplus_{n=0}^{\infty}S_\nu H^{\otimes n} = \Complex \oplus H \oplus \left(S_\nu \left(H \otimes H\right)\right) \oplus \left(S_\nu \left( H \otimes H \otimes H\right)\right) \oplus \cdots</math>
== परिभाषा ==
यहाँ <math>\Complex</math>, सम्मिश्र संख्या, बिना कणों वाले राज्यों से मिलकर बनती है, <math>H</math> एक कण की स्थिति, <math>S_\nu (H\otimes H)</math> दो समान कणों की अवस्था आदि।


में एक सामान्य स्थिति <math>F_\nu(H)</math> द्वारा दिया गया है
फॉक समष्टि (हिल्बर्ट) एकल-कण हिल्बर्ट समष्टि <math>H</math> की प्रतियों के प्रदिश उत्पादों के मॉड्यूल का प्रत्यक्ष योग है: <math display="block">F_\nu(H)=\bigoplus_{n=0}^{\infty}S_\nu H^{\otimes n} = \Complex \oplus H \oplus \left(S_\nu \left(H \otimes H\right)\right) \oplus \left(S_\nu \left( H \otimes H \otimes H\right)\right) \oplus \cdots</math>यहाँ <math>\Complex</math>, सम्मिश्र संख्या अतिरिक्त कणों की अवस्था <math>H</math> से मिलकर बनती है जिसको एक कण की अवस्था <math>S_\nu (H\otimes H)</math> को दो समान कणों की अवस्था में एक सामान्य स्थिति <math>F_\nu(H)</math> द्वारा दिया गया है: <math display="block">|\Psi\rangle_\nu= |\Psi_0\rangle_\nu \oplus |\Psi_1\rangle_\nu \oplus |\Psi_2\rangle_\nu \oplus \cdots = a |0\rangle \oplus \sum_i a_i|\psi_i\rangle \oplus \sum_{ij} a_{ij}|\psi_i, \psi_j \rangle_\nu \oplus \cdots </math>जहाँ
*<math>|0\rangle</math> लंबाई 1 का सदिश है जिसे निर्वात अवस्था कहा जाता है और <math>a \in \Complex</math> समिश्र गुणांक है।
*<math> |\psi_i\rangle \in H</math> एकल कण हिल्बर्ट समष्टि में एक अवस्था है और <math>a_i \in \Complex</math> समिश्र गुणांक है।
*<math display="inline"> |\psi_i , \psi_j \rangle_\nu = a_{ij} |\psi_i\rangle \otimes|\psi_j\rangle + a_{ji} |\psi_j\rangle\otimes|\psi_i\rangle \in S_\nu(H \otimes H)</math>, और <math> a_{ij} = \nu a_{ji} \in \Complex</math> समिश्र गुणांक है।


<math display="block">|\Psi\rangle_\nu= |\Psi_0\rangle_\nu \oplus |\Psi_1\rangle_\nu \oplus |\Psi_2\rangle_\nu \oplus \cdots = a |0\rangle \oplus \sum_i a_i|\psi_i\rangle \oplus \sum_{ij} a_{ij}|\psi_i, \psi_j \rangle_\nu \oplus \cdots </math>
इस अनंत राशि का अभिसरण महत्वपूर्ण है यदि <math>F_\nu(H)</math> एक हिल्बर्ट समष्टि है तकनीकी रूप से हमें <math>F_\nu(H)</math> की आवश्यकता होती है बीजगणितीय प्रत्यक्ष योग का हिल्बर्ट समष्टि इसमें सभी अनंत टपल <math>|\Psi\rangle_\nu = (|\Psi_0\rangle_\nu , |\Psi_1\rangle_\nu , |\Psi_2\rangle_\nu, \ldots)</math> होते हैं ऐसा इसलिए है कि आंतरिक उत्पाद द्वारा परिभाषित मानदंड (गणित) परिमित है:<math display="block">\| |\Psi\rangle_\nu \|_\nu^2 = \sum_{n=0}^\infty \langle \Psi_n |\Psi_n \rangle_\nu < \infty </math>जहां <math>n</math> कणों को मानदंड द्वारा परिभाषित किया गया है: <math display="block"> \langle \Psi_n | \Psi_n \rangle_\nu = \sum_{i_1,\ldots i_n, j_1, \ldots j_n} a_{i_1,\ldots, i_n}^* a_{j_1, \ldots, j_n} \langle \psi_{i_1}| \psi_{j_1} \rangle\cdots \langle \psi_{i_n}| \psi_{j_n} \rangle </math>
कहाँ
*<math>|0\rangle</math> लंबाई 1 का एक सदिश है जिसे निर्वात अवस्था कहा जाता है और <math>a \in \Complex</math> एक जटिल गुणांक है,
*<math> |\psi_i\rangle \in H</math> एकल कण हिल्बर्ट अंतरिक्ष में एक राज्य है और <math>a_i \in \Complex</math> एक जटिल गुणांक है,
*<math display="inline"> |\psi_i , \psi_j \rangle_\nu = a_{ij} |\psi_i\rangle \otimes|\psi_j\rangle + a_{ji} |\psi_j\rangle\otimes|\psi_i\rangle \in S_\nu(H \otimes H)</math>, और <math> a_{ij} = \nu a_{ji} \in \Complex</math> एक जटिल गुणांक है, आदि।


इस अनंत राशि का अभिसरण महत्वपूर्ण है यदि <math>F_\nu(H)</math> एक हिल्बर्ट स्थान होना है। तकनीकी रूप से हमें आवश्यकता है <math>F_\nu(H)</math> बीजगणितीय प्रत्यक्ष योग का हिल्बर्ट स्थान पूरा होना। इसमें सभी अनंत टुपल्स होते हैं <math>|\Psi\rangle_\nu = (|\Psi_0\rangle_\nu , |\Psi_1\rangle_\nu , |\Psi_2\rangle_\nu, \ldots)</math> ऐसा है कि आंतरिक उत्पाद द्वारा परिभाषित मानदंड (गणित), परिमित है
<math display="block">\| |\Psi\rangle_\nu \|_\nu^2 = \sum_{n=0}^\infty \langle \Psi_n |\Psi_n \rangle_\nu < \infty </math>
जहां <math>n</math> कण मानदंड द्वारा परिभाषित किया गया है
<math display="block"> \langle \Psi_n | \Psi_n \rangle_\nu = \sum_{i_1,\ldots i_n, j_1, \ldots j_n} a_{i_1,\ldots, i_n}^* a_{j_1, \ldots, j_n} \langle \psi_{i_1}| \psi_{j_1} \rangle\cdots \langle \psi_{i_n}| \psi_{j_n} \rangle </math>
यानी, हिल्बर्ट स्पेस के टेंसर उत्पाद का प्रतिबंध <math>H^{\otimes n}</math>
दो सामान्य राज्यों के लिए
<math display="block">|\Psi\rangle_\nu= |\Psi_0\rangle_\nu \oplus |\Psi_1\rangle_\nu \oplus |\Psi_2\rangle_\nu \oplus \cdots = a |0\rangle \oplus \sum_i a_i|\psi_i\rangle \oplus \sum_{ij} a_{ij}|\psi_i, \psi_j \rangle_\nu \oplus \cdots,</math> और
<math display="block">|\Phi\rangle_\nu=|\Phi_0\rangle_\nu \oplus |\Phi_1\rangle_\nu \oplus |\Phi_2\rangle_\nu \oplus \cdots = b |0\rangle \oplus \sum_i b_i |\phi_i\rangle \oplus \sum_{ij} b_{ij}|\phi_i, \phi_j \rangle_\nu \oplus \cdots</math>
आंतरिक उत्पाद चालू <math>F_\nu(H)</math> तब के रूप में परिभाषित किया गया है
<math display="block">\langle \Psi |\Phi\rangle_\nu := \sum_n \langle \Psi_n| \Phi_n \rangle_\nu = a^* b + \sum_{ij} a_i^* b_j\langle\psi_i | \phi_j \rangle +\sum_{ijkl}a_{ij}^*b_{kl}\langle \psi_i|\phi_k\rangle\langle\psi_j| \phi_l \rangle_\nu + \cdots </math>
जहां हम प्रत्येक पर आंतरिक उत्पादों का उपयोग करते हैं <math>n</math>-कण हिल्बर्ट रिक्त स्थान। ध्यान दें कि, विशेष रूप से <math>n</math> कण उप-स्थान अलग-अलग के लिए ऑर्थोगोनल हैं <math>n</math>.


== उत्पाद की स्थिति, अप्रभेद्य कण, और फॉक स्पेस के लिए एक उपयोगी आधार ==
अर्थात, हिल्बर्ट समष्टि के प्रदिश उत्पाद <math>H^{\otimes n}</math> का प्रतिबंध दो सामान्य अवस्थाओ के लिए है: <math display="block">|\Psi\rangle_\nu= |\Psi_0\rangle_\nu \oplus |\Psi_1\rangle_\nu \oplus |\Psi_2\rangle_\nu \oplus \cdots = a |0\rangle \oplus \sum_i a_i|\psi_i\rangle \oplus \sum_{ij} a_{ij}|\psi_i, \psi_j \rangle_\nu \oplus \cdots,</math>और<math display="block">|\Phi\rangle_\nu=|\Phi_0\rangle_\nu \oplus |\Phi_1\rangle_\nu \oplus |\Phi_2\rangle_\nu \oplus \cdots = b |0\rangle \oplus \sum_i b_i |\phi_i\rangle \oplus \sum_{ij} b_{ij}|\phi_i, \phi_j \rangle_\nu \oplus \cdots</math>आंतरिक उत्पाद पर <math>F_\nu(H)</math> तब परिभाषित किया गया है:<math display="block">\langle \Psi |\Phi\rangle_\nu := \sum_n \langle \Psi_n| \Phi_n \rangle_\nu = a^* b + \sum_{ij} a_i^* b_j\langle\psi_i | \phi_j \rangle +\sum_{ijkl}a_{ij}^*b_{kl}\langle \psi_i|\phi_k\rangle\langle\psi_j| \phi_l \rangle_\nu + \cdots </math>जहां हम प्रत्येक <math>n</math>-कण हिल्बर्ट रिक्त समष्टि पर आंतरिक उत्पादों का उपयोग करते हैं ध्यान दें कि, विशेष रूप से <math>n</math> कण उप-समष्टि अलग-अलग <math>n</math> के लिए लंबकोणीय हैं।
फॉक स्पेस की एक उत्पाद स्थिति फॉर्म की एक स्थिति है


<math display="block">|\Psi\rangle_\nu=|\phi_1,\phi_2,\cdots,\phi_n\rangle_\nu = |\phi_1\rangle \otimes |\phi_2\rangle \otimes \cdots \otimes |\phi_n\rangle</math>
== उत्पाद की स्थिति, अप्रभेद्य कण और फॉक समष्टि के लिए उपयोगी आधार ==
जो एक संग्रह का वर्णन करता है <math>n</math> कण, जिनमें से एक में क्वांटम अवस्था होती है <math>\phi_1</math>, एक और <math>\phi_2</math> और इतने पर <math>n</math>वें कण, जहां प्रत्येक <math>\phi_i</math> एकल कण हिल्बर्ट अंतरिक्ष से कोई भी राज्य है <math>H</math>. यहाँ संसर्ग (एकल कण केट को साथ-साथ लिखते हुए, बिना <math>\otimes</math>) सममित (प्रतिसममित) टेन्सर बीजगणित में सममित (उत्तर। एंटीसिमेट्रिक) गुणन है। फॉक स्पेस में सामान्य स्थिति उत्पाद राज्यों का एक रैखिक संयोजन है। एक राज्य जिसे उत्पाद राज्यों के उत्तल योग के रूप में नहीं लिखा जा सकता है, उसे उलझा हुआ राज्य कहा जाता है।
फॉक समष्टि के उत्पाद फॉर्म की एक अवस्था है: <math display="block">|\Psi\rangle_\nu=|\phi_1,\phi_2,\cdots,\phi_n\rangle_\nu = |\phi_1\rangle \otimes |\phi_2\rangle \otimes \cdots \otimes |\phi_n\rangle</math>जो n कणों के संग्रह का वर्णन करता है जिनमें से एक की क्‍वांटम अवस्था <math>\phi_1</math> दूसरी <math>\phi_2</math> और इसी प्रकार <math>n</math>वें कण तक है जहां प्रत्येक <math>\phi_i</math> एकल कण हिल्बर्ट समष्टि <math>H</math> से की अवस्थाए है। यहां संसर्ग ( ⊗ के साथ-साथ एकल कण केट लिखना) सममितीय प्रदिश बीजगणित में सममित (प्रतिसंबंध सममित) गुणन है फॉक समष्टि में सामान्य स्थिति उत्पाद अवस्थाओ का एक रैखिक संयोजन है एक अवस्था जिसे लिखा नहीं जा सकता उत्पाद अवस्थाओ के उत्तल योग के रूप में समिश्र अवस्था कहलाती है।


जब हम अवस्था में एक कण की बात करते हैं <math>\phi_i</math>, हमें यह ध्यान रखना चाहिए कि क्वांटम यांत्रिकी में [[समान कण]] समान कण होते हैं। एक ही फॉक स्पेस में, सभी कण समान होते हैं। (कणों की कई प्रजातियों का वर्णन करने के लिए, हम कई अलग-अलग फॉक स्थानों के टेन्सर उत्पाद लेते हैं क्योंकि विचाराधीन कणों की प्रजातियां हैं)। यह इस औपचारिकता की सबसे शक्तिशाली विशेषताओं में से एक है कि राज्य स्पष्ट रूप से ठीक से सममित हैं। उदाहरण के लिए, यदि उपरोक्त राज्य <math>|\Psi\rangle_-</math> fermionic है, यह 0 होगा यदि दो (या अधिक)। <math>\phi_i</math> समान हैं क्योंकि एंटीसिमेट्रिक [[बाहरी उत्पाद]]|(बाहरी) उत्पाद <math>|\phi_i \rangle |\phi_i \rangle = 0 </math>. यह पाउली बहिष्करण सिद्धांत का एक गणितीय सूत्रीकरण है कि कोई भी दो (या अधिक) फ़र्मियन एक ही क्वांटम अवस्था में नहीं हो सकते। वास्तव में, जब भी एक औपचारिक उत्पाद में शब्द रैखिक रूप से निर्भर होते हैं; उत्पाद एंटीसिमेट्रिक टेन्सर के लिए शून्य होगा। इसके अलावा, ऑर्थोनॉर्मल स्टेट्स का उत्पाद निर्माण द्वारा उचित रूप से ऑर्थोनॉर्मल है (हालांकि फर्मी मामले में संभवतः 0 जब दो राज्य समान होते हैं)।
जब हम अवस्था <math>\phi_i</math> में एक कण की बात करते हैं तो हमें यह ध्यान रखना चाहिए कि क्वांटम यांत्रिकी में [[समान कण]] अप्रभेद्य होते हैं एक ही फॉक समष्टि में सभी कण समान होते हैं कणों की कई प्रजातियों का वर्णन करने के लिए, हम कई अलग-अलग फॉक समष्टि के प्रदिश उत्पाद लेते हैं क्योंकि विचाराधीन कणों की प्रजातियां हैं यह इस औपचारिकता की सबसे प्रभावशाली विशेषताओं में से एक है कि अवस्था स्पष्ट रूप से सममित हैं उदाहरण के लिए, यदि उपरोक्त अवस्था <math>|\Psi\rangle_-</math> फर्मिओनिक है तो यह 0 होगा यदि <math>\phi_i</math> के दो (या अधिक) बराबर हैं क्योंकि सममित (बाहरी) उत्पाद<math>|\phi_i \rangle |\phi_i \rangle = 0 </math> यह पाउली बहिष्करण सिद्धांत का एक गणितीय सूत्रीकरण है कि कोई भी दो (या अधिक) फ़र्मियन एक ही क्वांटम अवस्था में नहीं हो सकते है वास्तव में जब भी एक औपचारिक उत्पाद में शब्द रैखिक रूप से निर्भर होते हैं तब उत्पाद सममित प्रदिश के लिए शून्य होगा। इसके अतिरिक्त सामान्य लांबिक विश्लेषण अवस्था के उत्पाद निर्माण द्वारा उपयुक्त रूप से लंबकोणीय है हालांकि फर्मी स्थिति में संभवतः 0 तब होता है जब दो अवस्थाए समान होती हैं।


फॉक स्पेस के लिए एक उपयोगी और सुविधाजनक आधार अधिभोग संख्या आधार है। एक आधार दिया <math>\{|\psi_i\rangle\}_{i = 0,1,2, \dots}</math> का <math>H</math>, हम राज्य को निरूपित कर सकते हैं
<math>n_0</math> राज्य में कण <math>|\psi_0\rangle</math>,
<math>n_1</math> राज्य में कण <math>|\psi_1\rangle</math>, ..., <math>n_k</math> राज्य में कण <math>|\psi_k\rangle</math>, और परिभाषित करके शेष राज्यों में कोई कण नहीं


<math display="block">|n_0,n_1,\ldots,n_k\rangle_\nu = |\psi_0\rangle^{n_0}|\psi_1\rangle^{n_1} \cdots |\psi_k\rangle^{n_k},</math>
जहां प्रत्येक <math>n_i</math> फेरमोनिक कणों के लिए मान 0 या 1 और बोसोनिक कणों के लिए 0, 1, 2, ... लेता है। ध्यान दें कि पिछली शून्य स्थिति को बदले बिना हटा दी जा सकती है। ऐसी अवस्था को फॉक अवस्था कहते हैं। जब <math>|\psi_i\rangle</math> एक मुक्त क्षेत्र की स्थिर अवस्थाओं के रूप में समझा जाता है, फॉक राज्य निश्चित संख्या में गैर-अंतःक्रियात्मक कणों की एक असेंबली का वर्णन करते हैं। सबसे सामान्य फॉक अवस्था शुद्ध अवस्थाओं का एक रेखीय अध्यारोपण है।


महान महत्व के दो संचालक सृजन और विनाश संचालक हैं, जो फॉक राज्य पर कार्य करने पर क्रमशः आरोपित क्वांटम अवस्था में एक कण को ​​​​जोड़ते हैं या हटाते हैं। वे निरूपित हैं <math>a^{\dagger}(\phi)\,</math> सृजन के लिए और <math>a(\phi)</math>विनाश के लिए क्रमशः। एक कण, क्वांटम स्थिति बनाने (जोड़ने) के लिए <math>|\phi\rangle</math> सममित या बाहरी है - से गुणा किया जाता है <math>|\phi\rangle</math>; और क्रमशः एक कण को ​​मिटाने (हटाने) के लिए, एक (सम या विषम) [[आंतरिक उत्पाद]] के साथ लिया जाता है <math>\langle\phi|</math>, जो कि सम्मुख है <math>a^\dagger(\phi)</math>. के आधार पर राज्यों के साथ काम करना अक्सर सुविधाजनक होता है <math>H</math> ताकि ये संकारक दिए गए आधार अवस्था में ठीक एक कण को ​​हटा दें और जोड़ दें। ये ऑपरेटर फॉक स्पेस पर काम करने वाले अधिक सामान्य ऑपरेटरों के लिए जनरेटर के रूप में भी काम करते हैं, उदाहरण के लिए [[नंबर ऑपरेटर]] एक विशिष्ट स्थिति में कणों की संख्या देता है <math>|\phi_i\rangle</math> है <math>a^{\dagger}(\phi_i)a(\phi_i)</math>.
हिल्बर्ट समष्टि <math>H</math> के आधार <math>\{|\psi_i\rangle\}_{i = 0,1,2, \dots}</math> को देखते हुए, हम अवस्था को <math>n_0</math> अवस्था में कण <math>|\psi_0\rangle</math> में कणों से निरूपित कर सकते हैं <math>|\psi_1\rangle</math>, ...<math>n_k</math> अवस्था में कण <math>|\psi_k\rangle</math> और <math>n_k</math> को परिभाषित करते है यदि शेष अवस्था में कोई कण नहीं है: <math display="block">|n_0,n_1,\ldots,n_k\rangle_\nu = |\psi_0\rangle^{n_0}|\psi_1\rangle^{n_1} \cdots |\psi_k\rangle^{n_k},</math>जहां प्रत्येक <math>n_i</math> फेरमोनिक कणों के लिए मान 0 या 1 और बोसोनिक कणों के लिए 0, 1, 2, ... लेता है ध्यान दें कि पिछली शून्य स्थिति को परिवर्तित किए बिना हटा दिया जा सकता है ऐसी अवस्था को फॉक अवस्था कहते हैं जब <math>|\psi_i\rangle</math> एक मुक्त क्षेत्र की स्थिर अवस्थाओं के रूप में समझा जाता है तो फॉक अवस्था निश्चित संख्या में गैर-अंतःक्रियात्मक कणों की एक असेंबली का वर्णन करते हैं। सबसे सामान्य फॉक अवस्था शुद्ध अवस्थाओं का एक रेखीय अध्यारोपण है।


== वेव फ़ंक्शन व्याख्या ==
महत्वपूर्ण दो संचालक सृजन और विनाश संक्रियक हैं जो फॉक अवस्था पर कार्य करने पर क्रमशः आरोपित क्वांटम अवस्था में एक कण को ​​​​जोड़ते हैं या हटाते हैं उन्हें क्रमशः <math>a^{\dagger}(\phi)\,</math> निर्माण के लिए और <math>a(\phi)</math> विनाश के लिए चिह्नित किया जाता है एक कण ("योग") बनाने के लिए, क्वांटम अवस्था <math>|\phi\rangle</math> सममित या बाहरी <math>|\phi\rangle</math> से गुणा किया जाता है और क्रमशः एक कण को ​​नष्ट करने के लिए एक (सम या विषम) आंतरिक उत्पाद <math>\langle\phi|</math> को लिया जाता है जो कि <math>a^\dagger(\phi)</math> का सम्मुख है <math>H</math> के आधार वाले स्थितियों के साथ कार्य करना प्रायः सुविधाजनक होता है ताकि ये संक्रियक दिए गए आधार अवस्था में एक कण को ​​हटा दें या जोड़ दें। ये संक्रियक फॉक समष्टि पर कार्य करने वाले अधिक सामान्य संक्रियकों के लिए जनरेटर के रूप में भी कार्य करते हैं उदाहरण के लिए संक्रियक संख्या <math>|\phi_i\rangle</math> एक विशिष्ट अवस्था में कणों की संख्या <math>a^{\dagger}(\phi_i)a(\phi_i)</math> देता है।
== तरंग फलन की व्याख्या ==


अक्सर एक कण स्थान <math>H</math> के रूप में दिया जाता है <math>L_2(X, \mu)</math>, एक स्थान पर वर्ग-अभिन्न कार्यों का स्थान <math>X</math> माप के साथ (गणित) <math>\mu</math> (सख्ती से बोलना, वर्ग समाकलनीय कार्यों के [[तुल्यता वर्ग]] जहां कार्य समतुल्य होते हैं यदि वे एक [[शून्य सेट]] पर भिन्न होते हैं)। विशिष्ट उदाहरण [[मुक्त कण]] है <math> H = L_2(\R^3, d^3x)</math> त्रि-आयामी अंतरिक्ष पर स्क्वायर इंटीग्रेबल फ़ंक्शंस का स्थान। फॉक रिक्त स्थान के रूप में निम्नानुसार सममित या विरोधी सममित वर्ग पूर्णांक कार्यों के रूप में प्राकृतिक व्याख्या होती है।
प्रायः कण समष्टि <math>H</math> को <math>L_2(X, \mu)</math> के रूप में दिया जाता है एक समष्टि X पर वर्ग-अभिन्न कार्य का समष्टि माप <math>X</math> के साथ होता है सामान्यतः वर्ग पूर्णांक कार्यों के समतुल्य वर्ग जहां कार्य समान होते हैं यदि वे एक [[शून्य सेट|शून्य समुच्चय]] पर भिन्न होते हैं विशिष्ट उदाहरण <math> H = L_2(\R^3, d^3x)</math> [[मुक्त कण]] है त्रि-आयामी समष्टि पर वर्ग पूर्णांक फलन का समष्टि फॉक रिक्त समष्टि के रूप में निम्नानुसार सममित या विरोधी सममित वर्ग पूर्णांक फलन के रूप में प्राकृतिक व्याख्या होती है।


होने देना <math>X^0 = \{*\}</math> और <math>X^1 = X</math>, <math>X^2 = X\times X </math>, <math>X^3 = X \times X \times X</math>, वगैरह।
माना कि <math>X^0 = \{*\}</math> और <math>X^1 = X</math>, <math>X^2 = X\times X </math>, <math>X^3 = X \times X \times X</math>, बिंदुओं के समूह कि समष्टि पर विचार करें जो कि असम्बद्ध संघ है: <math display="block">X^* = X^0 \bigsqcup X^1 \bigsqcup X^2 \bigsqcup X^3 \bigsqcup \cdots .</math>इसका एक प्राकृतिक पैमाना <math>\mu^*</math>है ऐसा कि<math>\mu^*(X^0) = 1</math> और <math>\mu^*</math> से <math>X^n</math> का प्रतिबंध <math>\mu^n</math> है। सम फॉक समष्टि <math>F_+(L_2(X,\mu))</math> को तब <math>L_2(X^*, \mu^*)</math> में सममित फलन समष्टि के साथ पहचाना जा सकता है जबकि विषम फॉक समष्टि <math>F_-(L_2(X,\mu))</math> को विरोधी सममित फलन के समष्टि से पहचाना जा सकता है पहचान प्रत्यक्ष सममित मानचित्र से होती है: <math display="block"> L_2(X, \mu)^{\otimes n} \to L_2(X^n, \mu^n) </math><math display="block"> \psi_1(x)\otimes\cdots\otimes\psi_n(x) \mapsto \psi_1(x_1)\cdots \psi_n(x_n)</math>
बिंदुओं के गुच्छों के स्थान पर विचार करें जो कि असम्बद्ध संघ है


<math display="block">X^* = X^0 \bigsqcup X^1 \bigsqcup X^2 \bigsqcup X^3 \bigsqcup \cdots .</math>
इसका एक प्राकृतिक पैमाना है <math>\mu^*</math> ऐसा है कि <math>\mu^*(X^0) = 1</math> और का प्रतिबंध <math>\mu^*</math> को <math>X^n</math> है <math>\mu^n</math>.
यहां तक ​​कि फॉक अंतरिक्ष <math>F_+(L_2(X,\mu))</math> में सममित कार्यों के स्थान के साथ पहचाना जा सकता है <math>L_2(X^*, \mu^*)</math> जबकि विषम फॉक स्पेस <math>F_-(L_2(X,\mu))</math> विरोधी सममित कार्यों के स्थान के साथ पहचाना जा सकता है। पहचान सीधे [[आइसोमेट्री]] मैपिंग से होती है
<math display="block"> L_2(X, \mu)^{\otimes n} \to L_2(X^n, \mu^n) </math>
<math display="block"> \psi_1(x)\otimes\cdots\otimes\psi_n(x) \mapsto \psi_1(x_1)\cdots \psi_n(x_n)</math>.


दिए गए तरंग कार्य <math>\psi_1 = \psi_1(x), \ldots , \psi_n = \psi_n(x) </math>, [[स्लेटर निर्धारक]]
दिए गए तरंग फलन <math>\psi_1 = \psi_1(x), \ldots , \psi_n = \psi_n(x) </math>,


<math display="block">\Psi(x_1, \ldots x_n) = \frac{1}{\sqrt{n!}} \begin{vmatrix}
<math display="block">\Psi(x_1, \ldots x_n) = \frac{1}{\sqrt{n!}} \begin{vmatrix}
Line 72: Line 45:
\psi_1(x_n) & \cdots & \psi_n(x_n) \\
\psi_1(x_n) & \cdots & \psi_n(x_n) \\
\end{vmatrix} </math>
\end{vmatrix} </math>
पर एक एंटीसिमेट्रिक फ़ंक्शन है <math>X^n</math>. इस प्रकार इसे स्वाभाविक रूप से के एक तत्व के रूप में व्याख्या किया जा सकता है <math>n</math>विषम फॉक स्थान का -कण क्षेत्र। सामान्यीकरण इस तरह चुना जाता है <math>\|\Psi\| = 1</math> यदि कार्य करता है <math>\psi_1, \ldots, \psi_n</math> ऑर्थोनॉर्मल हैं। एक समान स्लेटर स्थायी है जिसमें निर्धारक को [[स्थायी (गणित)]] से बदल दिया जाता है जो तत्व देता है <math>n</math>सम Fock अंतरिक्ष का क्षेत्र।
जो <math>X^n</math> पर एक सममित फलन है इस प्रकार इसकी स्वाभाविक रूप से फॉक समष्टि के <math>n</math>-कण के एक तत्व के रूप में व्याख्या को किया जा सकता है सामान्यीकरण इस प्रकार चुना जाता है कि <math>\|\Psi\| = 1</math> यदि फलन <math>\psi_1, \ldots, \psi_n</math> लंबकोणीय हैं तो एक समान "स्लेटर स्थायी" है जिसमें निर्धारक को [[स्थायी (गणित)]] के साथ प्रतिस्थापित किया जाता है जो एक तत्व देता है।


== सेगल-बार्गमैन अंतरिक्ष से संबंध ==
== सेगल-बार्गमैन समष्टि से संबंध ==


सेगल-बर्गमैन स्पेस को परिभाषित करें <math>B_N</math><ref name=Bargmann1961>{{cite journal|last=Bargmann|first=V.|title=विश्लेषणात्मक कार्यों के एक हिल्बर्ट स्थान पर और संबंधित अभिन्न परिवर्तन I|journal=Communications on Pure and Applied Mathematics |year=1961|volume=14|pages=187–214|doi=10.1002/cpa.3160140303|hdl=10338.dmlcz/143587|hdl-access=free}}</ref> [[गाऊसी माप]] के संबंध में जटिल [[होलोमॉर्फिक फ़ंक्शन]] का वर्ग-अभिन्नीकरण:
गॉसियन माप के संबंध में समिश्र [[होलोमॉर्फिक फ़ंक्शन|होलोमॉर्फिक फलन]] के वर्ग-अभिन्नीकरण के सेगल-बार्गमैन समष्टि <math>B_N</math> को परिभाषित करें:<math display="block">\mathcal{F}^2\left(\Complex^N\right) = \left\{ f\colon\Complex^N\to\Complex \mid \Vert f\Vert_{\mathcal{F}^2(\Complex^N)} < \infty\right\},</math>जहाँ<math display="block">\Vert f\Vert_{\mathcal{F}^2(\Complex^N)} := \int_{\Complex^n}\vert f(\mathbf{z})\vert^2 e^{-\pi\vert \mathbf{z}\vert^2}\,d\mathbf{z}.</math>


<math display="block">\mathcal{F}^2\left(\Complex^N\right) = \left\{ f\colon\Complex^N\to\Complex \mid \Vert f\Vert_{\mathcal{F}^2(\Complex^N)} < \infty\right\},</math>
कहाँ
<math display="block">\Vert f\Vert_{\mathcal{F}^2(\Complex^N)} := \int_{\Complex^n}\vert f(\mathbf{z})\vert^2 e^{-\pi\vert \mathbf{z}\vert^2}\,d\mathbf{z}.</math>
फिर एक स्थान को परिभाषित करना <math>B_\infty</math> रिक्त स्थान के नेस्टेड संघ के रूप में <math>B_N</math> पूर्णांकों पर <math> N \ge 0 </math>, सहगल<ref name=Segal1963>{{cite journal|first = I. E. | last = Segal | year = 1963 | title = सापेक्षतावादी भौतिकी की गणितीय समस्याएं| at = Chap. VI | journal = Proceedings of the Summer Seminar, Boulder, Colorado, 1960, Vol. II }}</ref> और बर्गमैन ने दिखाया<ref name=Bargmann1962>{{cite journal|last=Bargmann|first=V|title=विश्लेषणात्मक कार्यों के हिल्बर्ट स्पेस पर टिप्पणी| journal=Proc. Natl. Acad. Sci.|year=1962|volume=48|issue=2|pages=199–204|doi=10.1073/pnas.48.2.199|pmid=16590920| bibcode = 1962PNAS...48..199B |pmc=220756|doi-access=free}}</ref><ref name=Stochel1997>{{cite journal|last=Stochel|first=Jerzy B.|title=फॉक स्पेस में सामान्यीकृत विनाश और निर्माण ऑपरेटरों का प्रतिनिधित्व|journal=Universitatis Iagellonicae Acta Mathematica|year=1997|volume=34|pages=135–148|url=http://www.emis.de/journals/UIAM/actamath/PDF/34-135-148.pdf|access-date=13 December 2012}}</ref> वह <math>B_\infty</math> एक बोसोनिक फॉक स्पेस के लिए आइसोमोर्फिक है। मोनोमियल
<math display="block">x_1^{n_1}...x_k^{n_k}</math>
फॉक राज्य से मेल खाता है
<math display="block">|n_0,n_1,\ldots,n_k\rangle_\nu = |\psi_0\rangle^{n_0}|\psi_1\rangle^{n_1} \cdots |\psi_k\rangle^{n_k}.</math>


फिर एक समष्टि <math>B_\infty</math> को परिभाषित करना रिक्त समष्टि के स्थिर संघ के रूप में <math>B_N</math> पूर्णांकों पर <math> N \ge 0 </math>, सहगल<ref name="Segal1963">{{cite journal|first = I. E. | last = Segal | year = 1963 | title = सापेक्षतावादी भौतिकी की गणितीय समस्याएं| at = Chap. VI | journal = Proceedings of the Summer Seminar, Boulder, Colorado, 1960, Vol. II }}</ref> और बर्गमैन ने दिखाया कि<ref name="Bargmann1962">{{cite journal|last=Bargmann|first=V|title=विश्लेषणात्मक कार्यों के हिल्बर्ट स्पेस पर टिप्पणी| journal=Proc. Natl. Acad. Sci.|year=1962|volume=48|issue=2|pages=199–204|doi=10.1073/pnas.48.2.199|pmid=16590920| bibcode = 1962PNAS...48..199B |pmc=220756|doi-access=free}}</ref><ref name="Stochel1997">{{cite journal|last=Stochel|first=Jerzy B.|title=फॉक स्पेस में सामान्यीकृत विनाश और निर्माण ऑपरेटरों का प्रतिनिधित्व|journal=Universitatis Iagellonicae Acta Mathematica|year=1997|volume=34|pages=135–148|url=http://www.emis.de/journals/UIAM/actamath/PDF/34-135-148.pdf|access-date=13 December 2012}}</ref> वह <math>B_\infty</math> एक बोसोनिक फॉक समष्टि के लिए समरूपी है:<math display="block">x_1^{n_1}...x_k^{n_k}</math>जो फॉक समष्टि के अनुरूप है:<math display="block">|n_0,n_1,\ldots,n_k\rangle_\nu = |\psi_0\rangle^{n_0}|\psi_1\rangle^{n_1} \cdots |\psi_k\rangle^{n_k}.</math>


== यह भी देखें ==
== यह भी देखें ==
{{cols}}
{{cols}}
* फॉक अवस्था
* फॉक समष्टि
* टेन्सर बीजगणित
* प्रदिश बीजगणित
* [[होलोमॉर्फिक फॉक स्पेस]]
* [[ पूर्णसममितिक फॉक समष्टि]]
* निर्माण और विनाश संचालक
* निर्माण और विनाश संचालक
* स्लेटर निर्धारक
* स्लेटर सारणिक
* बाती का प्रमेय
* विक प्रमेय
* [[गैर अनुमेय ज्यामिति]]
* [[गैर अनुमेय ज्यामिति]]
* [[भव्य विहित पहनावा]], फॉक स्पेस पर थर्मल डिस्ट्रीब्यूशन
* [[बृहत् विहित समुच्चय]], फॉक अवस्था पर ऊष्मीय वितरण
 
{{colend}}
{{colend}}


Line 107: Line 75:
* R. Geroch, Mathematical Physics, Chicago University Press, Chapter 21.
* R. Geroch, Mathematical Physics, Chicago University Press, Chapter 21.


{{DEFAULTSORT:Fock Space}}[[Category: क्वांटम यांत्रिकी]] [[Category: क्वांटम क्षेत्र सिद्धांत]]
{{DEFAULTSORT:Fock Space}}
 
 


[[Category: Machine Translated Page]]
[[Category:All Wikipedia articles written in American English|Fock Space]]
[[Category:Created On 18/04/2023]]
[[Category:CS1 Deutsch-language sources (de)]]
[[Category:Created On 18/04/2023|Fock Space]]
[[Category:Lua-based templates|Fock Space]]
[[Category:Machine Translated Page|Fock Space]]
[[Category:Multi-column templates|Fock Space]]
[[Category:Pages using div col with small parameter|Fock Space]]
[[Category:Pages with script errors|Fock Space]]
[[Category:Templates Vigyan Ready|Fock Space]]
[[Category:Templates that add a tracking category|Fock Space]]
[[Category:Templates that generate short descriptions|Fock Space]]
[[Category:Templates using TemplateData|Fock Space]]
[[Category:Templates using under-protected Lua modules|Fock Space]]
[[Category:Use American English from February 2019|Fock Space]]
[[Category:Wikipedia fully protected templates|Div col]]
[[Category:क्वांटम क्षेत्र सिद्धांत|Fock Space]]
[[Category:क्वांटम यांत्रिकी|Fock Space]]

Latest revision as of 15:10, 29 August 2023

फॉक समष्टि एक बीजगणितीय संरचना है जिसका उपयोग क्वांटम यांत्रिकी में एक कण हिल्बर्ट समष्टि H से एक चर या अज्ञात संख्या के समान कणों मे क्वांटम यांत्रिकी समष्टि के निर्माण के लिए किया जाता है इसका नाम "वीए फॉक" के नाम पर रखा गया है जिन्होंने पहली बार इसे अपने 1932 के पेपर "विन्यास श्रम जेडव्हाइट क्वांटेलुंग" अर्थात "विन्यास समष्टि और दूसरा परिमाणीकरण" में प्रस्तुत किया था।[1][2]

अनौपचारिक रूप से, फॉक समष्टि शून्य कण अवस्थाओ जैसे एक कण अवस्था, दो कण अवस्था और इसी प्रकार का प्रतिनिधित्व करने वाले हिल्बर्ट रिक्त समष्टि के समुच्चय का योग है यदि समान कण बोसॉन हैं तो n-कण अवस्थाएँ n एकल कण हिल्बर्ट रिक्त समष्टि H के सममित प्रदिश उत्पाद में सदिश हैं यदि समान कण फर्मिऑन हैं तो n-कण अवस्थाएँ n एकल कण के एक सममित प्रदिश उत्पाद में सदिश हैं n-कण हिल्बर्ट समष्टि H (क्रमशः सममित बीजगणित और बाह्य बीजगणित देखें)। फॉक समष्टि में सामान्य स्थिति n-कण अवस्थाओ का एक रैखिक संयोजन है जो प्रत्येक n के लिए समान है।

तकनीकी रूप से, फॉक समष्टि कण हिल्बर्ट समष्टि के हिल्बर्ट समष्टि प्रदिश उत्पाद में सममित या सममित प्रदिश के मॉड्यूल का प्रत्यक्ष योग हिल्बर्ट समष्टि पूर्णता (आव्यूह समष्टि) H है:

जहाँ संक्रियक है जो हिल्बर्ट समष्टि आइंस्टीन आंकड़ों का अनुसरण करने वाले कणों का वर्णन करता है यह इस पर निर्भर करता है कि समरूपता या सममित प्रदिश या फर्मी-डिराक सांख्यिकी आँकड़े और चित्र शीर्षक समष्टि के पूरा होने का प्रतिनिधित्व करता है बोसोनिक (फर्मीओनिक) फॉक समष्टि को वैकल्पिक रूप से (हिल्बर्ट समष्टि पूर्णता) सममित प्रदिश और प्रत्यावर्ती प्रदिश ) के रूप में बनाया जा सकता है प्रत्येक आधार के लिए H फॉक समष्टि का प्राकृतिक आधार है जिसे सामान्यतः फॉक समष्टि कहा जाता है।

परिभाषा

फॉक समष्टि (हिल्बर्ट) एकल-कण हिल्बर्ट समष्टि की प्रतियों के प्रदिश उत्पादों के मॉड्यूल का प्रत्यक्ष योग है:

यहाँ , सम्मिश्र संख्या अतिरिक्त कणों की अवस्था से मिलकर बनती है जिसको एक कण की अवस्था को दो समान कणों की अवस्था में एक सामान्य स्थिति द्वारा दिया गया है:
जहाँ

  • लंबाई 1 का सदिश है जिसे निर्वात अवस्था कहा जाता है और समिश्र गुणांक है।
  • एकल कण हिल्बर्ट समष्टि में एक अवस्था है और समिश्र गुणांक है।
  • , और समिश्र गुणांक है।

इस अनंत राशि का अभिसरण महत्वपूर्ण है यदि एक हिल्बर्ट समष्टि है तकनीकी रूप से हमें की आवश्यकता होती है बीजगणितीय प्रत्यक्ष योग का हिल्बर्ट समष्टि इसमें सभी अनंत टपल होते हैं ऐसा इसलिए है कि आंतरिक उत्पाद द्वारा परिभाषित मानदंड (गणित) परिमित है:

जहां कणों को मानदंड द्वारा परिभाषित किया गया है:


अर्थात, हिल्बर्ट समष्टि के प्रदिश उत्पाद का प्रतिबंध दो सामान्य अवस्थाओ के लिए है:

और
आंतरिक उत्पाद पर तब परिभाषित किया गया है:
जहां हम प्रत्येक -कण हिल्बर्ट रिक्त समष्टि पर आंतरिक उत्पादों का उपयोग करते हैं ध्यान दें कि, विशेष रूप से कण उप-समष्टि अलग-अलग के लिए लंबकोणीय हैं।

उत्पाद की स्थिति, अप्रभेद्य कण और फॉक समष्टि के लिए उपयोगी आधार

फॉक समष्टि के उत्पाद फॉर्म की एक अवस्था है:

जो n कणों के संग्रह का वर्णन करता है जिनमें से एक की क्‍वांटम अवस्था दूसरी और इसी प्रकार वें कण तक है जहां प्रत्येक एकल कण हिल्बर्ट समष्टि से की अवस्थाए है। यहां संसर्ग ( ⊗ के साथ-साथ एकल कण केट लिखना) सममितीय प्रदिश बीजगणित में सममित (प्रतिसंबंध सममित) गुणन है फॉक समष्टि में सामान्य स्थिति उत्पाद अवस्थाओ का एक रैखिक संयोजन है एक अवस्था जिसे लिखा नहीं जा सकता उत्पाद अवस्थाओ के उत्तल योग के रूप में समिश्र अवस्था कहलाती है।

जब हम अवस्था में एक कण की बात करते हैं तो हमें यह ध्यान रखना चाहिए कि क्वांटम यांत्रिकी में समान कण अप्रभेद्य होते हैं एक ही फॉक समष्टि में सभी कण समान होते हैं कणों की कई प्रजातियों का वर्णन करने के लिए, हम कई अलग-अलग फॉक समष्टि के प्रदिश उत्पाद लेते हैं क्योंकि विचाराधीन कणों की प्रजातियां हैं यह इस औपचारिकता की सबसे प्रभावशाली विशेषताओं में से एक है कि अवस्था स्पष्ट रूप से सममित हैं उदाहरण के लिए, यदि उपरोक्त अवस्था फर्मिओनिक है तो यह 0 होगा यदि के दो (या अधिक) बराबर हैं क्योंकि सममित (बाहरी) उत्पाद यह पाउली बहिष्करण सिद्धांत का एक गणितीय सूत्रीकरण है कि कोई भी दो (या अधिक) फ़र्मियन एक ही क्वांटम अवस्था में नहीं हो सकते है वास्तव में जब भी एक औपचारिक उत्पाद में शब्द रैखिक रूप से निर्भर होते हैं तब उत्पाद सममित प्रदिश के लिए शून्य होगा। इसके अतिरिक्त सामान्य लांबिक विश्लेषण अवस्था के उत्पाद निर्माण द्वारा उपयुक्त रूप से लंबकोणीय है हालांकि फर्मी स्थिति में संभवतः 0 तब होता है जब दो अवस्थाए समान होती हैं।


हिल्बर्ट समष्टि के आधार को देखते हुए, हम अवस्था को अवस्था में कण में कणों से निरूपित कर सकते हैं , ... अवस्था में कण और को परिभाषित करते है यदि शेष अवस्था में कोई कण नहीं है:

जहां प्रत्येक फेरमोनिक कणों के लिए मान 0 या 1 और बोसोनिक कणों के लिए 0, 1, 2, ... लेता है ध्यान दें कि पिछली शून्य स्थिति को परिवर्तित किए बिना हटा दिया जा सकता है ऐसी अवस्था को फॉक अवस्था कहते हैं जब एक मुक्त क्षेत्र की स्थिर अवस्थाओं के रूप में समझा जाता है तो फॉक अवस्था निश्चित संख्या में गैर-अंतःक्रियात्मक कणों की एक असेंबली का वर्णन करते हैं। सबसे सामान्य फॉक अवस्था शुद्ध अवस्थाओं का एक रेखीय अध्यारोपण है।

महत्वपूर्ण दो संचालक सृजन और विनाश संक्रियक हैं जो फॉक अवस्था पर कार्य करने पर क्रमशः आरोपित क्वांटम अवस्था में एक कण को ​​​​जोड़ते हैं या हटाते हैं उन्हें क्रमशः निर्माण के लिए और विनाश के लिए चिह्नित किया जाता है एक कण ("योग") बनाने के लिए, क्वांटम अवस्था सममित या बाहरी से गुणा किया जाता है और क्रमशः एक कण को ​​नष्ट करने के लिए एक (सम या विषम) आंतरिक उत्पाद को लिया जाता है जो कि का सम्मुख है के आधार वाले स्थितियों के साथ कार्य करना प्रायः सुविधाजनक होता है ताकि ये संक्रियक दिए गए आधार अवस्था में एक कण को ​​हटा दें या जोड़ दें। ये संक्रियक फॉक समष्टि पर कार्य करने वाले अधिक सामान्य संक्रियकों के लिए जनरेटर के रूप में भी कार्य करते हैं उदाहरण के लिए संक्रियक संख्या एक विशिष्ट अवस्था में कणों की संख्या देता है।

तरंग फलन की व्याख्या

प्रायः कण समष्टि को के रूप में दिया जाता है एक समष्टि X पर वर्ग-अभिन्न कार्य का समष्टि माप के साथ होता है सामान्यतः वर्ग पूर्णांक कार्यों के समतुल्य वर्ग जहां कार्य समान होते हैं यदि वे एक शून्य समुच्चय पर भिन्न होते हैं विशिष्ट उदाहरण मुक्त कण है त्रि-आयामी समष्टि पर वर्ग पूर्णांक फलन का समष्टि फॉक रिक्त समष्टि के रूप में निम्नानुसार सममित या विरोधी सममित वर्ग पूर्णांक फलन के रूप में प्राकृतिक व्याख्या होती है।

माना कि और , , , बिंदुओं के समूह कि समष्टि पर विचार करें जो कि असम्बद्ध संघ है:

इसका एक प्राकृतिक पैमाना है ऐसा कि और से का प्रतिबंध है। सम फॉक समष्टि को तब में सममित फलन समष्टि के साथ पहचाना जा सकता है जबकि विषम फॉक समष्टि को विरोधी सममित फलन के समष्टि से पहचाना जा सकता है पहचान प्रत्यक्ष सममित मानचित्र से होती है:


दिए गए तरंग फलन ,

जो पर एक सममित फलन है इस प्रकार इसकी स्वाभाविक रूप से फॉक समष्टि के -कण के एक तत्व के रूप में व्याख्या को किया जा सकता है सामान्यीकरण इस प्रकार चुना जाता है कि यदि फलन लंबकोणीय हैं तो एक समान "स्लेटर स्थायी" है जिसमें निर्धारक को स्थायी (गणित) के साथ प्रतिस्थापित किया जाता है जो एक तत्व देता है।

सेगल-बार्गमैन समष्टि से संबंध

गॉसियन माप के संबंध में समिश्र होलोमॉर्फिक फलन के वर्ग-अभिन्नीकरण के सेगल-बार्गमैन समष्टि को परिभाषित करें:

जहाँ


फिर एक समष्टि को परिभाषित करना रिक्त समष्टि के स्थिर संघ के रूप में पूर्णांकों पर , सहगल[3] और बर्गमैन ने दिखाया कि[4][5] वह एक बोसोनिक फॉक समष्टि के लिए समरूपी है:

जो फॉक समष्टि के अनुरूप है:

यह भी देखें

संदर्भ

  1. Fock, V. (1932). "विन्यास स्थान और दूसरा परिमाणीकरण". Zeitschrift für Physik (in Deutsch). Springer Science and Business Media LLC. 75 (9–10): 622–647. Bibcode:1932ZPhy...75..622F. doi:10.1007/bf01344458. ISSN 1434-6001. S2CID 186238995.
  2. M.C. Reed, B. Simon, "Methods of Modern Mathematical Physics, Volume II", Academic Press 1975. Page 328.
  3. Segal, I. E. (1963). "सापेक्षतावादी भौतिकी की गणितीय समस्याएं". Proceedings of the Summer Seminar, Boulder, Colorado, 1960, Vol. II. Chap. VI.
  4. Bargmann, V (1962). "विश्लेषणात्मक कार्यों के हिल्बर्ट स्पेस पर टिप्पणी". Proc. Natl. Acad. Sci. 48 (2): 199–204. Bibcode:1962PNAS...48..199B. doi:10.1073/pnas.48.2.199. PMC 220756. PMID 16590920.
  5. Stochel, Jerzy B. (1997). "फॉक स्पेस में सामान्यीकृत विनाश और निर्माण ऑपरेटरों का प्रतिनिधित्व" (PDF). Universitatis Iagellonicae Acta Mathematica. 34: 135–148. Retrieved 13 December 2012.


बाहरी संबंध