अनुभागीय वक्रता: Difference between revisions

From Vigyanwiki
No edit summary
 
(One intermediate revision by one other user not shown)
Line 148: Line 148:
{{Riemannian geometry}}
{{Riemannian geometry}}
{{curvature}}
{{curvature}}
[[Category: वक्रता (गणित)]] [[Category: रिमानियन ज्यामिति]] [[Category: रीमैनियन कई गुना]]


 
[[Category:Collapse templates]]
 
[[Category: Machine Translated Page]]
[[Category:Created On 24/04/2023]]
[[Category:Created On 24/04/2023]]
[[Category:Vigyan Ready]]
[[Category:Machine Translated Page]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages with script errors]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates generating microformats]]
[[Category:Templates that are not mobile friendly]]
[[Category:Templates using TemplateData]]
[[Category:Wikipedia metatemplates]]
[[Category:रिमानियन ज्यामिति]]
[[Category:रीमैनियन कई गुना]]
[[Category:वक्रता (गणित)]]

Latest revision as of 14:22, 1 May 2023

रीमैनियन ज्यामिति में, अनुभागीय वक्रता, रीमैनियन मैनिफोल्ड्स की वक्रता का वर्णन करने के विधियों में से एक है। अनुभागीय वक्रता Kp) मैनिफोल्ड्स के एक बिंदु p पर स्पर्शरेखा स्थान के द्वि-आयामी रैखिक उप-स्थान σp पर निर्भर करता है। इसे ज्यामितीय रूप से सतह (टोपोलॉजी) के गॉसियन वक्रता के रूप में परिभाषित किया जा सकता है जिसमें p पर एक स्पर्शरेखा विमान के रूप में समतल σp है, जो जियोडेसिक्स से प्राप्त होता है जो σp (दूसरे शब्दों में, σ की छविp घातीय माप (रीमैनियन ज्यामिति) के अनुसार p पर) की दिशाओं में p से प्रारंभ होता है। अनुभागीय वक्रता मैनिफोल्ड्स अधिक ग्रासमानियन फाइबर बंडल पर वास्तविक-मूल्यवान फलन है।

अनुभागीय वक्रता रीमैन वक्रता टेन्सर को पूरी तरह से निर्धारित करती है।

परिभाषा

एक रीमैनियन मैनिफोल्ड और एक ही बिंदु u और v पर दो रैखिक रूप से स्वतंत्र स्पर्शरेखा सदिशों को देखते हुए हम परिभाषित कर सकते हैं

यहाँ R रीमैन वक्रता टेन्सर है, जिसे यहाँ परिपाटी द्वारा परिभाषित किया गया है कुछ स्रोत विपरीत परिपाटी का उपयोग करते हैं, किस स्थिति में K(u,v) को अंश में के अतिरिक्त से परिभाषित किया जाना चाहिए।[1]

ध्यान दें कि u और v की रैखिक स्वतंत्रता उपरोक्त व्यंजक में भाजक को अशून्य होने के लिए बाध्य करती है, जिससे K(u,v) अच्छी तरह से परिभाषित हो। विशेष रूप से, यदि u और v ऑर्थोनॉर्मल हैं, तो परिभाषा सरल रूप लेती है

यह जांचना सीधा है कि यदि रैखिक रूप से स्वतंत्र हैं और स्पर्शरेखा स्थान के समान द्वि-आयामी रैखिक उप-स्थान को के रूप में फैलाते हैं,तब है। तो कोई विभागीय वक्रता को वास्तविक-मूल्यवान फलन के रूप में मान सकता है जिसका इनपुट स्पर्शरेखा स्थान का द्वि-आयामी रैखिक उप-स्थान है।

वैकल्पिक परिभाषाएं

वैकल्पिक रूप से, अनुभागीय वक्रता को छोटे वृत्तों की परिधि द्वारा चित्रित किया जा सकता है। मान लीजिए कि , में एक द्विविम तल है। मान लो पर्याप्त रूप से छोटे के लिए में इकाई वृत के पर घातीय माप के अनुसार छवि को दर्शाता है और की लंबाई को दर्शाता है तभी यह सिद्ध हो सकता है

कुछ संख्या के लिए के रूप में। पर यह संख्या पर के विभागीय वक्रता है।[2]

निरंतर अनुभागीय वक्रता के साथ मैनिफोल्ड्स

एक का कहना है कि सभी द्वि-आयामी रैखिक उप-स्थान और सभी के लिए एक रिमेंनियन मैनिफोल्ड में "निरंतर वक्रता " है यदि

शूर की लेम्मा (रीमैनियन ज्योमेट्री) कहती है कि यदि (M,g) कम से कम तीन आयामों के साथ जुड़ा हुआ रिमेंनियन मैनिफोल्ड है, और यदि कोई फलन है जैसे कि सभी द्वि-आयामी रैखिक उप-स्थानों के लिए और सभी के लिए तब f स्थिर होना चाहिए और इसलिए (M,g) में निरंतर वक्रता होती है।

निरंतर अनुभागीय वक्रता के साथ रिमेंनियन मैनिफोल्ड को स्पेस रूप कहा जाता है। यदि अनुभागीय वक्रता के निरंतर मान को दर्शाता है, तो किसी भी के लिए वक्रता टेन्सर को

के रूप में लिखा जा सकता है।

चूँकि कोई भी रिमेंनियन मेट्रिक अपने लेवी-सिविता कनेक्शन के संबंध में समानांतर है, यह दर्शाता है कि किसी भी स्थिर-वक्रता स्थान का रीमैन टेंसर भी समानांतर है। तब रिक्की टेन्सर द्वारा दिया जाता है और अदिश वक्रता है। विशेष रूप से, कोई भी स्थिर-वक्रता स्थान आइंस्टीन है और निरंतर अदिश वक्रता रखता है।

मॉडल उदाहरण

धनात्मक संख्या दी गई है, परिभाषित करना

  • मानक रीमैनियन संरचना होना
  • गोला होना साथ पर मानक रीमैनियन संरचना के पुलबैक द्वारा दिया गया समावेशन माप द्वारा
  • गेंद होना साथ

सामान्य शब्दावली में, इन रिमेंनियन मैनिफोल्ड को यूक्लिडियन स्पेस , एन-क्षेत्र और अतिशयोक्तिपूर्ण स्थान के रूप में संदर्भित किया जाता है। यहाँ, बिंदु यह है कि प्रत्येक निरंतर वक्रता के साथ पूर्ण रूप से जुड़ा हुआ चिकनी रीमैनियन मैनिफोल्ड है। त्रुटिहीन होने के लिए, रिमेंनियन मीट्रिक निरंतर वक्रता 0 है, रिमेंनियन मीट्रिक निरंतर वक्रता है, और रिमेंनियन मीट्रिक निरंतर वक्रता है।

इसके अतिरिक्त, ये इस अर्थ में 'सार्वभौमिक' उदाहरण हैं कि यदि निरंतर वक्रता के साथ चिकनी, जुड़ा हुआ और आसानी से जुड़ा हुआ पूर्ण रीमानियन मैनिफोल्ड्स है, तो यह उपरोक्त उदाहरणों में से के लिए आइसोमेट्रिक है; उपरोक्त उदाहरणों के निरंतर वक्रता के अनुसार, विशेष उदाहरण के निरंतर वक्रता के मान से निर्धारित होता है।

रिमेंनियन मैनिफोल्ड { स्थानीय रूप से के लिए आइसोमेट्रिक है, और इसलिए यह एक समान निरंतर वक्रता के साथ एक चिकनी, जुड़ा हुआ और आसानी से जुड़ा हुआ पूर्ण रीमैनियन मैनिफोल्ड है। यह तब से टोपोलॉजिकल सिद्धांतों द्वारा, कवरिंग मैप, रीमैनियन मैनिफोल्ड है स्थानीय रूप से आइसोमेट्रिक है , और इसलिए यह समान निरंतर वक्रता के साथ चिकनी, जुड़ा हुआ, और आसानी से जुड़ा हुआ पूर्ण रीमैनियन मैनिफोल्ड है। यह तब उपरोक्त मॉडल उदाहरणों में से आइसोमेट्रिक होना चाहिए। ध्यान दें कि सार्वभौमिक आवरण के डेक रूपांतरण मीट्रिक के सापेक्ष आइसोमेट्री है।

अतिशयोक्तिपूर्ण ज्यामिति कहे जाने वाले निरंतर ऋणात्मक वक्रता के साथ रीमैनियन मैनिफोल्ड्स का अध्ययन विशेष रूप से उल्लेखनीय है क्योंकि यह कई उल्लेखनीय घटनाओं को प्रदर्शित करता है।

स्केलिंग

मान ले चिकनी मैनिफोल्ड्स हो, और मान लो धनात्मक संख्या हो। रीमैनियन मैनिफोल्ड पर विचार करें। वक्रता टेन्सर, बहुरेखीय माप के रूप में इस संशोधन से अपरिवर्तित है। मान ले में रैखिक रूप से स्वतंत्र वैक्टर बनें। तब

तो मीट्रिक का गुणा द्वारा द्वारा सभी अनुभागीय वक्रताओं को गुणा करता है


टोपोनोगोव का प्रमेय

टोपोनोगोव की प्रमेय उनके यूक्लिडियन समकक्षों की तुलना में मोटे जियोडेसिक त्रिकोण कैसे दिखाई देते हैं, इसके संदर्भ में अनुभागीय वक्रता का लक्षण वर्णन करता है। मूल अंतर्ज्ञान यह है कि, यदि कोई स्थान धनात्मक रूप से वक्र है, तो किसी दिए गए शीर्ष के विपरीत त्रिभुज का किनारा उस शीर्ष से दूर झुक जाएगा, जबकि यदि कोई स्थान ऋणात्मक रूप से वक्र है, तो त्रिभुज का विपरीत किनारा शीर्ष की ओर झुक जाएगा।

अधिक त्रुटिहीन रूप से, M को पूर्ण स्थान रीमैनियन मैनिफोल्ड होने दें, और xyz को M में जियोडेसिक त्रिकोण (त्रिभुज जिसका प्रत्येक पक्ष लंबाई-न्यूनतम जियोडेसिक है) होने दें। अंत में, m को जियोडेसिक xy का मध्य बिंदु होने दें। यदि M में गैर-ऋणात्मक वक्रता है, तो सभी छोटे त्रिभुजों के लिए पर्याप्त है

जहाँ d, M पर दूरी का फलन है। समानता का स्थिति ठीक तब होता है जब M की वक्रता लुप्त हो जाती है, और दाहिने हाथ की ओर यूक्लिडियन स्पेस में शीर्ष से विपरीत दिशा में ही पक्ष वाले जियोडेसिक त्रिकोण की दूरी का प्रतिनिधित्व करता है- त्रिकोण xyz के रूप में लंबाई। यह त्रुटिहीन अर्थ बनाता है जिसमें त्रिकोण धनात्मक रूप से वक्र स्थानों में मोटे होते हैं। गैर-धनात्मक वक्र स्थानों में, असमानता दूसरे विधि से जाती है:

यदि अनुभागीय वक्रता पर सख्त सीमाएँ ज्ञात हैं, तो यह संपत्ति एम में जियोडेसिक त्रिकोणों के बीच तुलना प्रमेय देने के लिए सामान्यीकृत होती है और जो उपयुक्त रूप से जुड़े स्पेस रूप में होती हैं; टोपोनोगोव प्रमेय देखें। यहां बताए गए संस्करण के सरल परिणाम हैं:

  • पूर्ण रीमैनियन मैनिफोल्ड में गैर-ऋणात्मक अनुभागीय वक्रता होती है यदि और केवल यदि फलन करता है 1-रिमैनियन की शब्दावली और सभी बिंदुओं के लिए मीट्रिक ज्यामिति है।
  • पूरी तरह से जुड़ा हुआ रिमेंनियन मैनिफोल्ड में गैर-धनात्मक अनुभागीय वक्रता है यदि और केवल यदि फलन करता है 1-रीमैनियन और मीट्रिक ज्यामिति की शब्दावली है।

गैर-धनात्मक अनुभागीय वक्रता के साथ मैनिफोल्ड्स

1928 में, एली कार्टन ने कार्टन-हैडमार्ड प्रमेय को सिद्ध किया: यदि एम गैर-धनात्मक अनुभागीय वक्रता के साथ मैनिफोल्ड्स पूर्ण स्थान है, तो इसका सार्वभौमिक आवरण यूक्लिडियन स्पेस के लिए अलग-अलग है। विशेष रूप से, यह एस्फेरिकल स्पेस है: होमोटोपी समूह i ≥ 2 के लिए तुच्छ हैं। इसलिए, पूर्ण गैर-धनात्मक वक्र मैनिफोल्ड की सांस्थितिक संरचना इसके मौलिक समूह द्वारा निर्धारित की जाती है। प्रीसमैन की प्रमेय ऋणात्मक वक्र कॉम्पैक्ट मैनिफोल्ड के मौलिक समूह को प्रतिबंधित करती है। कार्टन-हैडमार्ड अनुमान कहता है कि पारंपरिक आइसोपेरिमेट्रिक असमानता गैर-धनात्मक वक्रता के सभी सरल रूप से जुड़े हुए स्थानों में होनी चाहिए, जिन्हें कार्टन-हैडमार्ड मैनिफोल्ड्स कहा जाता है।

धनात्मक अनुभागीय वक्रता के साथ मैनिफोल्ड्स

धनात्मक रूप से वक्र मैनिफोल्ड की संरचना के बारे में बहुत कम जानकारी है। सोल प्रमेय (चीजर & ग्रोमोल 1972; ग्रोमोल & मेयर 1969) का तात्पर्य है कि पूर्ण गैर-कॉम्पैक्ट गैर-ऋणात्मक रूप से वक्र मैनिफोल्ड कॉम्पैक्ट गैर-ऋणात्मक रूप से वक्र मैनिफोल्ड पर सामान्य बंडल के लिए भिन्न है। कॉम्पैक्ट पॉजिटिव कर्व्ड मैनिफोल्ड्स के लिए, दो शास्त्रीय परिणाम हैं:

  • यह मायर्स प्रमेय से निकलता है कि इस तरह के मैनिफोल्ड्स का मूल समूह परिमित है।
  • यह सिंज प्रमेय से अनुसरण करता है कि इस तरह के मैनिफोल्ड्स भी आयामों में मूलभूत समूह 0 है, यदि उन्मुख और अन्यथा। विषम आयामों में धनात्मक रूप से वक्र मैनिफोल्ड सदैव उन्मुख होता है।

इसके अतिरिक्त, कॉम्पैक्ट पॉजिटिवली कर्व्ड मैनिफोल्ड्स के अपेक्षाकृत कुछ उदाहरण हैं, बहुत सारे अनुमानों को छोड़कर (उदाहरण के लिए, हॉपफ अनुमान है कि क्या पर धनात्मक अनुभागीय वक्रता का मीट्रिक है) नए उदाहरणों के निर्माण का सबसे विशिष्ट तरीका ओ'नील वक्रता सूत्रों से निम्नलिखित परिणाम है: यदि ली ग्रुप जी की मुक्त आइसोमेट्रिक क्रिया को स्वीकार करने वाला रिमेंनियन मैनिफोल्ड है, और M में सभी 2-प्लेन ऑर्थोगोनल पर G की कक्षाओं के लिए धनात्मक अनुभागीय वक्रता है, फिर मैनिफोल्ड्स भागफल मीट्रिक के साथ धनात्मक अनुभागीय वक्रता है। यह तथ्य किसी को शास्त्रीय धनात्मक रूप से वक्र स्पेस बनाने की अनुमति देता है, गोलाकार और प्रोजेक्टिव स्पेस, साथ ही साथ ये उदाहरण भी (ज़िलर 2007):

  • बर्गर स्पेस और .
  • वैलाच स्पेस (या सजातीय ध्वज मैनिफोल्ड्स): , और .
  • अलोफ-वैलाच स्पेस .
  • एसचेनबर्ग स्पेस
  • बाज़ैकिन स्पेस , कहाँ .

गैर-ऋणात्मक अनुभागीय वक्रता के साथ मैनिफोल्ड्स

चीजर और ग्रोमोल ने अपनी सोल प्रमेय को सिद्ध किया जिसमें कहा गया है कि कोई भी गैर-ऋणात्मक वक्र पूर्ण गैर-कॉम्पैक्ट मैनिफोल्ड पूरी तरह से उत्तल कॉम्पैक्ट सबमनीफोल्ड है जैसे कि के सामान्य बंडल के लिए अलग-अलग है। इस तरह के की सोल कहलाती है। विशेष रूप से, इस प्रमेय का तात्पर्य है इसकी सोल के लिए होमोटोपिक है जिसका आकार से कम होता है।.

यह भी देखें

संदर्भ