द्विपक्षीय लाप्लास परिवर्तन: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(10 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{more footnotes needed|date=September 2015}}
{{more footnotes needed|date=September 2015}}
गणित में, दो तरफा लाप्लास परिवर्तन या द्विपक्षीय लाप्लास परिवर्तन संभाव्यता के क्षण उत्पन्न करने वाले कार्य के समतुल्य एक [[अभिन्न परिवर्तन]] होता है। दो तरफा [[लाप्लास रूपांतरण]] [[फूरियर रूपांतरण]], मेलिन रूपांतरण, जेड-रूपांतरण और साधारण या एक तरफा लाप्लास रूपांतर से निकटता से संबंधित होता हैं। यदि ''f''(''t'') सभी वास्तविक संख्याओं के लिए परिभाषित वास्तविक चर ''t'' का एक वास्तविक-या जटिल-मूल्यवान कार्य होता है, तो दो तरफा लाप्लास परिवर्तन को अभिन्न द्वारा परिभाषित किया जा सकता है        
गणित में, दो तरफा लाप्लास परिवर्तन या द्विपक्षीय लाप्लास परिवर्तन संभाव्यता के क्षण उत्पन्न करने वाले फलन के समतुल्य एक [[अभिन्न परिवर्तन]] होता है। दो तरफा [[लाप्लास रूपांतरण]] [[फूरियर रूपांतरण]], मेलिन रूपांतरण, जेड-रूपांतरण और साधारण या एक तरफा लाप्लास रूपांतर से निकटता से संबंधित होता हैं। यदि ''f''(''t'') सभी वास्तविक संख्याओं के लिए परिभाषित वास्तविक चर ''t'' का एक वास्तविक-या जटिल-मूल्यवान फलन होता है, तो दो तरफा लाप्लास परिवर्तन को अभिन्न द्वारा परिभाषित किया जा सकता है         


:<math>\mathcal{B}\{f\}(s) = F(s) = \int_{-\infty}^\infty e^{-st} f(t)\, dt.</math>
:<math>\mathcal{B}\{f\}(s) = F(s) = \int_{-\infty}^\infty e^{-st} f(t)\, dt.</math>
इंटीग्रल को आमतौर पर एक अनुचित इंटीग्रल के रूप में समझा जाता है, जो दोनों इंटीग्रल होने पर और केवल अगर अभिसरण करता है
समाकलन को सामान्यतः अनुपयुक्त समाकलन के रूप में समझा जाता है, जो दोनों समाकलन होने पर केवल अभिसरण करता है
:<math>\int_0^\infty e^{-st} f(t) \, dt,\quad \int_{-\infty}^0  e^{-st} f(t)\, dt</math>
:<math>\int_0^\infty e^{-st} f(t) \, dt,\quad \int_{-\infty}^0  e^{-st} f(t)\, dt</math>
अस्तित्व। ऐसा लगता है कि दो तरफा परिवर्तन के लिए आम तौर पर स्वीकृत कोई संकेत नहीं है;
अस्तित्व दो तरफा परिवर्तन के लिए सामान्यतः स्वीकृत संकेतन प्रतीत नहीं होता है यहाँ <math>B</math> का उपयोग द्विपक्षीय रूप में करते हैं। कुछ लेखकों द्वारा उपयोग किया जाने वाला दो तरफा परिवर्तन है
<math>\mathcal{B}</math> यहाँ प्रयुक्त द्विपक्षीय याद करते हैं। दो तरफा परिवर्तन
कुछ लेखकों द्वारा प्रयोग किया जाता है
:<math>\mathcal{T}\{f\}(s) = s\mathcal{B}\{f\}(s) = sF(s) = s \int_{-\infty}^\infty  e^{-st} f(t)\, dt.</math>
:<math>\mathcal{T}\{f\}(s) = s\mathcal{B}\{f\}(s) = sF(s) = s \int_{-\infty}^\infty  e^{-st} f(t)\, dt.</math>
शुद्ध गणित में तर्क t कोई भी चर हो सकता है, और लाप्लास रूपांतरण का उपयोग यह अध्ययन करने के लिए किया जाता है कि [[अंतर ऑपरेटर]] फ़ंक्शन को कैसे बदल सकते हैं।
शुद्ध गणित में तर्क t कोई भी चर हो सकता है, और लाप्लास रूपांतरण का उपयोग यह अध्ययन करने के लिए किया जाता है कि [[अंतर ऑपरेटर]] फलन को कैसे बदल सकते हैं।


[[विज्ञान]] और [[ अभियांत्रिकी ]] अनुप्रयोगों में, तर्क t अक्सर समय (सेकंड में) का प्रतिनिधित्व किया करता है, और फ़ंक्शन f(t) अक्सर एक [[संकेत (सूचना सिद्धांत)]] या तरंग का प्रतिनिधित्व किया करता है जो समय के साथ बदलता रहता है। इन मामलों में, सिग्नल [[फ़िल्टर (सिग्नल प्रोसेसिंग)]] द्वारा रूपांतरित किया जाता हैं, जो एक गणितीय ऑपरेटर की तरह काम करता हैं, लेकिन एक प्रतिबंध के साथ। उन्हें कारण होना चाहिए, जिसका अर्थ है कि किसी दिए गए समय टी में आउटपुट उस आउटपुट पर निर्भर नहीं हो सकता है जो टी का उच्च मूल्य होता है।
[[विज्ञान]] और [[ अभियांत्रिकी |अभियांत्रिकी]] अनुप्रयोगों में, तर्क सदैव समय t सेकंड मे प्रतिनिधित्व करता है, और फलन f(t) अधिकांशतः एक [[संकेत (सूचना सिद्धांत)]] या तरंग का प्रतिनिधित्व किया करता है जो समय के साथ बदलता रहता है। इन स्थितियों में, सिग्नल [[फ़िल्टर (सिग्नल प्रोसेसिंग)]] द्वारा रूपांतरित किया जाता हैं, जो एक गणितीय ऑपरेटर की तरह काम करता हैं, लेकिन एक प्रतिबंध के रूप में कारण होना चाहिए, जिसका अर्थ है कि किसी दिए गए समय टी में आउटपुट उस आउटपुट पर निर्भर नहीं हो सकता है जो t का उच्च मूल्य होता है। जनसंख्या पारिस्थितिकी में, तर्क t अधिकांशतः फैलाव कर्नेल में स्थानिक विस्थापन का प्रतिनिधित्व किया करता है।
जनसंख्या पारिस्थितिकी में, तर्क टी अक्सर फैलाव कर्नेल में स्थानिक विस्थापन का प्रतिनिधित्व किया करता है।


समय के कार्यों के साथ काम करते समय, f(t) को सिग्नल का 'टाइम डोमेन' प्रतिनिधित्व कहा जाता है, जबकि F(s) को 'एस-डोमेन' (या लाप्लास डोमेन) प्रतिनिधित्व कहा जाता है। व्युत्क्रम परिवर्तन तब संकेत के संश्लेषण का प्रतिनिधित्व करता है क्योंकि इसके आवृत्ति घटकों का योग सभी आवृत्तियों पर लिया जाता है, जबकि आगे का परिवर्तन संकेत के आवृत्ति घटकों में विश्लेषण का प्रतिनिधित्व किया करता है।       
समय के फलन के साथ काम करते समय, f(t) को सिग्नल का 'टाइम डोमेन' प्रतिनिधित्व कहा जाता है, जबकि F(s) को 'एस-डोमेन' या लाप्लास डोमेन का प्रतिनिधित्व कहा जाता है। और इस प्रकार व्युत्क्रम परिवर्तन तब संकेत के संश्लेषण का प्रतिनिधित्व करता है क्योंकि इसके आवृत्ति घटकों का योग सभी आवृत्तियों पर लिया जाता है, जबकि आगे का परिवर्तन संकेत के आवृत्ति घटकों में विश्लेषण का प्रतिनिधित्व किया करता है।       


== फूरियर ट्रांसफॉर्म से संबंध ==
== फूरियर ट्रांसफॉर्म से संबंध ==
फूरियर रूपांतरण को दो तरफा लाप्लास परिवर्तन के संदर्भ में परिभाषित किया जा सकता है:
फूरियर रूपांतरण को दो तरफा लाप्लास परिवर्तन के संदर्भ में परिभाषित किया जा सकता है


:<math>\mathcal{F}\{f(t)\} = F(s = i\omega) = F(\omega).</math>
:<math>\mathcal{F}\{f(t)\} = F(s = i\omega) = F(\omega).</math>
ध्यान दें कि फूरियर रूपांतरण की परिभाषाएँ भिन्न हैं, और विशेष रूप से
ध्यान दें कि फूरियर रूपांतरण की परिभाषाएँ भिन्न रूप में होती है, और विशेष रूप से इस प्रकार दिखाया गया है
:<math>\mathcal{F}\{f(t)\} = F(s = i\omega) = \frac{1}{\sqrt{2\pi}} \mathcal{B}\{f(t)\}(s)</math>
:<math>\mathcal{F}\{f(t)\} = F(s = i\omega) = \frac{1}{\sqrt{2\pi}} \mathcal{B}\{f(t)\}(s)</math>
इसके बजाय अक्सर प्रयोग किया जाता है। फूरियर रूपांतरण के संदर्भ में, हम दो तरफा लाप्लास रूपांतरण भी प्राप्त कर सकते हैं, जैसा कि
इसके अतिरिक्त अधिकांशतः प्रयोग किया जाता है। फूरियर रूपांतरण के संदर्भ में, हम दो तरफा लाप्लास रूपांतरण भी प्राप्त कर सकते हैं, जैसा कि दिखाया गया है
:<math>\mathcal{B}\{f(t)\}(s) = \mathcal{F}\{f(t)\}(-is).</math>
:<math>\mathcal{B}\{f(t)\}(s) = \mathcal{F}\{f(t)\}(-is).</math>
फूरियर रूपांतरण को सामान्य रूप से परिभाषित किया जा सकता है ताकि यह वास्तविक मूल्यों के लिए मौजूद रहे; उपरोक्त परिभाषा छवि को एक पट्टी में परिभाषित करती है <math>a < \Im(s) < b</math> जिसमें वास्तविक धुरी शामिल नहीं हो सकती है जहां फूरियर ट्रांसफॉर्म को अभिसरण माना जाता है।
फूरियर रूपांतरण को सामान्य रूप से परिभाषित किया जा सकता है जिससे कि यह वास्तविक मूल्यों के लिए उपस्थित रहे; उपरोक्त परिभाषा छवि को एक पट्टी में परिभाषित करती है <math>a < \Im(s) < b</math> जिसमें वास्तविक धुरी सम्मलित नहीं हो सकती है जहां फूरियर ट्रांसफॉर्म को अभिसरण माना जाता है।


यही कारण है कि लाप्लास रूपांतरण नियंत्रण सिद्धांत और सिग्नल प्रोसेसिंग में अपने मूल्य को बनाए रखता है: एक फूरियर ट्रांसफॉर्म इंटीग्रल के अपने डोमेन के भीतर अभिसरण का मतलब केवल यह है कि इसके द्वारा वर्णित एक रैखिक, शिफ्ट-इनवेरिएंट सिस्टम स्थिर या महत्वपूर्ण होता है। दूसरी ओर लाप्लास हर आवेग प्रतिक्रिया के लिए अभिसरण करेगा जो सबसे अधिक तेजी से बढ़ रहा होता है, क्योंकि इसमें एक अतिरिक्त शब्द शामिल होता है जिसे एक घातीय नियामक के रूप में लिया जा सकता है। चूंकि सुपरएक्सपोनेंशियल रूप से बढ़ते रैखिक प्रतिक्रिया नेटवर्क नहीं होता हैं, लाप्लास ट्रांसफॉर्म आधारित विश्लेषण और रैखिक, शिफ्ट-इनवेरिएंट सिस्टम का समाधान, लाप्लास के संदर्भ में अपना सबसे सामान्य रूप लेता है, फूरियर नहीं, ट्रांसफॉर्म करता है।
यही कारण है कि लाप्लास रूपांतरण नियंत्रण सिद्धांत और सिग्नल प्रोसेसिंग में अपने मूल्य को बनाए रखता है: एक फूरियर ट्रांसफॉर्म समाकलन के अपने डोमेन के भीतर अभिसरण का मतलब केवल यह है कि इसके द्वारा वर्णित एक रैखिक, शिफ्ट-इनवेरिएंट सिस्टम स्थिर या महत्वपूर्ण होता है। दूसरी ओर लाप्लास हर आवेग प्रतिक्रिया के लिए अभिसरण करेगा जो सबसे अधिक तेजी से बढ़ रहा होता है, क्योंकि इसमें एक अतिरिक्त शब्द सम्मलित होता है जिसे एक घातीय नियामक के रूप में लिया जा सकता है। चूंकि सुपरएक्सपोनेंशियल रूप से बढ़ते रैखिक प्रतिक्रिया नेटवर्क नहीं होता हैं, लाप्लास ट्रांसफॉर्म आधारित विश्लेषण और रैखिक, शिफ्ट-इनवेरिएंट सिस्टम का समाधान, लाप्लास के संदर्भ में अपना सबसे सामान्य रूप लेता है, फूरियर नहीं, ट्रांसफॉर्म करता है।


ठीक उसी समय, आजकल लाप्लास रूपांतरण सिद्धांत अधिक सामान्य अभिन्न रूपांतरण, या यहां तक ​​कि सामान्य हार्मोनिकल विश्लेषण के दायरे में आता है। उस ढांचे और नामकरण में, लाप्लास रूपांतरण फूरियर विश्लेषण का एक और रूप है, भले ही दृष्टि में अधिक सामान्य हो सकता है।     
ठीक उसी समय, आजकल लाप्लास रूपांतरण सिद्धांत अधिक सामान्य अभिन्न रूपांतरण, या यहां तक ​​कि सामान्य हार्मोनिकल विश्लेषण के दायरे में आता है। उस ढांचे और नामकरण में, लाप्लास रूपांतरण फूरियर विश्लेषण का एक और रूप है, भले ही दृष्टि में अधिक सामान्य हो सकता है।     


== अन्य अभिन्न रूपांतरणों से संबंध ==
== अन्य अभिन्न रूपांतरणों से संबंध ==
यदि यू हीविसाइड चरण फ़ंक्शन है, शून्य के बराबर जब इसका तर्क शून्य से कम होता है, एक-आधा जब इसका तर्क शून्य के बराबर होता है, और एक जब इसका तर्क शून्य से अधिक होता है, तो लाप्लास रूपांतरण <math>\mathcal{L}</math> द्वारा दो तरफा लाप्लास परिवर्तन के संदर्भ में परिभाषित किया जा सकता है
यदि यू हैवीसाइड चरण फलन है, जब इसका तर्क शून्य से कम या शून्य के बराब होता है, जब इसका तर्क एक-आधा शून्य के बराबर होता है और जब इसका तर्क शून्य से अधिक होता है, तो लाप्लास रूपांतरण <math>\mathcal{L}</math> द्वारा होता है दो तरफा लाप्लास परिवर्तन के संदर्भ में परिभाषित किया जा सकता है
:<math>\mathcal{L}\{f\} = \mathcal{B}\{f u\}.</math>
:<math>\mathcal{L}\{f\} = \mathcal{B}\{f u\}.</math>
दूसरी ओर, हमारे पास भी है
दूसरी ओर इसे इस प्रकार इसे दिखाया गया है
:<math>\mathcal{B}\{f\} = \mathcal{L}\{f\} + \mathcal{L}\{f\circ m\}\circ m,</math>
:<math>\mathcal{B}\{f\} = \mathcal{L}\{f\} + \mathcal{L}\{f\circ m\}\circ m,</math>
कहाँ <math>m:\mathbb{R}\to\mathbb{R}</math> वह कार्य है जो ऋण एक से गुणा करता है (<math>m(x) = -x</math>), इसलिए लाप्लास रूपांतरण के किसी भी संस्करण को दूसरे के संदर्भ में परिभाषित किया जा सकता है।
जहाँ <math>m:\mathbb{R}\to\mathbb{R}</math> वह फलन है जो ऋणत्मक एक से गुणा करता है (<math>m(x) = -x</math>), इसलिए लाप्लास रूपांतरण के किसी भी संस्करण को दूसरे के संदर्भ में परिभाषित किया जा सकता है।


मेलिन परिवर्तन को दो तरफा लाप्लास परिवर्तन द्वारा परिभाषित किया जा सकता है
मेलिन परिवर्तन को दो तरफा लाप्लास परिवर्तन द्वारा परिभाषित किया जा सकता है
:<math>\mathcal{M}\{f\} = \mathcal{B}\{f \circ {\exp} \circ m\},</math>
:<math>\mathcal{M}\{f\} = \mathcal{B}\{f \circ {\exp} \circ m\},</math>
साथ <math>m</math> ऊपर के रूप में, और इसके विपरीत हम मेलिन परिवर्तन से दो तरफा परिवर्तन प्राप्त कर सकते हैं
जहाँ <math>m</math> ऊपर के रूप में और इसके विपरीत मेलिन परिवर्तन से दो तरफा परिवर्तन प्राप्त कर सकते हैं
:<math>\mathcal{B}\{f\} = \mathcal{M}\{f\circ m \circ \log \}.</math>
:<math>\mathcal{B}\{f\} = \mathcal{M}\{f\circ m \circ \log \}.</math>
एक सतत संभाव्यता घनत्व फ़ंक्शन ƒ(x) के क्षण-उत्पन्न करने वाले फ़ंक्शन को व्यक्त किया जा सकता है <math>\mathcal{B}\{f\}(-s)</math>.
एक सतत संभाव्यता घनत्व फलन ƒ(x) के क्षण-उत्पन्न करने वाले फलन को इस प्रकार व्यक्त किया जाता है <math>\mathcal{B}\{f\}(-s)</math>.


== गुण ==
== गुण ==
में निम्न गुण पाये जाते हैं {{harvtxt|Bracewell|2000}} और {{harvtxt|Oppenheim|1997}}
{| class="wikitable"  
{| class="wikitable"  
|+ Properties of the bilateral Laplace transform
|+ द्विपक्षीय लाप्लास परिवर्तन के गुण
|-
|-
! Property !!  Time domain !! {{math|''s''}} domain !! Strip of convergence !!  Comment
! गुणधर्म !!  समय डोमेन !! {{math|''s''}} डोमेन !! अभिसरण की पट्टी !!  टिप्पणी
|-
|-
| Definition
| परिभाषा
| <math> f(t) </math>
| <math> f(t) </math>
| <math> F(s) = \mathcal{B}\{f\}(s) = \int_{-\infty}^{\infty} f(t) \, e^{-st} \, dt </math>
| <math> F(s) = \mathcal{B}\{f\}(s) = \int_{-\infty}^{\infty} f(t) \, e^{-st} \, dt </math>
Line 58: Line 52:
|
|
|-
|-
| Time scaling
| टाइम स्केलिंग
| <math>f(at)</math>
| <math>f(at)</math>
| <math> \frac{1}{|a|} F \बाएं ({s \over a} \दाएं)</math>
| <math> \frac{1}{|a|} F \left ({s \over a} \right)</math>
|  
| <math> \alpha < a^{-1} \, \Re s < \beta </math>
गणित> \alpha <a^{-1} \, \Re s < \beta </math>
| <math> a \in\mathbb{R} </math>
|  
गणित> एक \in\mathbb{आर} </गणित>
|-
|-
| उलट
| व्युत्क्रमण
| <math> f(-t) </math>
| <math> F(-s)</math>
| <math> -\beta < \Re s < -\alpha </math>
|  
|  
गणित> एफ (-टी) </गणित>
|
गणित> एफ (-एस) </ गणित>
|
गणित> - \ बीटा < \ रे एस < - \ अल्फा </ गणित>
|
|-
|-
| फ़्रीक्वेंसी-डोमेन व्युत्पन्न
| आवृत्ति डोमेन व्युत्पन्न
|  
| <math> t f(t) </math>
गणित> टी एफ (टी) </ गणित>
| <math> -F'(s) </math>
|  
| <math> \alpha < \Re s < \beta </math>
गणित> -F'(s) </गणित>
|  
गणित> \ अल्फा < \ रे एस < \ बीटा </ गणित>
|
|
|-
|-
| फ़्रीक्वेंसी-डोमेन सामान्य व्युत्पन्न
| आवृत्ति-डोमेन सामान्य अवकलज
|  
| <math> t^{n} f(t) </math>
गणित> टी ^ {एन} एफ (टी) </ गणित>
| <math> (-1)^{n} \, F^{(n)}(s) </math>
|  
| <math> \alpha < \Re s < \beta </math>
गणित> (-1)^{n} \, F^{(n)}(s) </math>
|  
|  
गणित> \ अल्फा < \ रे एस < \ बीटा </ गणित>
|
|-
|-
| यौगिक
| अवकलज
|  
| <math> f'(t) </math>
गणित> एफ'(टी) </ गणित>
| <math> s F(s) </math>
|  
| <math> \alpha < \Re s < \beta </math>
गणित> एस एफ (एस) </ गणित>
|  
गणित> \ अल्फा < \ रे एस < \ बीटा </ गणित>
|
|
|-
|-
| सामान्य व्युत्पन्न
| सामान्य अवकलज
| <math> f^{(n)}(t) </math>
| <math> s^n \, F(s) </math>
| <math> \alpha < \Re s < \beta </math>
|  
|  
गणित> एफ^{(एन)}(टी) </गणित>
|
गणित> s^n \, F(s) </गणित>
|
गणित> \ अल्फा < \ रे एस < \ बीटा </ गणित>
|
|-
|-
| फ़्रीक्वेंसी-डोमेन एकीकरण
| आवृत्ति-डोमेन समाकलन
|  
| <math> \frac{1}{t}\,f(t) </math>
गणित> \frac{1}{t}\,f(t) </math>
| <math> \int_s^\infty F(\sigma)\, d\sigma </math>
|  
|  
गणित> \int_s^\infty F(\sigma)\, d\sigma </math>
| only valid if the integral exists
|
| केवल तभी मान्य है जब अभिन्न मौजूद हो
|-
|-
| टाइम-डोमेन इंटीग्रल
| समय डोमेन समाकलन
|  
| <math> \int_{-\infty}^t f(\tau)\, d\tau </math>
गणित> \int_{-\infty}^t f(\tau)\, d\tau </math>
| <math> {1 \over s} F(s) </math>
|  
| <math> \max(\alpha,0) < \real s < \beta </math>
गणित> {1 \over s} F(s) </math>
|  
गणित> \max(\alpha,0) < \real s < \beta </math>
|
|
|-
|-
| टाइम-डोमेन इंटीग्रल
| समय डोमेन समाकलन
|  
| <math> \int_{t}^{\infty} f(\tau)\, d\tau </math>
गणित> \int_{t}^{\infty} f(\tau)\, d\tau </math>
| <math> {1 \over s} F(s) </math>
|  
| <math> \alpha < \real s < \min(\beta,0) </math>
गणित> {1 \over s} F(s) </math>
|  
गणित> \alpha < \real s < \min(\beta,0) </math>
|
|
|-
|-
| फ्रीक्वेंसी शिफ्टिंग
| आवृत्ति स्थानांतरण
| <math> e^{at} \, f(t) </math>
| <math> F(s - a) </math>
| <math> \alpha + \Re a < \Re s < \beta + \Re a </math>
|  
|  
गणित> ई ^ {पर} \, एफ (टी) </ गणित>
|
गणित> एफ (एस - ए) </ गणित>
|
गणित> \alpha + \Re a < \Re s < \beta + \Re a </math>
|
|-
|-
| समय बदलता है
| समय स्थानांतरण
|  
| <math> f(t - a) </math>
गणित> एफ (टी - ) </ गणित>
| <math> e^{-as} \, F(s) </math>
|  
| <math> \alpha < \Re s < \beta </math>
गणित> e^{-as} \, F(s) </math>
| <math> a\in\mathbb{R} </math>
|  
गणित> \ अल्फा < \ रे एस < \ बीटा </ गणित>
|  
गणित> a\in\mathbb{R} </math>
|-
|-
| मॉडुलन
| Modulation
|  
| <math> \cos(at)\,f(t) </math>
गणित> \cos(at)\,f(t) </math>
| <math> \tfrac{1}{2} F(s-ia) + \tfrac{1}{2} F(s+ia) </math>
|  
| <math> \alpha < \Re s < \beta </math>
गणित> \frac{1}{2} F(s-ias frac{1}{2} F(s+ia) </math>
| <math> a\in\mathbb{R} </math>
|  
गणित> \ अल्फा < \ रे एस < \ बीटा </ गणित>
|  
गणित> a\in\mathbb{R} </math>
|-
|-
| परिमित अंतर
| परिमित अंतर
|  
| <math> f(t+\tfrac{1}{2}a)-f(t-\tfrac{1}{2}a) </math>
गणित> f(t+\frac{1}{2}a)-f(t-\t frac{1}{2}a) </math>
| <math> 2 \sinh(\tfrac{1}{2} a s) \, F(s) </math>
|  
| <math> \alpha < \Re s < \beta </math>
गणित> 2 \sinh(\tfrac{1}{2} a s) \, F(s) </math>
| <math> a\in\mathbb{R} </math>
|  
गणित> \ अल्फा < \ रे एस < \ बीटा </ गणित>
|  
गणित> a\in\mathbb{R} </math>
|-
|-
| गुणा
| गुणन
|  
| <math>f(t)\,g(t)</math>
गणित> एफ (टी) \, जी (टी) </गणित>
| <math> \frac{1}{2\pi i} \int_{c - i\infty}^{c + i\infty}F(\sigma)G(s - \sigma)\,d\sigma \ </math>
|  
| <math> \alpha_f+\alpha_g < \Re s < \beta_f+\beta_g </math>
गणित> \frac{1}{2\pi i} \int_{c - i\infty}^{c + i\infty}F(\sigma)G(s - \sigma)\,d\sigma \ </ गणित>
| <math> \alpha_f < c < \beta_f </math>. The integration is done along the vertical line {{nowrap|1=Re(''σ'') = ''c''}} inside the region of convergence.
|  
गणित> \alpha_f+\alpha_g < \Re s < \beta_f+\beta_g </math>
|  
गणित> \alpha_f <c <\beta_f</math>. एकीकरण ऊर्ध्वाधर रेखा के साथ किया जाता है {{nowrap|1=Re(''σ'') = ''c''}} अभिसरण के क्षेत्र के अंदर।
|-
|-
| जटिल संयुग्मन
| जटिल संयुग्मन
Line 192: Line 142:
|
|
|-
|-
 
| [[Convolution|कनवल्शन]]
| <math> (f * g)(t) = \int_{-\infty}^{\infty} f(\tau)\,g(t - \tau)\,d\tau </math>
| <math> (f * g)(t) = \int_{-\infty}^{\infty} f(\tau)\,g(t - \tau)\,d\tau </math>
| <math> F(s) \cdot G(s) \ </math>
| <math> F(s) \cdot G(s) \ </math>
| <math> \max(\alpha_f,\alpha_g) < \Re s < \min(\beta_f,\beta_g) </math>
| <math> \max(\alpha_f,\alpha_g) < \Re s < \min(\beta_f,\beta_g) </math>
|
|  
|-
|-
| [[पार सहसंबंध]]
| [[Cross-correlation|व्यतिसहसंबंध]]
| <math> (f\star g)(t) = \int_{-\infty}^{\infty} \overline{f(\tau)}\,g(t + \tau)\,d\tau </math>
| <math> (f\star g)(t) = \int_{-\infty}^{\infty} \overline{f(\tau)}\,g(t + \tau)\,d\tau </math>
| <math> \overline{F(-\overline{s})} \cdot G(s) </math>
| <math> \overline{F(-\overline{s})} \cdot G(s) </math>
| <math> \max(-\beta_f,\alpha_g) < \Re s < \min(-\alpha_f,\beta_g) </math>
| <math> \max(-\beta_f,\alpha_g) < \Re s < \min(-\alpha_f,\beta_g) </math>
|
|  
|}
|}


Line 208: Line 158:
लेकिन कुछ महत्वपूर्ण अंतर हैं:
लेकिन कुछ महत्वपूर्ण अंतर हैं:


| वर्ग = विकिटेबल
{| class="wikitable"
  |+ एकतरफा परिवर्तन के गुण बनाम द्विपक्षीय परिवर्तन के गुण
  |+ '''Properties of the unilateral transform vs. properties of the bilateral transform'''
  !
  !
! एकतरफा समय डोमेन
! unilateral time domain
! द्विपक्षीय समय डोमेन
! bilateral time domain
! एकतरफा-'एस' डोमेन
! unilateral-'s' domain
! द्विपक्षीय-'एस' डोमेन
! bilateral-'s' domain


  |-
  |-
  ! [[यौगिक]]
  ! [[Derivative|अवकलन]]  
| <math> f'(t) \ </math>
| <math> f'(t) \ </math>
| <math> f'(t) \ </math>
| <math> f'(t) \ </math>
| <math>  s F(s) - f(0) \ </math>
| <math>  s F(s) - f(0) \ </math>
| <math>  s F(s) \ </math>
| <math>  s F(s) \ </math>
|-
|-
  ! द्वितीय क्रम व्युत्पन्न
  ! दूसरा क्रमबद्ध [[Derivative|अवकलन]]
| <math> f''(t) \ </math>
| <math> f''(t) \ </math>
| <math> f''(t) \ </math>
| <math> f''(t) \ </math>
| <math>  s^2 F(s) - s f(0) - f'(0) \ </math>
| <math>  s^2 F(s) - s f(0) - f'(0) \ </math>
| <math>  s^2 F(s) \ </math>
| <math>  s^2 F(s) \ </math>
|-
|-
  ! कनवल्शन
  ! [[Convolution|कनवल्शन]]
| <math> \int_0^{t} f(\tau) \, g(t-\tau) \, d\tau \ </math>
| <math> \int_0^{t} f(\tau) \, g(t-\tau) \, d\tau \ </math>
| <math> \int_{-\infty}^{\infty} f(\tau) \, g(t-\tau) \,d\tau \ </math>
| <math> \int_{-\infty}^{\infty} f(\tau) \, g(t-\tau) \,d\tau \ </math>
| <math>  F(s) \cdot G(s) \ </math>
| <math>  F(s) \cdot G(s) \ </math>
| <math>  F(s) \cdot G(s) \ </math>
| <math>  F(s) \cdot G(s) \ </math>
|-
|-
  ! पार सहसंबंध
  ! [[Cross-correlation|व्यतिसहसंबंध]]
| <math> \int_{0}^{\infty} \overline{f(\tau)}\,g(t + \tau)\,d\tau  \ </math>
| <math> \int_{0}^{\infty} \overline{f(\tau)}\,g(t + \tau)\,d\tau  \ </math>
| <math> \int_{-\infty}^{\infty} \overline{f(\tau)}\,g(t + \tau)\,d\tau  \ </math>
| <math> \int_{-\infty}^{\infty} \overline{f(\tau)}\,g(t + \tau)\,d\tau  \ </math>
| <math> \overline{F(-\overline{s})} \cdot G(s) \ </math>
| <math> \overline{F(-\overline{s})} \cdot G(s) \ </math>
| <math> \overline{F(-\overline{s})} \cdot G(s) \ </math>
| <math> \overline{F(-\overline{s})} \cdot G(s) \ </math>
|-
|-
|}
|}


===पारसेवल का प्रमेय और प्लांकरेल का प्रमेय===
===पारसेवल का प्रमेय और प्लांकरेल का प्रमेय===


होने देना <math>f_1(t)</math> और <math>f_2(t)</math> द्विपक्षीय लाप्लास परिवर्तन के साथ कार्य करें
Let <math>f_1(t)</math> and <math>f_2(t)</math> be functions with bilateral Laplace transforms
<math>F_1(s)</math> और <math>F_2(s)</math> अभिसरण की पट्टियों में
<math>F_1(s)</math> and <math>F_2(s)</math> in the strips of convergence
<math>\alpha_{1,2}<\real s<\beta_{1,2}</math>.
<math>\alpha_{1,2}<\real s<\beta_{1,2}</math>.  
होने देना <math>c\in\mathbb{R}</math> साथ <math>\max(-\beta_1,\alpha_2)<c<\min(-\alpha_1,\beta_2)</math>.
Let <math>c\in\mathbb{R}</math> with <math>\max(-\beta_1,\alpha_2)<c<\min(-\alpha_1,\beta_2)</math>.
तब पारसेवल का प्रमेय धारण करता है:
Then [[Parseval's theorem]] holds:
<ref>{{harvnb|LePage|loc=Chapter 11-3, p.340}}</ref>
<ref>{{harvnb|LePage|loc=Chapter 11-3, p.340}}</ref>
:<math>
:<math>
\int_{-\infty}^{\infty} \overline{f_1(t)}\,f_2(t)\,dt = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \overline{F_1(-\overline{s})}\,F_2(s)\,ds
\int_{-\infty}^{\infty} \overline{f_1(t)}\,f_2(t)\,dt = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \overline{F_1(-\overline{s})}\,F_2(s)\,ds
</math>
</math>
क्रॉस-सहसंबंध के रूप में कनवल्शन प्रमेय पर व्युत्क्रम लाप्लास परिवर्तन को लागू करने से यह प्रमेय सिद्ध होता है।
This theorem is proved by applying the inverse Laplace transform on the convolution theorem in form of the cross-correlation.


होने देना <math>f(t)</math> द्विपक्षीय लाप्लास परिवर्तन के साथ एक कार्य हो <math>F(s)</math>
Let <math>f(t)</math> be a function with bilateral Laplace transform <math>F(s)</math>
अभिसरण की पट्टी में <math>\alpha<\Re s<\beta</math>.
in the strip of convergence <math>\alpha<\Re s<\beta</math>.
होने देना <math>c\in\mathbb{R}</math> साथ <math> \alpha<c<\beta </math>.
Let <math>c\in\mathbb{R}</math> with <math> \alpha<c<\beta </math>.फिर प्लैंकेरल प्रमेय द्वारा इसे दिखाया गया है<ref>{{harvnb|Widder|1941|loc=Chapter VI, §8, p.246}}</ref>
फिर प्लैंकेरल प्रमेय धारण करता है:
<ref>{{harvnb|Widder|1941|loc=Chapter VI, §8, p.246}}</ref>
:<math>
:<math>
\int_{-\infty}^{\infty} e^{-2c\,t} \, |f(t)|^2  \,dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |F(c+ir)|^2 \, dr
\int_{-\infty}^{\infty} e^{-2c\,t} \, |f(t)|^2  \,dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |F(c+ir)|^2 \, dr
</math>
</math>




=== विशिष्टता ===
=== विशिष्टता ===


किन्हीं दो कार्यों के लिए <math display="inline"> f,g </math> जिसके लिए दो तरफा लाप्लास रूपांतरित होता है <math display="inline"> \mathcal{T} \{f\}, \mathcal{T} \{g\} </math> मौजूद हैं, अगर <math display="inline"> \mathcal{T}\{f\} = \mathcal{T} \{g\}, </math> अर्थात। <math display="inline"> \mathcal{T}\{f\}(s) = \mathcal{T}\{g\}(s) </math> के प्रत्येक मूल्य के लिए <math display="inline"> s\in\mathbb R, </math> तब <math display="inline"> f=g </math> [[लगभग हर जगह]]।
किन्हीं दो फलन के लिए <math display="inline"> f,g </math> जिसके लिए दो तरफा लाप्लास रूपांतरित होता है <math display="inline"> \mathcal{T} \{f\}, \mathcal{T} \{g\} </math> उपस्थित हैं, यदि <math display="inline"> \mathcal{T}\{f\} = \mathcal{T} \{g\}, </math> अर्थात। <math display="inline"> \mathcal{T}\{f\}(s) = \mathcal{T}\{g\}(s) </math> के प्रत्येक मूल्य के लिए <math display="inline"> s\in\mathbb R, </math> तब <math display="inline"> f=g </math> [[लगभग हर जगह]]।
 
 
 
 
 
 
 
 
 
 


== अभिसरण का क्षेत्र ==
== अभिसरण का क्षेत्र ==
अभिसरण के लिए द्विपक्षीय परिवर्तन की आवश्यकताएं एकतरफा परिवर्तनों की तुलना में अधिक कठिन हैं। अभिसरण का क्षेत्र सामान्य रूप से छोटा होगा।
अभिसरण के लिए द्विपक्षीय परिवर्तन की आवश्यकताएं एकतरफा परिवर्तनों की तुलना में अधिक कठिन हैं। अभिसरण का क्षेत्र सामान्य रूप से छोटा होगा।


यदि f एक स्थानीय रूप से समाकलित फलन है (या अधिक आम तौर पर स्थानीय रूप से परिबद्ध भिन्नता का एक बोरेल उपाय है), तो f का लाप्लास रूपांतरण F(s) अभिसरण करता है बशर्ते कि सीमा
यदि f एक स्थानीय रूप से समाकलित फलन है (या अधिक सामान्यतः स्थानीय रूप से परिबद्ध भिन्नता का एक बोरेल उपाय है), तो f का लाप्लास रूपांतरण F(s) अभिसरण करता है बशर्ते कि सीमा
: <math>\lim_{R\to\infty}\int_0^R f(t)e^{-st}\, dt</math>
: <math>\lim_{R\to\infty}\int_0^R f(t)e^{-st}\, dt</math>
मौजूद। लाप्लास रूपांतरण पूरी तरह से अभिन्न अंग को अभिसरण करता है
उपस्थित । लाप्लास रूपांतरण पूरी तरह से अभिन्न अंग को अभिसरण करता है
: <math>\int_0^\infty \left|f(t)e^{-st}\right|\, dt</math>
: <math>\int_0^\infty \left|f(t)e^{-st}\right|\, dt</math>
मौजूद है (एक उचित Lebesgue अभिन्न के रूप में)। लाप्लास परिवर्तन को आमतौर पर सशर्त रूप से अभिसरण के रूप में समझा जाता है, जिसका अर्थ है कि यह बाद के भाव के बजाय पूर्व में अभिसरण करता है।
एक उचित लेबेस्ग अभिन्न अंग के रूप में उपस्थित होता है। लाप्लास परिवर्तन को सामान्यतः सशर्त रूप से अभिसरण के रूप में समझा जाता है, जिसका अर्थ है कि यह बाद के भाव के अतिरिक्त पूर्व में अभिसरण करता है।


मानों का वह सेट जिसके लिए F(s) पूरी तरह से अभिसरित होता है या तो Re(s) > a या फिर Re(s) ≥ a के रूप में होता है, जहां a एक [[विस्तारित वास्तविक संख्या]] है, −∞ ≤ a ≤ ∞। (यह [[प्रभुत्व अभिसरण प्रमेय]] से अनुसरण करता है।) निरंतर a को पूर्ण अभिसरण के भुज के रूप में जाना जाता है, और यह f(t) के विकास व्यवहार पर निर्भर करता है।<ref>{{harvnb|Widder|1941|loc=Chapter II, §1}}</ref> अनुरूप रूप से, दो तरफा परिवर्तन a <Re(s) <b के रूप की एक पट्टी में पूरी तरह से अभिसरण करता है, और संभवतः Re(s) = a या Re(s) = b लाइनों सहित।<ref>{{harvnb|Widder|1941|loc=Chapter VI, §2}}</ref> एस के मूल्यों का सबसेट जिसके लिए लाप्लास पूरी तरह से परिवर्तित हो जाता है उसे पूर्ण [[अभिसरण का क्षेत्र]] या पूर्ण अभिसरण का डोमेन कहा जाता है। दो तरफा मामले में, इसे कभी-कभी निरपेक्ष अभिसरण की पट्टी कहा जाता है। लाप्लास परिवर्तन पूर्ण अभिसरण के क्षेत्र में [[विश्लेषणात्मक कार्य]] है।
मानों मूल्यों का वह सेट जिसके लिए F(s) पूरी तरह से अभिसरित होता है या तो Re(s) > a या फिर Re(s) ≥ a के रूप में होता है, जहां a एक [[विस्तारित वास्तविक संख्या]] है, −∞ ≤ a ≤ ∞। (यह [[प्रभुत्व अभिसरण प्रमेय]] से अनुसरण


इसी तरह, मूल्यों का वह सेट जिसके लिए F(s) अभिसरण (सशर्त या पूर्ण रूप से) को सशर्त अभिसरण के क्षेत्र के रूप में जाना जाता है, या केवल 'अभिसरण का क्षेत्र' (ROC) कहा जाता है। यदि लाप्लास रूपांतरण (सशर्त रूप से) s = s पर अभिसरित होता है<sub>0</sub>, तो यह स्वचालित रूप से Re(s) > Re(s) के साथ सभी s के लिए अभिसरित हो जाता है<sub>0</sub>). इसलिए, अभिसरण का क्षेत्र Re(s) > a के रूप का आधा-तल है, संभवतः सीमा रेखा Re(s) = a के कुछ बिंदुओं सहित। अभिसरण के क्षेत्र में Re(s) > Re(s<sub>0</sub>), एफ के लाप्लास परिवर्तन को अभिन्न के रूप में [[भागों द्वारा एकीकरण]] द्वारा व्यक्त किया जा सकता है
किया करता है।) निरंतर a को पूर्ण अभिसरण के भुज के रूप में जाना जाता है, और यह f(t) के विकास व्यवहार पर निर्भर किया करता है।<ref>{{harvnb|Widder|1941|loc=Chapter II, §1}}</ref> अनुरूप रूप से, दो तरफा परिवर्तन a <Re(s) <b के रूप की एक पट्टी में पूरी तरह से अभिसरण किया करता है, और संभवतः Re(s) = a या Re(s) = b लाइनों सहित।<ref>{{harvnb|Widder|1941|loc=Chapter VI, §2}}</ref> एस के मूल्यों का सबसेट जिसके लिए लाप्लास पूरी तरह से परिवर्तित हो जाता है उसे पूर्ण [[अभिसरण का क्षेत्र]] या पूर्ण अभिसरण का डोमेन कहा जाता है। दो तरफा स्थिति में, इसे कभी-कभी निरपेक्ष अभिसरण की पट्टी कहा जाता है। लाप्लास परिवर्तन पूर्ण अभिसरण के क्षेत्र में [[विश्लेषणात्मक कार्य|विश्लेषणात्मक फलन]] है।
 
इसी तरह, मूल्यों का वह सेट जिसके लिए F(s) अभिसरण (सशर्त या पूर्ण रूप से) को सशर्त अभिसरण के क्षेत्र के रूप में जाना जाता है, या केवल 'अभिसरण का क्षेत्र' (ROC) के रूप में जाना जाता है। यदि लाप्लास रूपांतरण (सशर्त रूप से) s = s पर अभिसरित होता है<sub>0</sub>, तो यह स्वचालित रूप से Re(s) > Re(s) के साथ सभी s के लिए अभिसरित हो जाता है<sub>0</sub>). इसलिए, अभिसरण का क्षेत्र Re(s) > a के रूप का आधा-तल है, संभवतः सीमा रेखा Re(s) = a के कुछ बिंदुओं सहित। अभिसरण के क्षेत्र में Re(s) > Re(s<sub>0</sub>), एफ के लाप्लास परिवर्तन को अभिन्न के रूप में [[भागों द्वारा एकीकरण]] द्वारा व्यक्त किया जा सकता है  
:<math>F(s) = (s-s_0)\int_0^\infty e^{-(s-s_0)t}\beta(t)\, dt,\quad \beta(u) = \int_0^u e^{-s_0t}f(t)\, dt.</math>
:<math>F(s) = (s-s_0)\int_0^\infty e^{-(s-s_0)t}\beta(t)\, dt,\quad \beta(u) = \int_0^u e^{-s_0t}f(t)\, dt.</math>
अर्थात्, अभिसरण के क्षेत्र में F(s) को प्रभावी रूप से किसी अन्य कार्य के बिल्कुल अभिसारी लाप्लास रूपांतरण के रूप में व्यक्त किया जा सकता है। विशेष रूप से, यह विश्लेषणात्मक है।
अर्थात्, अभिसरण के क्षेत्र में F(s) को प्रभावी रूप से किसी अन्य फलन के बिल्कुल अभिसारी लाप्लास रूपांतरण के रूप में व्यक्त किया जा सकता है। विशेष रूप से, यह विश्लेषणात्मक है।


अभिसरण के क्षेत्र के भीतर एफ के क्षय गुणों और लाप्लास के गुणों के बीच संबंध के संबंध में कई पाले-वीनर प्रमेय हैं।
अभिसरण के क्षेत्र के भीतर एफ के क्षय गुणों और लाप्लास के गुणों के बीच संबंध के संबंध में कई पाले-वीनर प्रमेय हैं।


इंजीनियरिंग अनुप्रयोगों में, एक [[एलटीआई प्रणाली]] के अनुरूप एक फ़ंक्शन | रैखिक समय-अपरिवर्तनीय (एलटीआई) प्रणाली स्थिर है यदि प्रत्येक बाध्य इनपुट एक बाध्य आउटपुट उत्पन्न करता है।
इंजीनियरिंग अनुप्रयोगों में, एक रैखिक समय-अपरिवर्तनीय एक [[एलटीआई प्रणाली]] से संबंधित एक फलन स्थिर होता हैं। रैखिक समय-अपरिवर्तनीय (एलटीआई) प्रणाली स्थिर है यदि प्रत्येक बाध्य इनपुट एक बाध्य आउटपुट उत्पन्न करता है।


== करणीयता ==
== करणीयता ==
द्विपक्षीय परिवर्तन कार्य-कारण का सम्मान नहीं करते हैं। सामान्य कार्यों पर लागू होने पर वे समझ में आते हैं लेकिन समय के कार्यों (संकेतों) के साथ काम करते समय एकतरफा परिवर्तन को प्राथमिकता दी जाती है।
द्विपक्षीय परिवर्तन फलन -कारण का सम्मान नहीं करते हैं। सामान्य फलन पर लागू होने पर वे समझ में आते हैं लेकिन समय के फलन (संकेतों) के साथ काम करते समय एकतरफा परिवर्तन को प्राथमिकता दी जाती है।


== चयनित द्विपक्षीय लाप्लास रूपांतरणों की तालिका ==
== चयनित द्विपक्षीय लाप्लास रूपांतरणों की तालिका ==
Line 301: Line 270:
|+ Selected bilateral Laplace transforms
|+ Selected bilateral Laplace transforms
|-
|-
! Function
! फलन
! Time domain <br> <math>f(t) = \mathcal{B}^{-1}\{F\}(t)</math>  
! समय डोमेन <br> <math>f(t) = \mathcal{B}^{-1}\{F\}(t)</math>  
! Laplace {{math|s}}-domain <br> <math>F(s) = \mathcal{B}\{f\}(s)</math>  
! लाप्लास {{math|s}}-डोमेन <br> <math>F(s) = \mathcal{B}\{f\}(s)</math>  
! Region of convergence
! अभिसरण का क्षेत्र
! Comment
! टिप्पणी
|-
|-
| Rectangular impulse
| आयताकार आवेग
| <math> f(t)=\left\{ \begin{aligned} 1 & \quad\text{if}\;|t|< \tfrac{1}{2} \\ \tfrac{1}{2} & \quad\text{if}\;|t|= \tfrac{1}{2} \\ 0 & \quad\text{if}\;|t|> \tfrac{1}{2} \end{aligned} \right. </math>  
| <math> f(t)=\left\{ \begin{aligned} 1 & \quad\text{if}\;|t|< \tfrac{1}{2} \\ \tfrac{1}{2} & \quad\text{if}\;|t|= \tfrac{1}{2} \\ 0 & \quad\text{if}\;|t|> \tfrac{1}{2} \end{aligned} \right. </math>  
| <math> 2s^{-1}\,\sinh\frac{s}{2}  </math>  
| <math> 2s^{-1}\,\sinh\frac{s}{2}  </math>  
Line 313: Line 282:
|
|
|-
|-
| Triangular impulse
| त्रिकोणीय आवेग
| <math> f(t) = \left\{ \begin{aligned} 1-|t| & \quad\text{if}\;|t|\le 1 \\ 0 & \quad\text{if}\;|t|> 1 \end{aligned} \right. </math>  
| <math> f(t) = \left\{ \begin{aligned} 1-|t| & \quad\text{if}\;|t|\le 1 \\ 0 & \quad\text{if}\;|t|> 1 \end{aligned} \right. </math>  
| <math> \left( 2s^{-1}\,\sinh\frac{s}{2} \right)^2 </math>  
| <math> \left( 2s^{-1}\,\sinh\frac{s}{2} \right)^2 </math>  
Line 319: Line 288:
|
|
|-
|-
| Gaussian impulse
| गाऊसी आवेग
| <math> \exp\left(-a^2\,t^2-b\,t\right) </math>  
| <math> \exp\left(-a^2\,t^2-b\,t\right) </math>  
| <math> \frac{\sqrt{\pi}}{a} \, \exp \frac{(s+b)^2}{4\,a^2} </math>  
| <math> \frac{\sqrt{\pi}}{a} \, \exp \frac{(s+b)^2}{4\,a^2} </math>  
Line 325: Line 294:
| <math> \Re(a^2) > 0 </math>
| <math> \Re(a^2) > 0 </math>
|-
|-
| Exponential decay
| घातीय क्षय
| <math> e^{-at} \, u(t) = \left\{ \begin{aligned} &0 &&\;\text{if}\; t<0 &\\ &e^{-at} &&\;\text{if}\; 0<t &\end{aligned} \right. </math>  
| <math> e^{-at} \, u(t) = \left\{ \begin{aligned} &0 &&\;\text{if}\; t<0 &\\ &e^{-at} &&\;\text{if}\; 0<t &\end{aligned} \right. </math>  
| <math> \frac{1}{s+a} </math>  
| <math> \frac{1}{s+a} </math>  
Line 331: Line 300:
| <math> u(t) </math> is the Heaviside step function
| <math> u(t) </math> is the Heaviside step function
|-
|-
| Exponential growth
| घातीय वृद्धि
| <math> -e^{-at} \, u(-t) = \left\{ \begin{aligned} &-e^{-at} &&\;\text{if}\; t<0 &\\ &0 &&\;\text{if}\; 0<t &\end{aligned} \right.  </math>  
| <math> -e^{-at} \, u(-t) = \left\{ \begin{aligned} &-e^{-at} &&\;\text{if}\; t<0 &\\ &0 &&\;\text{if}\; 0<t &\end{aligned} \right.  </math>  
| <math> \frac{1}{s+a} </math>  
| <math> \frac{1}{s+a} </math>  
Line 338: Line 307:
|-
|-
|  
|  
| <math> e^{-|t|} </ गणित>
| <math> e^{-|t|} </math>  
| गणित> \frac{2}{1-s^2} </math>
| <math> \frac{2}{1-s^2} </math>  
| गणित> -1 <\Re s <1 </गणित>
| <math> -1 < \Re s < 1 </math>  
|
|
|-
|-
|
|  
| गणित> ^{-|टी|} </गणित>
| <math> e^{-a|t|} </math>  
| गणित> \frac{2a}{a^2-s^2} </math>
| <math> \frac{2a}{a^2-s^2} </math>  
| गणित> -\Re a < \Re s < \Re a </math>
| <math> -\Re a < \Re s < \Re a </math>  
| गणित> \ रे ए> 0 </ गणित>
| <math> \Re a > 0 </math>
|-
|-
|
|  
|  
गणित> \frac{1}{\cosh t} </math>
| <math> \frac{1}{\cosh t} </math>  
| गणित> \frac{\pi}{\cos(\pi s/2)} </math>
| <math> \frac{\pi}{\cos(\pi s/2)} </math>  
| गणित> -1 <\Re s <1 </गणित>
| <math> -1 < \Re s < 1 </math>  
|
|
|-
|-
|
|  
| गणित> \frac{1}{1+e^{-t}} </math>
| <math> \frac{1}{1+e^{-t}} </math>  
| गणित> \frac{\pi}{\sin(\pi s)} </math>
| <math> \frac{\pi}{\sin(\pi s)} </math>  
| गणित> 0 <\Re s <1 </गणित>
| <math> 0 < \Re s < 1 </math>  
|
|
|}
|}


== यह भी देखें ==
== यह भी देखें ==
* [[कारण फ़िल्टर]]
* [[कारण फ़िल्टर|कौशल फ़िल्टर]]
* [[[[कारण प्रणाली]]]]
* [[कारण प्रणाली|कौशल प्रणाली]]
*कारण प्रणाली
*कौशल प्रणाली
*[[सिंक फिल्टर]] - आदर्श सिन फ़िल्टर (उर्फ आयताकार फ़िल्टर) आकस्मिक होता है और इसमें अनंत विलंब होता है।
*[[सिंक फिल्टर]] - आदर्श सिंक फ़िल्टर आयताकार फ़िल्टर आकस्मिक रूप में होता है और इसमें अनंत विलंब होता है।


==संदर्भ==
==संदर्भ==
Line 378: Line 356:
*{{cite book |last1=Oppenheim |first1=Alan V. |last2=Willsky |first2=Alan S. |year=1997 |title=Signals & Systems |edition=2nd}}
*{{cite book |last1=Oppenheim |first1=Alan V. |last2=Willsky |first2=Alan S. |year=1997 |title=Signals & Systems |edition=2nd}}


{{DEFAULTSORT:Two-Sided Laplace Transform}}[[Category: अभिन्न परिवर्तन]] [[Category: लाप्लास रूपांतरित होता है]]
{{DEFAULTSORT:Two-Sided Laplace Transform}}
 
 


[[Category: Machine Translated Page]]
[[Category:All articles lacking in-text citations|Two-Sided Laplace Transform]]
[[Category:Created On 02/03/2023]]
[[Category:Articles lacking in-text citations from September 2015|Two-Sided Laplace Transform]]
[[Category:Created On 02/03/2023|Two-Sided Laplace Transform]]
[[Category:Harv and Sfn no-target errors|Two-Sided Laplace Transform]]
[[Category:Machine Translated Page|Two-Sided Laplace Transform]]
[[Category:Pages with broken file links|Two-Sided Laplace Transform]]
[[Category:Pages with math errors|Two-Sided Laplace Transform]]
[[Category:Pages with math render errors|Two-Sided Laplace Transform]]
[[Category:Pages with maths render errors|Two-Sided Laplace Transform]]
[[Category:Pages with script errors|Two-Sided Laplace Transform]]
[[Category:Templates Vigyan Ready|Two-Sided Laplace Transform]]
[[Category:अभिन्न परिवर्तन|Two-Sided Laplace Transform]]
[[Category:लाप्लास रूपांतरित होता है|Two-Sided Laplace Transform]]

Latest revision as of 14:09, 1 May 2023

गणित में, दो तरफा लाप्लास परिवर्तन या द्विपक्षीय लाप्लास परिवर्तन संभाव्यता के क्षण उत्पन्न करने वाले फलन के समतुल्य एक अभिन्न परिवर्तन होता है। दो तरफा लाप्लास रूपांतरण फूरियर रूपांतरण, मेलिन रूपांतरण, जेड-रूपांतरण और साधारण या एक तरफा लाप्लास रूपांतर से निकटता से संबंधित होता हैं। यदि f(t) सभी वास्तविक संख्याओं के लिए परिभाषित वास्तविक चर t का एक वास्तविक-या जटिल-मूल्यवान फलन होता है, तो दो तरफा लाप्लास परिवर्तन को अभिन्न द्वारा परिभाषित किया जा सकता है 

समाकलन को सामान्यतः अनुपयुक्त समाकलन के रूप में समझा जाता है, जो दोनों समाकलन होने पर केवल अभिसरण करता है

अस्तित्व दो तरफा परिवर्तन के लिए सामान्यतः स्वीकृत संकेतन प्रतीत नहीं होता है यहाँ का उपयोग द्विपक्षीय रूप में करते हैं। कुछ लेखकों द्वारा उपयोग किया जाने वाला दो तरफा परिवर्तन है

शुद्ध गणित में तर्क t कोई भी चर हो सकता है, और लाप्लास रूपांतरण का उपयोग यह अध्ययन करने के लिए किया जाता है कि अंतर ऑपरेटर फलन को कैसे बदल सकते हैं।

विज्ञान और अभियांत्रिकी अनुप्रयोगों में, तर्क सदैव समय t सेकंड मे प्रतिनिधित्व करता है, और फलन f(t) अधिकांशतः एक संकेत (सूचना सिद्धांत) या तरंग का प्रतिनिधित्व किया करता है जो समय के साथ बदलता रहता है। इन स्थितियों में, सिग्नल फ़िल्टर (सिग्नल प्रोसेसिंग) द्वारा रूपांतरित किया जाता हैं, जो एक गणितीय ऑपरेटर की तरह काम करता हैं, लेकिन एक प्रतिबंध के रूप में कारण होना चाहिए, जिसका अर्थ है कि किसी दिए गए समय टी में आउटपुट उस आउटपुट पर निर्भर नहीं हो सकता है जो t का उच्च मूल्य होता है। जनसंख्या पारिस्थितिकी में, तर्क t अधिकांशतः फैलाव कर्नेल में स्थानिक विस्थापन का प्रतिनिधित्व किया करता है।

समय के फलन के साथ काम करते समय, f(t) को सिग्नल का 'टाइम डोमेन' प्रतिनिधित्व कहा जाता है, जबकि F(s) को 'एस-डोमेन' या लाप्लास डोमेन का प्रतिनिधित्व कहा जाता है। और इस प्रकार व्युत्क्रम परिवर्तन तब संकेत के संश्लेषण का प्रतिनिधित्व करता है क्योंकि इसके आवृत्ति घटकों का योग सभी आवृत्तियों पर लिया जाता है, जबकि आगे का परिवर्तन संकेत के आवृत्ति घटकों में विश्लेषण का प्रतिनिधित्व किया करता है।

फूरियर ट्रांसफॉर्म से संबंध

फूरियर रूपांतरण को दो तरफा लाप्लास परिवर्तन के संदर्भ में परिभाषित किया जा सकता है

ध्यान दें कि फूरियर रूपांतरण की परिभाषाएँ भिन्न रूप में होती है, और विशेष रूप से इस प्रकार दिखाया गया है

इसके अतिरिक्त अधिकांशतः प्रयोग किया जाता है। फूरियर रूपांतरण के संदर्भ में, हम दो तरफा लाप्लास रूपांतरण भी प्राप्त कर सकते हैं, जैसा कि दिखाया गया है

फूरियर रूपांतरण को सामान्य रूप से परिभाषित किया जा सकता है जिससे कि यह वास्तविक मूल्यों के लिए उपस्थित रहे; उपरोक्त परिभाषा छवि को एक पट्टी में परिभाषित करती है जिसमें वास्तविक धुरी सम्मलित नहीं हो सकती है जहां फूरियर ट्रांसफॉर्म को अभिसरण माना जाता है।

यही कारण है कि लाप्लास रूपांतरण नियंत्रण सिद्धांत और सिग्नल प्रोसेसिंग में अपने मूल्य को बनाए रखता है: एक फूरियर ट्रांसफॉर्म समाकलन के अपने डोमेन के भीतर अभिसरण का मतलब केवल यह है कि इसके द्वारा वर्णित एक रैखिक, शिफ्ट-इनवेरिएंट सिस्टम स्थिर या महत्वपूर्ण होता है। दूसरी ओर लाप्लास हर आवेग प्रतिक्रिया के लिए अभिसरण करेगा जो सबसे अधिक तेजी से बढ़ रहा होता है, क्योंकि इसमें एक अतिरिक्त शब्द सम्मलित होता है जिसे एक घातीय नियामक के रूप में लिया जा सकता है। चूंकि सुपरएक्सपोनेंशियल रूप से बढ़ते रैखिक प्रतिक्रिया नेटवर्क नहीं होता हैं, लाप्लास ट्रांसफॉर्म आधारित विश्लेषण और रैखिक, शिफ्ट-इनवेरिएंट सिस्टम का समाधान, लाप्लास के संदर्भ में अपना सबसे सामान्य रूप लेता है, फूरियर नहीं, ट्रांसफॉर्म करता है।

ठीक उसी समय, आजकल लाप्लास रूपांतरण सिद्धांत अधिक सामान्य अभिन्न रूपांतरण, या यहां तक ​​कि सामान्य हार्मोनिकल विश्लेषण के दायरे में आता है। उस ढांचे और नामकरण में, लाप्लास रूपांतरण फूरियर विश्लेषण का एक और रूप है, भले ही दृष्टि में अधिक सामान्य हो सकता है।

अन्य अभिन्न रूपांतरणों से संबंध

यदि यू हैवीसाइड चरण फलन है, जब इसका तर्क शून्य से कम या शून्य के बराब होता है, जब इसका तर्क एक-आधा शून्य के बराबर होता है और जब इसका तर्क शून्य से अधिक होता है, तो लाप्लास रूपांतरण द्वारा होता है दो तरफा लाप्लास परिवर्तन के संदर्भ में परिभाषित किया जा सकता है

दूसरी ओर इसे इस प्रकार इसे दिखाया गया है

जहाँ वह फलन है जो ऋणत्मक एक से गुणा करता है (), इसलिए लाप्लास रूपांतरण के किसी भी संस्करण को दूसरे के संदर्भ में परिभाषित किया जा सकता है।

मेलिन परिवर्तन को दो तरफा लाप्लास परिवर्तन द्वारा परिभाषित किया जा सकता है

जहाँ ऊपर के रूप में और इसके विपरीत मेलिन परिवर्तन से दो तरफा परिवर्तन प्राप्त कर सकते हैं

एक सतत संभाव्यता घनत्व फलन ƒ(x) के क्षण-उत्पन्न करने वाले फलन को इस प्रकार व्यक्त किया जाता है .

गुण

द्विपक्षीय लाप्लास परिवर्तन के गुण
गुणधर्म समय डोमेन s डोमेन अभिसरण की पट्टी टिप्पणी
परिभाषा
टाइम स्केलिंग
व्युत्क्रमण
आवृत्ति डोमेन व्युत्पन्न
आवृत्ति-डोमेन सामान्य अवकलज
अवकलज
सामान्य अवकलज
आवृत्ति-डोमेन समाकलन only valid if the integral exists
समय डोमेन समाकलन
समय डोमेन समाकलन
आवृत्ति स्थानांतरण
समय स्थानांतरण
Modulation
परिमित अंतर
गुणन . The integration is done along the vertical line Re(σ) = c inside the region of convergence.
जटिल संयुग्मन
कनवल्शन
व्यतिसहसंबंध

द्विपक्षीय लाप्लास परिवर्तन के अधिकांश गुण एकतरफा लाप्लास परिवर्तन के गुणों के समान हैं, लेकिन कुछ महत्वपूर्ण अंतर हैं:

Properties of the unilateral transform vs. properties of the bilateral transform
unilateral time domain bilateral time domain unilateral-'s' domain bilateral-'s' domain
अवकलन
दूसरा क्रमबद्ध अवकलन
कनवल्शन
व्यतिसहसंबंध

पारसेवल का प्रमेय और प्लांकरेल का प्रमेय

Let and be functions with bilateral Laplace transforms and in the strips of convergence . Let with . Then Parseval's theorem holds: [1]

This theorem is proved by applying the inverse Laplace transform on the convolution theorem in form of the cross-correlation.

Let be a function with bilateral Laplace transform in the strip of convergence . Let with .फिर प्लैंकेरल प्रमेय द्वारा इसे दिखाया गया है[2]






विशिष्टता

किन्हीं दो फलन के लिए जिसके लिए दो तरफा लाप्लास रूपांतरित होता है उपस्थित हैं, यदि अर्थात। के प्रत्येक मूल्य के लिए तब लगभग हर जगह






अभिसरण का क्षेत्र

अभिसरण के लिए द्विपक्षीय परिवर्तन की आवश्यकताएं एकतरफा परिवर्तनों की तुलना में अधिक कठिन हैं। अभिसरण का क्षेत्र सामान्य रूप से छोटा होगा।

यदि f एक स्थानीय रूप से समाकलित फलन है (या अधिक सामान्यतः स्थानीय रूप से परिबद्ध भिन्नता का एक बोरेल उपाय है), तो f का लाप्लास रूपांतरण F(s) अभिसरण करता है बशर्ते कि सीमा

उपस्थित । लाप्लास रूपांतरण पूरी तरह से अभिन्न अंग को अभिसरण करता है

एक उचित लेबेस्ग अभिन्न अंग के रूप में उपस्थित होता है। लाप्लास परिवर्तन को सामान्यतः सशर्त रूप से अभिसरण के रूप में समझा जाता है, जिसका अर्थ है कि यह बाद के भाव के अतिरिक्त पूर्व में अभिसरण करता है।

मानों मूल्यों का वह सेट जिसके लिए F(s) पूरी तरह से अभिसरित होता है या तो Re(s) > a या फिर Re(s) ≥ a के रूप में होता है, जहां a एक विस्तारित वास्तविक संख्या है, −∞ ≤ a ≤ ∞। (यह प्रभुत्व अभिसरण प्रमेय से अनुसरण

किया करता है।) निरंतर a को पूर्ण अभिसरण के भुज के रूप में जाना जाता है, और यह f(t) के विकास व्यवहार पर निर्भर किया करता है।[3] अनुरूप रूप से, दो तरफा परिवर्तन a <Re(s) <b के रूप की एक पट्टी में पूरी तरह से अभिसरण किया करता है, और संभवतः Re(s) = a या Re(s) = b लाइनों सहित।[4] एस के मूल्यों का सबसेट जिसके लिए लाप्लास पूरी तरह से परिवर्तित हो जाता है उसे पूर्ण अभिसरण का क्षेत्र या पूर्ण अभिसरण का डोमेन कहा जाता है। दो तरफा स्थिति में, इसे कभी-कभी निरपेक्ष अभिसरण की पट्टी कहा जाता है। लाप्लास परिवर्तन पूर्ण अभिसरण के क्षेत्र में विश्लेषणात्मक फलन है।

इसी तरह, मूल्यों का वह सेट जिसके लिए F(s) अभिसरण (सशर्त या पूर्ण रूप से) को सशर्त अभिसरण के क्षेत्र के रूप में जाना जाता है, या केवल 'अभिसरण का क्षेत्र' (ROC) के रूप में जाना जाता है। यदि लाप्लास रूपांतरण (सशर्त रूप से) s = s पर अभिसरित होता है0, तो यह स्वचालित रूप से Re(s) > Re(s) के साथ सभी s के लिए अभिसरित हो जाता है0). इसलिए, अभिसरण का क्षेत्र Re(s) > a के रूप का आधा-तल है, संभवतः सीमा रेखा Re(s) = a के कुछ बिंदुओं सहित। अभिसरण के क्षेत्र में Re(s) > Re(s0), एफ के लाप्लास परिवर्तन को अभिन्न के रूप में भागों द्वारा एकीकरण द्वारा व्यक्त किया जा सकता है

अर्थात्, अभिसरण के क्षेत्र में F(s) को प्रभावी रूप से किसी अन्य फलन के बिल्कुल अभिसारी लाप्लास रूपांतरण के रूप में व्यक्त किया जा सकता है। विशेष रूप से, यह विश्लेषणात्मक है।

अभिसरण के क्षेत्र के भीतर एफ के क्षय गुणों और लाप्लास के गुणों के बीच संबंध के संबंध में कई पाले-वीनर प्रमेय हैं।

इंजीनियरिंग अनुप्रयोगों में, एक रैखिक समय-अपरिवर्तनीय एक एलटीआई प्रणाली से संबंधित एक फलन स्थिर होता हैं। रैखिक समय-अपरिवर्तनीय (एलटीआई) प्रणाली स्थिर है यदि प्रत्येक बाध्य इनपुट एक बाध्य आउटपुट उत्पन्न करता है।

करणीयता

द्विपक्षीय परिवर्तन फलन -कारण का सम्मान नहीं करते हैं। सामान्य फलन पर लागू होने पर वे समझ में आते हैं लेकिन समय के फलन (संकेतों) के साथ काम करते समय एकतरफा परिवर्तन को प्राथमिकता दी जाती है।

चयनित द्विपक्षीय लाप्लास रूपांतरणों की तालिका

द्विपक्षीय लाप्लास परिवर्तन के लिए दिलचस्प उदाहरणों की निम्नलिखित सूची को इसी फूरियर या से घटाया जा सकता है एकतरफा लाप्लास परिवर्तन (यह सभी देखें Bracewell (2000)):

Selected bilateral Laplace transforms
फलन समय डोमेन
लाप्लास s-डोमेन
अभिसरण का क्षेत्र टिप्पणी
आयताकार आवेग
त्रिकोणीय आवेग
गाऊसी आवेग
घातीय क्षय is the Heaviside step function
घातीय वृद्धि






यह भी देखें

संदर्भ

  1. LePage, Chapter 11-3, p.340
  2. Widder 1941, Chapter VI, §8, p.246
  3. Widder 1941, Chapter II, §1
  4. Widder 1941, Chapter VI, §2
  • LePage, Wilbur R. (1980). Complex Variables and the Laplace Transform for Engineers. Dover Publications.
  • Van der Pol, Balthasar, and Bremmer, H., Operational Calculus Based on the Two-Sided Laplace Integral, Chelsea Pub. Co., 3rd ed., 1987.
  • Widder, David Vernon (1941), The Laplace Transform, Princeton Mathematical Series, v. 6, Princeton University Press, MR 0005923.
  • Bracewell, Ronald N. (2000). The Fourier Transform and Its Applications (3rd ed.).
  • Oppenheim, Alan V.; Willsky, Alan S. (1997). Signals & Systems (2nd ed.).