आरेख (श्रेणी सिद्धांत): Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(8 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{Short description|Indexed collection of objects and morphisms in a category}}
{{Short description|Indexed collection of objects and morphisms in a category}}
[[श्रेणी सिद्धांत]] में, गणित की शाखा, आरेख सेट सिद्धांत में [[अनुक्रमित परिवार]] का स्पष्ट अनुरूप है। प्राथमिक अंतर यह है कि श्रेणीबद्ध सेटिंग में रूपवाद होता है जिसे अनुक्रमण की भी आवश्यकता होती है। सेट का अनुक्रमित परिवार सेट का संग्रह है, जो निश्चित सेट द्वारा अनुक्रमित होता है; समतुल्य''फ़ंक्शन'' निश्चित इंडेक्स ''सेट'' से ''सेट्स'' की कक्षा में।  आरेख वस्तुओं और [[morphism]]s का संग्रह है, जो निश्चित श्रेणी द्वारा अनुक्रमित होता है; समतुल्यनिश्चित सूचकांक ''श्रेणी'' से कुछ ''श्रेणी'' के लिए ''फ़ंक्टर''।
[[श्रेणी सिद्धांत]] में, गणित की शाखा, आरेख समुच्चय सिद्धांत में [[अनुक्रमित परिवार]] का स्पष्ट अनुरूप है। प्राथमिक अंतर यह है कि श्रेणीबद्ध समुच्चयिंग में रूपवाद होता है जिसे अनुक्रमण की भी आवश्यकता होती है। समुच्चय का अनुक्रमित परिवार समुच्चय का संग्रह है, जो निश्चित समुच्चय द्वारा अनुक्रमित होता है; समतुल्य ''फलन'' निश्चित सूची ''समुच्चय'' से ''समुच्चय्स'' की कक्षा में है। आरेख वस्तुओं और [[morphism|रूपवाद]] का संग्रह है, जो निश्चित श्रेणी द्वारा अनुक्रमित होता है; समतुल्य ''कारक'' निश्चित सूचकांक ''श्रेणी'' से कुछ ''श्रेणी'' के लिए होता है।
 
आरेख का सार्वभौम फलक विकर्ण फलक है; इसका संलग्न फलक रेखाचित्र की [[सीमा (श्रेणी सिद्धांत)]] है और इसका बायां संलग्न कोलिमिट है। <ref>{{cite book|title=ज्योमेट्री और लॉजिक में शीव्स टोपोस थ्योरी का पहला परिचय|url=https://archive.org/details/sheavesgeometryl00macl_937|url-access=limited|last=Mac Lane|first=Saunders|last2=Moerdijk|first2=Ieke|publisher=Springer-Verlag|year=1992|isbn=9780387977102|location=New York|pages=[https://archive.org/details/sheavesgeometryl00macl_937/page/n15 20]–23}}</ref> विकर्ण फ़ैक्टर से कुछ मनमाने आरेख में [[प्राकृतिक परिवर्तन]] को [[शंकु (श्रेणी सिद्धांत)]] कहा जाता है।
 
'''हालांकि, तकनीकी रूप से, व्यक्तिगत आरेख और फ़ंक्टर या योजना और श्रेणी के बीच कोई अंतर नहीं है, शब्दावली में परिवर्तन परिप्रेक्ष्य में बदलाव को दर्शाता है, ठीक वैसे ही जैसे सेट थ्योरिटिक मामले'''


आरेख का सार्वभौम फलक विकर्ण फलक है; इसका संलग्न फलक रेखाचित्र की [[सीमा (श्रेणी सिद्धांत)]] है और इसका बायां संलग्न कोलिमिट है। <ref>{{cite book|title=ज्योमेट्री और लॉजिक में शीव्स टोपोस थ्योरी का पहला परिचय|url=https://archive.org/details/sheavesgeometryl00macl_937|url-access=limited|last=Mac Lane|first=Saunders|last2=Moerdijk|first2=Ieke|publisher=Springer-Verlag|year=1992|isbn=9780387977102|location=New York|pages=[https://archive.org/details/sheavesgeometryl00macl_937/page/n15 20]–23}}</ref> विकर्ण फ़ैक्टर से कुछ इच्छानुसार आरेख में [[प्राकृतिक परिवर्तन]] को [[शंकु (श्रेणी सिद्धांत)]] कहा जाता है।
== परिभाषा ==
== परिभाषा ==


औपचारिक रूप से, [[श्रेणी (गणित)]] ''सी'' में ''जे'' प्रकार का आरेख ([[[[ऑपरेटर]]ों का सहप्रसरण और प्रतिप्रसरण]]) फंक्‍टर है।
औपचारिक रूप से [[श्रेणी (गणित)]] C में J प्रकार का आरेख एक (सहसंयोजक) कारक है
{{block indent|''D'' : ''J'' &rarr; ''C.''}}
{{block indent|''D'' : ''J'' &rarr; ''C.''}}
श्रेणी J को आरेख D की 'सूचकांक श्रेणी' या 'स्कीम' कहा जाता है; फ़ैक्टर को कभी-कभी 'जे-आकार का आरेख' कहा जाता है।<ref>{{cite book|title=बीजगणितीय टोपोलॉजी में एक संक्षिप्त पाठ्यक्रम|last=May|first=J. P.|publisher=University of Chicago Press|year=1999|isbn=0-226-51183-9|pages=16|url=https://www.math.uchicago.edu/~may/CONCISE/ConciseRevised.pdf}} </ref> जे में वास्तविक वस्तुएं और आकारिकी काफी हद तक अप्रासंगिक हैं; केवल जिस तरह से वे परस्पर संबंधित हैं। आरेख D को J पर प्रतिरूपित C में वस्तुओं और आकारिकी के संग्रह को अनुक्रमित करने के बारे में सोचा गया है।
श्रेणी J को आरेख D की 'सूचकांक श्रेणी' या 'पद्धति' कहा जाता है; फ़ैक्टर को कभी-कभी 'J-आकार का आरेख' कहा जाता है। <ref>{{cite book|title=बीजगणितीय टोपोलॉजी में एक संक्षिप्त पाठ्यक्रम|last=May|first=J. P.|publisher=University of Chicago Press|year=1999|isbn=0-226-51183-9|pages=16|url=https://www.math.uchicago.edu/~may/CONCISE/ConciseRevised.pdf}} </ref> J में वास्तविक वस्तुएं और आकारिकी अधिक अप्रासंगिक हैं; केवल जिस तरह से वे परस्पर संबंधित हैं। आरेख D को J पर प्रतिरूपित C में वस्तुओं और आकारिकी के संग्रह को अनुक्रमित करने के बारे में सोचा गया है।


हालांकि, तकनीकी रूप से, व्यक्तिगत आरेख और फ़ंक्टर या योजना और श्रेणी के बीच कोई अंतर नहीं है, शब्दावली में परिवर्तन परिप्रेक्ष्य में बदलाव को दर्शाता है, ठीक वैसे ही जैसे सेट थ्योरिटिक मामले में: सूचकांक श्रेणी को ठीक करता है, और अनुमति देता है फ़ंक्टर (और, दूसरी बात, लक्ष्य श्रेणी) अलग-अलग करने के लिए।
चूँकि, विधि रूप से, व्यक्तिगत आरेख और कारक या योजना और श्रेणी के बीच कोई अंतर नहीं है, शब्दावली में परिवर्तन परिप्रेक्ष्य में बदलाव को दर्शाता है, ठीक वैसे ही जैसे समुच्चय सिद्धान्तिक स्थिति में: सूचकांक श्रेणी को ठीक करता है, और कारक (और, दूसरी बात, लक्ष्य श्रेणी) अलग-अलग करने के लिए अनुमति देता है ।


किसी को अक्सर उस मामले में दिलचस्पी होती है जहां योजना जे  [[छोटी श्रेणी]] या यहां तक ​​कि [[परिमित सेट]] श्रेणी है। आरेख को 'छोटा' या 'परिमित' कहा जाता है जब भी J होता है।
किसी को अधिकांशतः उस स्थिति में रोचक होती है जहां योजना J [[छोटी श्रेणी]] या यहां तक ​​कि [[परिमित सेट|परिमित समुच्चय]] श्रेणी है। आरेख को 'छोटा' या 'परिमित' कहा जाता है जब J भी होता है।


श्रेणी सी में टाइप जे के आरेखों का रूपवाद, फ़ैक्टरों के बीच प्राकृतिक परिवर्तन है। इसके बाद C में टाइप J के 'आरेखों की श्रेणी' की व्याख्या फ़ंक्टर श्रेणी C के रूप में की जा सकती है<sup>J</sup>, और आरेख तब इस श्रेणी में वस्तु है।
श्रेणी सी में प्रकार J के आरेखों का रूपवाद, फ़ैक्टरों के बीच प्राकृतिक परिवर्तन है। इसके बाद C में प्रकार J के 'आरेखों की श्रेणी' की व्याख्या कारक श्रेणी C<sup>J</sup> के रूप में की जा सकती है, और आरेख तब इस श्रेणी में वस्तु है।


== उदाहरण ==
== उदाप्रत्येकण ==
* सी में किसी भी वस्तु को देखते हुए, किसी के पास 'निरंतर आरेख' होता है, जो आरेख है जो जे से में सभी वस्तुओं को मानचित्रित करता है, और जे के सभी रूपों को पर पहचान रूपवाद के लिए दर्शाता है। सांकेतिक रूप से, अक्सर निरूपित करने के लिए अंडरबार का उपयोग करता है निरंतर आरेख: इस प्रकार, किसी भी वस्तु के लिए <math>A</math> सी में, निरंतर आरेख है <math>\underline A</math>.
* C में किसी भी वस्तु A को देखते हुए, किसी के पास 'निरंतर आरेख' होता है, जो आरेख है जो J से A में सभी वस्तुओं को मानचित्रित करता है, और J के सभी रूपों को A पर पहचान रूपवाद के लिए दर्शाता है। सांकेतिक रूप से, अधिकांशतः निरूपित करने के लिए अंडरबार का उपयोग करता है निरंतर आरेख: इस प्रकार, c में किसी भी वस्तु <math>A</math> के लिए सी में,निरंतर आरेख <math>\underline A</math> है
* यदि J (छोटी) [[असतत श्रेणी]] है, तो प्रकार J का आरेख अनिवार्य रूप से C में वस्तुओं का अनुक्रमित परिवार है (J द्वारा अनुक्रमित)। जब सीमा (श्रेणी सिद्धांत) के निर्माण में उपयोग किया जाता है, तो परिणाम [[उत्पाद (श्रेणी सिद्धांत)]] होता है; कोलिमिट के लिए, किसी को उत्पाद मिलता है। इसलिए, उदाहरण के लिए, जब J दो वस्तुओं के साथ असतत श्रेणी है, परिणामी सीमा केवल बाइनरी उत्पाद है।
* यदि J (छोटी) [[असतत श्रेणी]] है, तो प्रकार J का आरेख अनिवार्य रूप से C में वस्तुओं का अनुक्रमित परिवार है (J द्वारा अनुक्रमित)। जब सीमा (श्रेणी सिद्धांत) के निर्माण में उपयोग किया जाता है, तो परिणाम [[उत्पाद (श्रेणी सिद्धांत)]] होता है; कोलिमिट के लिए, किसी को उत्पाद मिलता है। इसलिए, उदाप्रत्येकण के लिए, जब J दो वस्तुओं के साथ असतत श्रेणी है, परिणामी सीमा केवल बाइनरी उत्पाद है।
* यदि J = −1 ← 0 → +1, तो प्रकार J (A ← B → C) का आरेख [[स्पैन (श्रेणी सिद्धांत)]] है, और इसकी कोलिमिट [[पुशआउट (श्रेणी सिद्धांत)]] है। यदि कोई यह भूल जाए कि आरेख में वस्तु B और दो तीर B → A, B → C हैं, तो परिणामी आरेख केवल दो वस्तुओं A और C के साथ असतत श्रेणी होगी, और कोलिमिट केवल बाइनरी [[सहउत्पाद]] होगा। इस प्रकार, यह उदाहरण  महत्वपूर्ण तरीका दिखाता है जिसमें आरेख का विचार सेट सिद्धांत में सेट इंडेक्स के सामान्यीकरण करता है: आकारिकी बी → ए, बी सी को शामिल करके, आरेख से निर्मित निर्माण में अतिरिक्त संरचना की खोज करता है, संरचना जो स्पष्ट नहीं होगा अगर किसी के पास इंडेक्स में वस्तुओं के बीच कोई संबंध नहीं होने के साथ केवल [[ सूचकांक सेट ]] होता है।
* यदि J = −1 ← 0 → +1, तो प्रकार J (A ← B → C) का आरेख [[स्पैन (श्रेणी सिद्धांत)]] है, और इसकी कोलिमिट [[पुशआउट (श्रेणी सिद्धांत)]] है। यदि कोई यह भूल जाए कि आरेख में वस्तु B और दो तीर B → A, B → C हैं, तो परिणामी आरेख केवल दो वस्तुओं A और C के साथ असतत श्रेणी होगी, और कोलिमिट केवल बाइनरी [[सहउत्पाद]] होगा। इस प्रकार, यह उदाप्रत्येकण महत्वपूर्ण तरीका दिखाता है जिसमें आरेख का विचार समुच्चय सिद्धांत में समुच्चय सूची के सामान्यीकरण करता है: आकारिकी B →A, B c को सम्मिलित करके, आरेख से निर्मित निर्माण में अतिरिक्त संरचना की खोज करता है, संरचना जो स्पष्ट नहीं होगा यदि किसी के पास सूची में वस्तुओं के बीच कोई संबंध नहीं होने के साथ केवल [[ सूचकांक सेट |सूचकांक समुच्चय]] होता है।
* उपरोक्त के लिए [[दोहरी (श्रेणी सिद्धांत)]], यदि जे = -1 → 0 ← +1, तो टाइप जे (बी सी) का आरेख [[ cospan ]] है, और इसकी सीमा [[पुलबैक (श्रेणी सिद्धांत)]] है।
* उपरोक्त के लिए [[दोहरी (श्रेणी सिद्धांत)|दोप्रत्येकी (श्रेणी सिद्धांत)]], यदि J = -1 → 0 ← +1, तो प्रकार J (A B c) का आरेख [[ cospan |कोस्पैन]] है, और इसकी सीमा [[पुलबैक (श्रेणी सिद्धांत)]] है।
* अनुक्रमणिका <math>J = 0 \rightrightarrows 1</math> दो समानांतर रूपक कहा जाता है, या कभी-कभी [[मुक्त तरकश]] या [[चलने वाला तरकश]]प्रकार का आरेख <math>J</math> <math>(f,g\colon X \to Y)</math> तो [[तरकश (गणित)]] है; इसकी सीमा [[तुल्यकारक (गणित)]] है, और इसकी कोलिमिट तुल्यकारक है।
* अनुक्रमणिका <math>J = 0 \rightrightarrows 1</math> दो समानांतर रूपक कहा जाता है, या कभी-कभी [[मुक्त तरकश]] या [[चलने वाला तरकश]] है। प्रकार का आरेख <math>J</math> <math>(f,g\colon X \to Y)</math> तो [[तरकश (गणित)]] है; इसकी सीमा [[तुल्यकारक (गणित)]] है, और इसकी कोलिमिट तुल्यकारक है।
* यदि J [[पोसेट श्रेणी]] है, तो प्रकार J का आरेख वस्तुओं का परिवार D है<sub>''i''</sub> एक साथ अद्वितीय आकारिकी f के साथ<sub>''ij''</sub> : डी<sub>''i''</sub> → डी<sub>''j''</sub> जब भी मैं ≤ जे। यदि जे [[निर्देशित सेट]] है तो टाइप जे के आरेख को वस्तुओं और आकारिकी की [[प्रत्यक्ष प्रणाली (गणित)]] कहा जाता है। यदि आरेख प्रतिपरिवर्ती फलनकार है तो इसे व्युत्क्रम प्रणाली कहा जाता है।
* यदि J [[पोसेट श्रेणी|पोसमुच्चय श्रेणी]] है, तो प्रकार J का आरेख वस्तुओं का परिवार D<sub>''i''</sub> है एक साथ अद्वितीय आकारिकी f<sub>''ij''</sub> के साथ : D<sub>''i''</sub> → D<sub>''j''</sub> जब भी मैं ≤ J। यदि J [[निर्देशित सेट|निर्देशित समुच्चय]] है तो प्रकार J के आरेख को वस्तुओं और आकारिकी की [[प्रत्यक्ष प्रणाली (गणित)]] कहा जाता है। यदि आरेख प्रतिपरिवर्ती फलनकार है तो इसे व्युत्क्रम प्रणाली कहा जाता है।


== शंकु और सीमा ==
== शंकु और सीमा ==


आरेख D के शीर्ष N के साथ शंकु (श्रेणी सिद्धांत) : J → C स्थिर आरेख Δ(N) से D तक आकारिकी है। एन पर पहचान रूपवाद के लिए हर आकृतिवाद।
आरेख D : J → C के शीर्ष N के साथ शंकु (श्रेणी सिद्धांतस्थिर आरेख Δ(N) से D तक आकारिकी N है।


आरेख डी की सीमा (श्रेणी सिद्धांत) डी के लिए [[सार्वभौमिक शंकु]] है। यानी, शंकु जिसके माध्यम से अन्य सभी शंकु विशिष्ट रूप से कारक हैं। यदि टाइप जे के सभी आरेखों के लिए श्रेणी सी में सीमा मौजूद है तो फ़ैक्टर प्राप्त होता है
आरेख D की सीमा (श्रेणी सिद्धांत) D के लिए [[सार्वभौमिक शंकु]] है। अर्थात, शंकु जिसके माध्यम से अन्य सभी शंकु विशिष्ट रूप से कारक हैं। यदि प्रकार J के सभी आरेखों के लिए श्रेणी सी में सीमा उपस्थित है तो फ़ैक्टर प्राप्त होता है  
{{block indent|lim : ''C''<sup>''J''</sup> &rarr; ''C''}}
{{block indent|lim : ''C''<sup>''J''</sup> &rarr; ''C''}}
जो प्रत्येक आरेख को उसकी सीमा तक भेजता है।
जो प्रत्येक आरेख को उसकी सीमा तक भेजता है।


दोहरी रूप से, आरेख डी का [[कोलिमिट]] डी से सार्वभौमिक शंकु है। यदि टाइप जे के सभी आरेखों के लिए कोलिमिट मौजूद है तो मज़ेदार
दोप्रत्येकी रूप से, आरेख डी का [[कोलिमिट]] D से सार्वभौमिक शंकु है। यदि प्रकार J के सभी आरेखों के लिए कोलिमिट उपस्थित है तो  
{{block indent|colim : ''C''<sup>''J''</sup> &rarr; ''C''}}
{{block indent|colim : ''C''<sup>''J''</sup> &rarr; ''C''}}
जो प्रत्येक आरेख को उसके कोलिमिट में भेजता है।
जो प्रत्येक आरेख को उसके कोलिमिट में भेजता है।


== क्रमविनिमेय आरेख ==
== क्रमविनिमेय आरेख ==
{{main|Commutative diagram}}
{{main|क्रमविनिमेय आरेख}}


डायग्राम और फ़ंक्टर श्रेणियों को अक्सर कम्यूटेटिव डायग्राम द्वारा देखा जाता है, खासकर अगर इंडेक्स श्रेणी कुछ तत्वों के साथ परिमित पोसेट श्रेणी है: इंडेक्स श्रेणी में प्रत्येक वस्तु के लिए नोड के साथ कम्यूटेटिव डायग्राम बनाता है, और morphisms के उत्पन्न सेट के लिए तीर , पहचान मानचित्रों और आकारिकी को छोड़ कर जिन्हें रचनाओं के रूप में व्यक्त किया जा सकता है। क्रमविनिमेयता पॉसेट श्रेणी में दो वस्तुओं के बीच मानचित्र की विशिष्टता से मेल खाती है। इसके विपरीत, प्रत्येक [[क्रमविनिमेय आरेख]] इस तरह आरेख (पॉसेट इंडेक्स श्रेणी से फ़ंक्टर) का प्रतिनिधित्व करता है।
आरेख और कारक श्रेणियों को अधिकांशतः कम्यूटेटिव आरेख द्वारा देखा जाता है, अधिकतर यदि सूची श्रेणी कुछ तत्वों के साथ परिमित पोसमुच्चय श्रेणी है: सूची श्रेणी में प्रत्येक वस्तु के लिए नोड के साथ कम्यूटेटिव आरेख बनाता है, और रूपवाद के उत्पन्न समुच्चय के लिए तीर , पहचान मानचित्रों और आकारिकी को छोड़ कर जिन्हें रचनाओं के रूप में व्यक्त किया जा सकता है। क्रमविनिमेयता पॉसमुच्चय श्रेणी में दो वस्तुओं के बीच मानचित्र की विशिष्टता से मेल खाती है। इसके विपरीत, प्रत्येक [[क्रमविनिमेय आरेख]] इस तरह आरेख (पॉसमुच्चय सूची श्रेणी से कारक) का प्रतिनिधित्व करता है।


हर डायग्राम कम्यूट नहीं होता है, क्योंकि हर इंडेक्स कैटेगरी पॉसेट कैटेगरी नहीं होती है:
प्रत्येक आरेख कम्यूट नहीं होता है, क्योंकि प्रत्येक सूची श्रेणी पॉसमुच्चय श्रेणी नहीं होती है सामान्यतः, एंडोमोर्फिज्म के साथ वस्तु का आरेख {{nowrap|(<math>f\colon X \to X</math>),}} या दो समानांतर तीरों के साथ (<math>\bullet \rightrightarrows \bullet</math>; <math>f,g\colon X \to Y</math>) आवागमन की आवश्यकता नहीं है। इसके अतिरिक्त, आरेख बनाना असंभव हो सकता है (क्योंकि वे अनंत हैं) या अस्तव्यस्तता हो सकते हैं (क्योंकि बहुत अधिक वस्तुएं या आकारिकी हैं); चूँकि, ऐसे जटिल आरेखों को स्पष्ट करने के लिए योजनाबद्ध क्रमविनिमेय आरेख (सूचकांक श्रेणी की उपश्रेणियों के लिए, या दीर्घवृत्त के साथ, जैसे कि निर्देशित प्रणाली के लिए) का उपयोग किया जाता है।
सबसे सरल रूप से, एंडोमोर्फिज्म के साथ वस्तु का आरेख {{nowrap|(<math>f\colon X \to X</math>),}} या दो समानांतर तीरों के साथ (<math>\bullet \rightrightarrows \bullet</math>; <math>f,g\colon X \to Y</math>) आवागमन की आवश्यकता नहीं है। इसके अलावा, आरेख बनाना असंभव हो सकता है (क्योंकि वे अनंत हैं) या बस गड़बड़ हो सकते हैं (क्योंकि बहुत अधिक वस्तुएं या आकारिकी हैं); हालांकि, ऐसे जटिल आरेखों को स्पष्ट करने के लिए योजनाबद्ध क्रमविनिमेय आरेख (सूचकांक श्रेणी की उपश्रेणियों के लिए, या दीर्घवृत्त के साथ, जैसे कि निर्देशित प्रणाली के लिए) का उपयोग किया जाता है।


== यह भी देखें ==
== यह भी देखें ==
* विकर्ण फ़ैक्टर
* विकर्ण फ़ैक्टर
* डायरेक्ट सिस्टम (गणित)
* प्रत्यक्ष प्रणाली (गणित)
* उलटा तंत्र
* उलटा तंत्र


Line 58: Line 54:




== बाहरी संबंध ==
== बाप्रत्येकी संबंध ==
* [http://mathworld.wolfram.com/DiagramChasing.html Diagram Chasing] at [[MathWorld]]
* [http://mathworld.wolfram.com/DiagramChasing.html Diagram Chasing] at [[MathWorld]]
* [http://wildcatsformma.wordpress.com WildCats] is a category theory package for [[Mathematica]]. Manipulation and visualization of objects, [[morphism]]s, commutative diagrams, categories, [[functor]]s, [[natural transformation]]s.
* [http://wildcatsformma.wordpress.com WildCats] is a category theory package for [[Mathematica]]. Manipulation and visualization of objects, [[morphism|रूपवाद]], commutative diagrams, categories, [[functor]]s, [[natural transformation]]s.
[[Category: काम करनेवाला]]
 
 


[[Category: Machine Translated Page]]
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category:Created On 24/04/2023]]
[[Category:Created On 24/04/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:काम करनेवाला]]

Latest revision as of 16:57, 1 May 2023

श्रेणी सिद्धांत में, गणित की शाखा, आरेख समुच्चय सिद्धांत में अनुक्रमित परिवार का स्पष्ट अनुरूप है। प्राथमिक अंतर यह है कि श्रेणीबद्ध समुच्चयिंग में रूपवाद होता है जिसे अनुक्रमण की भी आवश्यकता होती है। समुच्चय का अनुक्रमित परिवार समुच्चय का संग्रह है, जो निश्चित समुच्चय द्वारा अनुक्रमित होता है; समतुल्य फलन निश्चित सूची समुच्चय से समुच्चय्स की कक्षा में है। आरेख वस्तुओं और रूपवाद का संग्रह है, जो निश्चित श्रेणी द्वारा अनुक्रमित होता है; समतुल्य कारक निश्चित सूचकांक श्रेणी से कुछ श्रेणी के लिए होता है।

आरेख का सार्वभौम फलक विकर्ण फलक है; इसका संलग्न फलक रेखाचित्र की सीमा (श्रेणी सिद्धांत) है और इसका बायां संलग्न कोलिमिट है। [1] विकर्ण फ़ैक्टर से कुछ इच्छानुसार आरेख में प्राकृतिक परिवर्तन को शंकु (श्रेणी सिद्धांत) कहा जाता है।

परिभाषा

औपचारिक रूप से श्रेणी (गणित) C में J प्रकार का आरेख एक (सहसंयोजक) कारक है

D : JC.

श्रेणी J को आरेख D की 'सूचकांक श्रेणी' या 'पद्धति' कहा जाता है; फ़ैक्टर को कभी-कभी 'J-आकार का आरेख' कहा जाता है। [2] J में वास्तविक वस्तुएं और आकारिकी अधिक अप्रासंगिक हैं; केवल जिस तरह से वे परस्पर संबंधित हैं। आरेख D को J पर प्रतिरूपित C में वस्तुओं और आकारिकी के संग्रह को अनुक्रमित करने के बारे में सोचा गया है।

चूँकि, विधि रूप से, व्यक्तिगत आरेख और कारक या योजना और श्रेणी के बीच कोई अंतर नहीं है, शब्दावली में परिवर्तन परिप्रेक्ष्य में बदलाव को दर्शाता है, ठीक वैसे ही जैसे समुच्चय सिद्धान्तिक स्थिति में: सूचकांक श्रेणी को ठीक करता है, और कारक (और, दूसरी बात, लक्ष्य श्रेणी) अलग-अलग करने के लिए अनुमति देता है ।

किसी को अधिकांशतः उस स्थिति में रोचक होती है जहां योजना J छोटी श्रेणी या यहां तक ​​कि परिमित समुच्चय श्रेणी है। आरेख को 'छोटा' या 'परिमित' कहा जाता है जब J भी होता है।

श्रेणी सी में प्रकार J के आरेखों का रूपवाद, फ़ैक्टरों के बीच प्राकृतिक परिवर्तन है। इसके बाद C में प्रकार J के 'आरेखों की श्रेणी' की व्याख्या कारक श्रेणी CJ के रूप में की जा सकती है, और आरेख तब इस श्रेणी में वस्तु है।

उदाप्रत्येकण

  • C में किसी भी वस्तु A को देखते हुए, किसी के पास 'निरंतर आरेख' होता है, जो आरेख है जो J से A में सभी वस्तुओं को मानचित्रित करता है, और J के सभी रूपों को A पर पहचान रूपवाद के लिए दर्शाता है। सांकेतिक रूप से, अधिकांशतः निरूपित करने के लिए अंडरबार का उपयोग करता है निरंतर आरेख: इस प्रकार, c में किसी भी वस्तु के लिए सी में,निरंतर आरेख है
  • यदि J (छोटी) असतत श्रेणी है, तो प्रकार J का आरेख अनिवार्य रूप से C में वस्तुओं का अनुक्रमित परिवार है (J द्वारा अनुक्रमित)। जब सीमा (श्रेणी सिद्धांत) के निर्माण में उपयोग किया जाता है, तो परिणाम उत्पाद (श्रेणी सिद्धांत) होता है; कोलिमिट के लिए, किसी को उत्पाद मिलता है। इसलिए, उदाप्रत्येकण के लिए, जब J दो वस्तुओं के साथ असतत श्रेणी है, परिणामी सीमा केवल बाइनरी उत्पाद है।
  • यदि J = −1 ← 0 → +1, तो प्रकार J (A ← B → C) का आरेख स्पैन (श्रेणी सिद्धांत) है, और इसकी कोलिमिट पुशआउट (श्रेणी सिद्धांत) है। यदि कोई यह भूल जाए कि आरेख में वस्तु B और दो तीर B → A, B → C हैं, तो परिणामी आरेख केवल दो वस्तुओं A और C के साथ असतत श्रेणी होगी, और कोलिमिट केवल बाइनरी सहउत्पाद होगा। इस प्रकार, यह उदाप्रत्येकण महत्वपूर्ण तरीका दिखाता है जिसमें आरेख का विचार समुच्चय सिद्धांत में समुच्चय सूची के सामान्यीकरण करता है: आकारिकी B →A, B → c को सम्मिलित करके, आरेख से निर्मित निर्माण में अतिरिक्त संरचना की खोज करता है, संरचना जो स्पष्ट नहीं होगा यदि किसी के पास सूची में वस्तुओं के बीच कोई संबंध नहीं होने के साथ केवल सूचकांक समुच्चय होता है।
  • उपरोक्त के लिए दोप्रत्येकी (श्रेणी सिद्धांत), यदि J = -1 → 0 ← +1, तो प्रकार J (A → B ← c) का आरेख कोस्पैन है, और इसकी सीमा पुलबैक (श्रेणी सिद्धांत) है।
  • अनुक्रमणिका दो समानांतर रूपक कहा जाता है, या कभी-कभी मुक्त तरकश या चलने वाला तरकश है। प्रकार का आरेख तो तरकश (गणित) है; इसकी सीमा तुल्यकारक (गणित) है, और इसकी कोलिमिट तुल्यकारक है।
  • यदि J पोसमुच्चय श्रेणी है, तो प्रकार J का आरेख वस्तुओं का परिवार Di है एक साथ अद्वितीय आकारिकी fij के साथ : Di → Dj जब भी मैं ≤ J। यदि J निर्देशित समुच्चय है तो प्रकार J के आरेख को वस्तुओं और आकारिकी की प्रत्यक्ष प्रणाली (गणित) कहा जाता है। यदि आरेख प्रतिपरिवर्ती फलनकार है तो इसे व्युत्क्रम प्रणाली कहा जाता है।

शंकु और सीमा

आरेख D  : J → C के शीर्ष N के साथ शंकु (श्रेणी सिद्धांतस्थिर आरेख Δ(N) से D तक आकारिकी N है।

आरेख D की सीमा (श्रेणी सिद्धांत) D के लिए सार्वभौमिक शंकु है। अर्थात, शंकु जिसके माध्यम से अन्य सभी शंकु विशिष्ट रूप से कारक हैं। यदि प्रकार J के सभी आरेखों के लिए श्रेणी सी में सीमा उपस्थित है तो फ़ैक्टर प्राप्त होता है

lim : CJC

जो प्रत्येक आरेख को उसकी सीमा तक भेजता है।

दोप्रत्येकी रूप से, आरेख डी का कोलिमिट D से सार्वभौमिक शंकु है। यदि प्रकार J के सभी आरेखों के लिए कोलिमिट उपस्थित है तो

colim : CJC

जो प्रत्येक आरेख को उसके कोलिमिट में भेजता है।

क्रमविनिमेय आरेख

आरेख और कारक श्रेणियों को अधिकांशतः कम्यूटेटिव आरेख द्वारा देखा जाता है, अधिकतर यदि सूची श्रेणी कुछ तत्वों के साथ परिमित पोसमुच्चय श्रेणी है: सूची श्रेणी में प्रत्येक वस्तु के लिए नोड के साथ कम्यूटेटिव आरेख बनाता है, और रूपवाद के उत्पन्न समुच्चय के लिए तीर , पहचान मानचित्रों और आकारिकी को छोड़ कर जिन्हें रचनाओं के रूप में व्यक्त किया जा सकता है। क्रमविनिमेयता पॉसमुच्चय श्रेणी में दो वस्तुओं के बीच मानचित्र की विशिष्टता से मेल खाती है। इसके विपरीत, प्रत्येक क्रमविनिमेय आरेख इस तरह आरेख (पॉसमुच्चय सूची श्रेणी से कारक) का प्रतिनिधित्व करता है।

प्रत्येक आरेख कम्यूट नहीं होता है, क्योंकि प्रत्येक सूची श्रेणी पॉसमुच्चय श्रेणी नहीं होती है सामान्यतः, एंडोमोर्फिज्म के साथ वस्तु का आरेख (), या दो समानांतर तीरों के साथ (; ) आवागमन की आवश्यकता नहीं है। इसके अतिरिक्त, आरेख बनाना असंभव हो सकता है (क्योंकि वे अनंत हैं) या अस्तव्यस्तता हो सकते हैं (क्योंकि बहुत अधिक वस्तुएं या आकारिकी हैं); चूँकि, ऐसे जटिल आरेखों को स्पष्ट करने के लिए योजनाबद्ध क्रमविनिमेय आरेख (सूचकांक श्रेणी की उपश्रेणियों के लिए, या दीर्घवृत्त के साथ, जैसे कि निर्देशित प्रणाली के लिए) का उपयोग किया जाता है।

यह भी देखें

  • विकर्ण फ़ैक्टर
  • प्रत्यक्ष प्रणाली (गणित)
  • उलटा तंत्र

संदर्भ

  1. Mac Lane, Saunders; Moerdijk, Ieke (1992). ज्योमेट्री और लॉजिक में शीव्स टोपोस थ्योरी का पहला परिचय. New York: Springer-Verlag. pp. 20–23. ISBN 9780387977102.
  2. May, J. P. (1999). बीजगणितीय टोपोलॉजी में एक संक्षिप्त पाठ्यक्रम (PDF). University of Chicago Press. p. 16. ISBN 0-226-51183-9.


बाप्रत्येकी संबंध