मॉड्युली स्पेस: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(9 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{short description|Geometric space whose points represent algebro-geometric objects of some fixed kind}}
{{short description|Geometric space whose points represent algebro-geometric objects of some fixed kind}}
गणित में, विशेष रूप से [[बीजगणितीय ज्यामिति]] में, एक मॉड्युली समष्टि एक ज्यामितीय समष्टि सामान्य रूप से एक [[योजना (गणित)]] या एक बीजगणितीय चित्ति होता है, जिसके बिंदु कुछ निश्चित प्रकार के बीजगणितीय-ज्यामितीय वस्तुओं या ऐसी वस्तुओं के [[समरूपता वर्ग|समरूपता वर्गो]] का प्रतिनिधित्व करते हैं। ऐसे समष्टि प्रायः वर्गीकरण समस्याओं के समाधान के रूप में उत्पन्न होते हैं: यदि कोई यह दिखा सकता है कि रोचक वस्तुओं का संग्रह (उदाहरण के लिए, एक निश्चित प्रजाति के सरल बीजगणितीय वक्र) को एक ज्यामितीय समष्टि की संरचना दी जा सकती है, तो परिणामी समष्टि पर निर्देशांक प्रस्तुत करके ऐसी वस्तुओं को पैरामीट्रिज किया जा सकता है। इस संदर्भ में, मापांक शब्द का प्रयोग पैरामीटर के पर्याय के रूप में किया जाता है; मॉडुलि समष्टि को पहले वस्तुओं के समष्टि के अतिरिक्त मापदंडों के समष्टि के रूप में समझा गया था। मॉड्यूलि समष्टि का एक प्रकार [[औपचारिक मोडुली]] है। [[बर्नहार्ड रीमैन]] ने पहली बार 1857 में मोडुली शब्द का उपयोग किया था।<ref>{{cite web |last1=Chan |first1=Melody |title=Moduli Spaces of Curves: Classical and Tropical |url=https://www.ams.org/journals/notices/202110/rnoti-p1700.pdf |website=AMS}}</ref>
गणित में, विशेष रूप से [[बीजगणितीय ज्यामिति]] में,  '''मॉड्युली समष्टि''' एक ज्यामितीय समष्टि सामान्य रूप से [[योजना (गणित)|प्रणाली (गणित)]] या बीजगणितीय चित्ति (स्टैक) होता है, जिसके बिंदु कुछ निश्चित प्रकार के बीजगणितीय-ज्यामितीय वस्तुओं या ऐसी वस्तुओं के [[समरूपता वर्ग|समरूपता वर्गो]] का प्रतिनिधित्व करते हैं। ऐसे समष्टि प्रायः वर्गीकरण समस्याओं के समाधान के रूप में उत्पन्न होते हैं: यदि कोई यह दिखा सकता है कि रोचक वस्तुओं का समुच्चय (उदाहरण के लिए, एक निश्चित वर्ग के सरल बीजगणितीय वक्र) को एक ज्यामितीय समष्टि की संरचना दी जा सकती है, तो परिणामी समष्टि पर निर्देशांक प्रस्तुत करके ऐसी वस्तुओं को पैरामीट्रिज किया जा सकता है। इस संदर्भ में, मापांक शब्द का प्रयोग पैरामीटर के पर्याय के रूप में किया जाता है; मॉडुलि समष्टि को पहले वस्तुओं के समष्टि के अतिरिक्त मापदंडों के समष्टि के रूप में समझा गया था। मॉड्यूलि समष्टि का एक प्रकार [[औपचारिक मोडुली]] है। [[बर्नहार्ड रीमैन]] ने पहली बार 1857 में मोडुली शब्द का उपयोग किया था।<ref>{{cite web |last1=Chan |first1=Melody |title=Moduli Spaces of Curves: Classical and Tropical |url=https://www.ams.org/journals/notices/202110/rnoti-p1700.pdf |website=AMS}}</ref>




== प्रेरणा ==
== कारण ==
मॉड्यूलि रिक्त समष्टि ज्यामितीय वर्गीकरण समस्याओं के समाधान के समष्टि हैं। यही है, मॉड्यूलि समष्टि के अंक ज्यामितीय समस्याओं के समाधान के अनुरूप हैं। यहां अलग-अलग समाधानों की पहचान की जाती है यदि वे आइसोमॉर्फिक हैं (अर्थात, ज्यामितीय रूप से समान)। मॉडुलि रिक्त समष्टि को समस्या के लिए मापदंडों का एक सार्वभौमिक समष्टि देने के बारे में सोचा जा सकता है। उदाहरण के लिए, सर्वांगसमता तक यूक्लिडियन तल में सभी वृत्तों को खोजने की समस्या पर विचार करें। किसी भी वृत्त को तीन बिंदु देकर विशिष्ट रूप से वर्णित किया जा सकता है, लेकिन तीन बिंदुओं के कई अलग-अलग सेट एक ही वृत्त देते हैं: पत्राचार कई-से-एक है। हालाँकि, मंडलियों को उनके केंद्र और त्रिज्या देकर विशिष्ट रूप से परिचालित किया जाता है: यह दो वास्तविक पैरामीटर और एक सकारात्मक वास्तविक पैरामीटर है। चूँकि हम केवल सर्वांगसमता तक के वृत्तों में रुचि रखते हैं, इसलिए हम ऐसे वृत्तों की पहचान करते हैं जिनके केंद्र अलग-अलग हों, लेकिन एक ही त्रिज्या हो, और इसलिए केवल त्रिज्या ही रुचि के सेट को पैरामीटर करने के लिए पर्याप्त है। इसलिए मॉड्यूलि समष्टि धनात्मक वास्तविक संख्या है।
मॉड्यूलि समष्टि ज्यामितीय वर्गीकरण समस्याओं के समाधान के समष्टि हैं। अर्थात, मॉड्यूलि समष्टि के अंक ज्यामितीय समस्याओं के समाधान के अनुरूप हैं। यहां अलग-अलग समाधानों की पहचान की जाती है यदि वे समरूपी हैं, अर्थात ज्यामितीय रूप से समान होते है। मॉडुलि समष्टि को समस्या के लिए मापदंडों का एक सार्वभौमिक समष्टि देने के बारे में विचार किया जा सकता है। उदाहरण के लिए, यूक्लिडियन तल में सभी वृत्तों को सर्वांगसमता तक खोजने की समस्या पर विचार करें। किसी भी वृत्त को तीन बिंदु देकर विशिष्ट रूप से वर्णित किया जा सकता है, लेकिन तीन बिंदुओं के कई अलग-अलग समुच्चय समान वृत्त देते हैं अर्थात समानता एक से अनेक है। हालाँकि, वृत्तों को उनके केंद्र और त्रिज्या देकर विशिष्ट रूप से परिचालित किया जाता है, यह दो वास्तविक पैरामीटर और एक धनात्मक वास्तविक पैरामीटर है। चूँकि हम केवल सर्वांगसमता तक के वृत्तों में संबंध होता हैं, इसलिए हम ऐसे वृत्तों की पहचान करते हैं जिनके केंद्र अलग-अलग हों, लेकिन समान त्रिज्या हो, और इसलिए केवल त्रिज्या ही भाग के समुच्चय को पैरामीटर करने के लिए उयुक्त है। इसलिए मॉड्यूलि समष्टि धनात्मक वास्तविक संख्या है।


मोडुली रिक्त समष्टि प्रायः प्राकृतिक ज्यामितीय और स्थलीय संरचनाओं को भी ले जाते हैं। मंडलियों के उदाहरण में, उदाहरण के लिए, मोडुली समष्टि केवल एक अमूर्त सेट नहीं है, लेकिन रेडी के अंतर का पूर्ण मूल्य एक [[मीट्रिक (गणित)]] को परिभाषित करता है, यह निर्धारित करने के लिए कि दो सर्किल कब करीब हैं। मॉड्यूलि रिक्त समष्टि की ज्यामितीय संरचना स्थानीय रूप से हमें बताती है कि ज्यामितीय वर्गीकरण समस्या के दो समाधान करीब हैं, लेकिन आम तौर पर मोडुली रिक्त समष्टि में एक जटिल वैश्विक संरचना भी होती है।
मोडुली समष्टि प्रायः प्राकृतिक ज्यामितीय और सांस्थितिकीय संरचनाओं को भी ले जाते हैं। वृत्तों के उदाहरण में, मोडुली समष्टि केवल एक अमूर्त समुच्चय नहीं है, लेकिन त्रिज्या के अंतर का पूर्ण मान एक [[मीट्रिक (गणित)|आव्यूह (गणित)]] को परिभाषित करता है, यह निर्धारित करने के लिए कि जब दो वृत्त समीप होते हैं। मॉड्यूलि समष्टि की ज्यामितीय संरचना स्थानीय रूप से हमें बताती है कि ज्यामितीय वर्गीकरण समस्या के दो समाधान समीप हैं, लेकिन सामान्य रूप से मोडुली समष्टि में एक जटिल वैश्विक संरचना भी होती है।


फ़ाइल: रियल प्रोजेक्टिव लाइन मोडुली समष्टि example.pdf|thumb|P का निर्माण<sup>1</sup>(R) 0 ≤ θ < π या S के भागफल समष्टि के रूप में भिन्न करके<sup>1</उप>
उदाहरण के लिए, विचार करें कि '''R'''<sup>2</sup> में रेखाओं के समुच्चय का वर्णन कैसे किया जाए जो मूल बिंदु को प्रतिच्छेद करती है। हम इस वर्ग की प्रत्येक रेखा L को एक परिणाम मे निर्दिष्ट करना चाहते हैं जो विशिष्ट रूप से इसे एक मापांक की पहचान कर सके। ऐसी मात्रा का एक उदाहरण 0 ≤ θ < π रेडियन के साथ धनात्मक कोण θ(L) है। और L रेखाओ का समुच्चय इसलिए पैरामीटर युक्त को '''P'''<sup>1</sup>('''R''') के रूप में जाना जाता है और इसे वास्तविक प्रक्षेप्य रेखा कहा जाता है।


उदाहरण के लिए, आर में लाइनों के संग्रह का वर्णन करने के तरीके पर विचार करें<sup>2</sup> जो मूल बिंदु को काटता है। हम इस परिवार की प्रत्येक पंक्ति L को एक मात्रा निर्दिष्ट करना चाहते हैं जो इसे विशिष्ट रूप से पहचान सके - एक मापांक। ऐसी मात्रा का एक उदाहरण 0 ≤ θ < π रेडियन के साथ सकारात्मक कोण θ(L) है। एल लाइनों का सेट इसलिए पैरामीट्रिज्ड 'पी' के रूप में जाना जाता है<sup>1</sup>(R) और वास्तविक प्रक्षेपी रेखा कहलाती है।
हम '''R'''<sup>2</sup> में रेखाओं के समुच्चय का भी वर्णन कर सकते हैं जो एक सांस्थितिकीय निर्माण के माध्यम से मूल को प्रतिच्छेद करता है। अतः '''S'''<sup>1</sup> ⊂ '''R'''<sup>2</sup> पर विचार करने के लिए और ध्यान दें कि प्रत्येक बिंदु ''s'' ∈ '''S'''<sup>1</sup> समुच्चय में एक रेखा L(s) देता है जो मूल बिंदु और s को जोड़ता है। हालाँकि, यह मानचित्र दो से एक है, इसलिए हम '''P'''<sup>1</sup>('''R''') ≅ '''S'''<sup>1</sup>/~ उत्पन्न करने के लिए s ~ −s की पहचान करना चाहते हैं, जहां इस समष्टि पर सांस्थिति भागफल मानचित्र '''S'''<sup>1</sup> → '''P'''<sup>1</sup>('''R''') द्वारा प्रेरित भागफल सांस्थिति है।


हम R में रेखाओं के संग्रह का भी वर्णन कर सकते हैं<sup>2</sup> जो एक स्थलाकृतिक निर्माण के माध्यम से मूल को प्रतिच्छेद करता है। बुद्धि के लिए: एस पर विचार करें<sup>1</sup> ⊂ आर<sup>2</sup> और ध्यान दें कि प्रत्येक बिंदु ∈ 'S'<sup>1</sup> संग्रह में एक रेखा L(s) देता है (जो मूल और s को जोड़ता है)। हालाँकि, यह मानचित्र टू-टू-वन है, इसलिए हम 'P' प्राप्त करने के लिए s ~ −s की पहचान करना चाहते हैं<sup>1</sup>(आर) ≅ एस<sup>1</sup>/~ जहां इस समष्टि पर टोपोलॉजी भागफल मानचित्र S द्वारा प्रेरित [[भागफल टोपोलॉजी]] है<sup>1</sup> → पी<sup>1</sup>(आर).
इस प्रकार, जब हम '''P'''<sup>1</sup>('''R''') पर विचार करते हैं, रेखाओं की मॉड्यूलि समष्टि के रूप में जो '''R'''<sup>2</sup> में मूल बिन्दु को प्रतिच्छेद करती है, हम उन तरीकों को अभिग्रहण करते हैं जिनमें वर्ग के इकाई (इस स्थिति में रेखा) 0 ≤ θ < π को निरंतर बदलते हुए संशोधित कर सकते हैं।


इस प्रकार, जब हम पी पर विचार करते हैं<sup>1</sup>(R) रेखाओं की मॉड्यूलि समष्टि के रूप में जो आर में मूल को काटती है<sup>2</sup>, हम उन तरीकों को कैप्चर करते हैं जिनमें परिवार के सदस्य (इस मामले में पंक्तियां) 0 ≤ θ < π को लगातार बदलते हुए संशोधित कर सकते हैं।
== सामान्य उदाहरण ==


== मूल उदाहरण ==
===प्रक्षेपीय समष्‍टि और ग्रासमैनियन ===
वास्तविक प्रक्षेपीय समष्‍टि '''P'''<sup>''n''</sup> एक मोडुली समष्‍टि है जो '''R'''<sup>''n''+1</sup> में रेखाओ की समष्टि को पैरामीट्रिज करता है जो मूल के माध्यम से गुजरता है। इसी प्रकार, जटिल प्रक्षेपीय समष्‍टि '''C'''<sup>''n''+1</sup> में मूल बिन्दु के माध्यम से गुजरने वाली सभी जटिल रेखाओं का समष्टि है।


===प्रोजेक्टिव समष्टि और ग्रासमैनियन ===
अधिक सामान्य रूप से, क्षेत्र F पर सदिश समष्टि V का [[ ग्रासमानियन |ग्रासमानियन]] 'G'(k, V), V के सभी k-विमीय रैखिक उपसमष्टि का मॉडुलि समष्टि होता है।
वास्तविक [[वास्तविक प्रक्षेप्य स्थान]]<sup>n</sup> एक मोडुली समष्टि है जो 'R' में लाइनों के समष्टि को पैरामीट्रिज करता है<sup>n+1</sup> जो मूल बिंदु से होकर गुजरता है। इसी तरह, जटिल प्रक्षेपी समष्टि 'सी' में सभी जटिल रेखाओं का समष्टि है<sup>n+1</sup> मूल बिंदु से गुजर रहा है।


अधिक आम तौर पर, फ़ील्ड F पर सदिश समष्टि V का [[ ग्रासमानियन ]] 'G'(k, V) V के सभी k-विमीय रैखिक उपसमष्टि का मॉडुलि समष्टि होता है।
==== वैश्विक रूप से उत्पन्न वर्गों के साथ वृहत रेखा बंडल के मॉड्यूल के रूप में प्रक्षेपीय समष्‍टि ====
सार्वभौमिक प्रक्षेप्य समष्टि <math>\mathbf{P}^n_\mathbb{Z}</math> में जब भी किसी प्रणाली <math>X</math> का अन्तः स्थापन होता है,<ref>{{Cite web|title=Lemma 27.13.1 (01NE)—The Stacks project|url=https://stacks.math.columbia.edu/tag/01NE|access-date=2020-09-12|website=stacks.math.columbia.edu}}</ref><ref>{{Cite web|title=algebraic geometry - What does projective space classify?|url=https://math.stackexchange.com/questions/296217/what-does-projective-space-classify|access-date=2020-09-12|website=Mathematics Stack Exchange}}</ref> तो अन्तः स्थापन एक रेखा बंडल <math>\mathcal{L} \to X</math> द्वारा दी गई है, और <math>n+1</math> भाग <math>s_0,\ldots,s_n\in\Gamma(X,\mathcal{L})</math> जो सभी समान समय में शून्य नहीं होते हैं। इसका तात्पर्य है, एक बिंदु दिया गया है<blockquote>
<math>x:\text{Spec}(R) \to X</math></blockquote>
एक संबद्ध बिंदु है<blockquote><math>\hat{x}:\text{Spec}(R) \to \mathbf{P}^n_\mathbb{Z}</math></blockquote>रचनाओं द्वारा प्रदान किया गया<blockquote><math>[s_0:\cdots:s_n]\circ x = [s_0(x):\cdots:s_n(x)] \in \mathbf{P}^n_\mathbb{Z}(R) </math></blockquote>फिर, अनुभागों के साथ दो रेखा बंडल समतुल्य हैं<blockquote><math>(\mathcal{L},(s_0,\ldots,s_n))\sim (\mathcal{L}',(s_0',\ldots,s_n'))</math></blockquote>यदि कोई तुल्याकारिता <math>\phi:\mathcal{L} \to \mathcal{L}'</math> है जैसे कि <math>\phi(s_i) = s_i'</math> है। इसका तात्पर्य है संबंधित मोडुली फलननिर्धारक<blockquote><math>\mathbf{P}^n_\mathbb{Z}:\text{Sch}\to \text{Sets}</math></blockquote>रचना <math>X</math> समुच्चय पर प्रेषित करता है


==== विश्व स्तर पर उत्पन्न वर्गों के साथ बहुत पर्याप्त लाइन बंडलों के मॉड्यूल के रूप में प्रोजेक्टिव समष्टि ====
<math>\mathbf{P}^n_\mathbb{Z}(X) =\left\{
जब भी किसी योजना का एम्बेडिंग होता है <math>X</math> सार्वभौमिक प्रक्षेप्य अंतरिक्ष में <math>\mathbf{P}^n_\mathbb{Z}</math>,<ref>{{Cite web|title=Lemma 27.13.1 (01NE)—The Stacks project|url=https://stacks.math.columbia.edu/tag/01NE|access-date=2020-09-12|website=stacks.math.columbia.edu}}</ref><ref>{{Cite web|title=algebraic geometry - What does projective space classify?|url=https://math.stackexchange.com/questions/296217/what-does-projective-space-classify|access-date=2020-09-12|website=Mathematics Stack Exchange}}</ref> एम्बेडिंग एक लाइन बंडल द्वारा दी गई है <math>\mathcal{L} \to X</math> और <math>n+1</math> धारा <math>s_0,\ldots,s_n\in\Gamma(X,\mathcal{L})</math> जो सभी एक ही समय में गायब नहीं होते हैं। इसका मतलब है, एक बिंदु <ब्लॉककोट> दिया गया है<math>x:\text{Spec}(R) \to X</math></blockquote>एक संबद्ध बिंदु है<blockquote><math>\hat{x}:\text{Spec}(R) \to \mathbf{P}^n_\mathbb{Z}</math></blockquote>रचनाओं द्वारा दिया गया<blockquote><math>[s_0:\cdots:s_n]\circ x = [s_0(x):\cdots:s_n(x)] \in \mathbf{P}^n_\mathbb{Z}(R) </math></blockquote>फिर, अनुभागों के साथ दो लाइन बंडल समतुल्य हैं<blockquote><math>(\mathcal{L},(s_0,\ldots,s_n))\sim (\mathcal{L}',(s_0',\ldots,s_n'))</math></blockquote>यदि कोई तुल्याकारिता है <math>\phi:\mathcal{L} \to \mathcal{L}'</math> ऐसा है कि <math>\phi(s_i) = s_i'</math>. इसका मतलब है संबंधित मोडुली फ़ैक्टर <ब्लॉककोट><math>\mathbf{P}^n_\mathbb{Z}:\text{Sch}\to \text{Sets}</math></blockquote>स्कीम भेजता है <math>X</math> सेट पर <ब्लॉककोट><math>\mathbf{P}^n_\mathbb{Z}(X) =\left\{
(\mathcal{L},s_0,\ldots,s_n) : \begin{matrix}
(\mathcal{L},s_0,\ldots,s_n) : \begin{matrix}
\mathcal{L} \to X \text{ is a line bundle} \\
\mathcal{L} \to X \text{ is a line bundle} \\
Line 30: Line 32:
\text{ form a basis of global sections}
\text{ form a basis of global sections}
\end{matrix}
\end{matrix}
\right\} / \sim </math></blockquote>यह दिखाना सत्य है जिसे पुनरुक्ति की एक श्रृंखला के माध्यम से चलाया जा सकता है: कोई भी प्रक्षेपी एम्बेडिंग <math>i:X \to \mathbb{P}^n_\mathbb{Z}</math> विश्व स्तर पर उत्पन्न शीफ देता है <math>i^*\mathcal{O}_{\mathbf{P}^n_\mathbb{Z}}(1)</math> वर्गों के साथ <math>i^*x_0,\ldots,i^*x_n</math>. इसके विपरीत, एक पर्याप्त लाइन बंडल दिया गया <math>\mathcal{L} \to X</math> वैश्विक रूप से उत्पन्न <math>n+1</math> अनुभाग ऊपर के रूप में एक एम्बेडिंग देता है।
\right\} / \sim </math>


=== चाउ किस्म ===
यह दिखा रहा है कि यह सच है, पुनरुक्ति की एक श्रृंखला के माध्यम से परिचालन किया जा सकता है: कोई भी प्रक्षेप्य अन्तः स्थापन <math>i:X \to \mathbb{P}^n_\mathbb{Z}</math> वैश्विक रूप से उत्पन्न शीफ <math>i^*\mathcal{O}_{\mathbf{P}^n_\mathbb{Z}}(1)</math> वर्गों के साथ <math>i^*x_0,\ldots,i^*x_n</math> देता है। इसके विपरीत, एक विस्तृत रेखा बंडल <math>\mathcal{L} \to X</math> दिया गया है। वैश्विक रूप से उत्पन्न <math>n+1</math> अनुभाग ऊपर के रूप में एक अन्तः स्थापन देता है।
[[चाउ रिंग]] चाउ (डी, पी<sup>3</sup>) एक प्रक्षेपी बीजगणितीय किस्म है जो 'P' में डिग्री d वक्रों को पैरामीट्रिज करती है<sup>3</उप>। इसका निर्माण निम्नानुसार किया गया है। C को 'P' में डिग्री d का वक्र होने दें<sup>3</sup>, तो P की सभी पंक्तियों पर विचार करें<sup>3</sup> जो वक्र C को प्रतिच्छेद करता है। यह एक डिग्री d भाजक (बीजगणितीय ज्यामिति) D है<sub>C</sub>'जी' (2, 4) में, 'पी' में लाइनों का ग्रासमानियन<sup>3</उप>। जब C भिन्न होता है, C को D से जोड़कर<sub>C</sub>, हम ग्रासमानियन के डिग्री डी विभाजकों के समष्टि के सबसेट के रूप में डिग्री डी वक्र का एक पैरामीटर समष्टि प्राप्त करते हैं: 'चाउ' (डी, 'पी'<sup>3</sup>).


=== [[हिल्बर्ट योजना]] ===
=== चाउ प्रकार ===
हिल्बर्ट स्कीम हिल्ब(''X'') एक मोडुली स्कीम है। Hilb(''X'') का प्रत्येक बंद बिंदु एक निश्चित योजना ''X'' की एक बंद उपयोजना से अनुरूप है, और प्रत्येक बंद उपयोजना को ऐसे बिंदु द्वारा दर्शाया जाता है। हिल्बर्ट स्कीम का एक सरल उदाहरण है हिल्बर्ट स्कीम पैरामीटराइज़िंग डिग्री <math>d</math> प्रोजेक्टिव समष्टि की हाइपरसर्फफेस <math>\mathbb{P}^n</math>. यह प्रक्षेपी बंडल <ब्लॉककोट> द्वारा दिया गया है<math>\mathcal{Hilb}_d(\mathbb{P}^n) = \mathbb{P}(\Gamma(\mathcal{O}(d)))</math>सार्वभौमिक परिवार के साथ <blockquote> द्वारा दिया गया<math>\mathcal{U} = \{ (V(f), f) : f \in \Gamma(\mathcal{O}(d)) \}</math></blockquote>कहाँ <math>V(f)</math> डिग्री के लिए संबद्ध प्रक्षेप्य योजना है <math>d</math> सजातीय बहुपद <math>f</math>.
चाउ प्रकार '''Chow'''(d,'''P'''<sup>3</sup>) एक प्रक्षेपी बीजगणितीय प्रकार है जो '''P'''<sup>3</sup> में कोटि d वक्रों को पैरामीट्रिज करती है। इसका निर्माण निम्नानुसार किया गया है। मान लीजिए C, '''P'''<sup>3</sup> में कोटि d का एक वक्र है, फिर '''P'''<sup>3</sup> में उन सभी रेखाओं पर विचार करें जो वक्र C को प्रतिच्छेद करती हैं। यह '''G'''(2, 4) में एक कोटि d भाजक ''D<sub>C</sub>'' है, जो '''P'''<sup>3</sup> में रेखाओं का ग्रासमानियन है। जब C भिन्न होता है, तो C को ''D<sub>C</sub>'' से जोड़कर, हम ग्रासमानियन चाउ (d, '''P'''<sup>3</sup>) के कोटि d विभाजकों के समष्टि के उपसमुच्चय के रूप में कोटि d वक्रों का एक पैरामीटर स्थान प्राप्त करते हैं।
 
=== [[हिल्बर्ट योजना|हिल्बर्ट प्रणाली]] ===
हिल्बर्ट प्रणाली '''Hilb'''(''X'') एक मोडुली प्रणाली है। '''Hilb'''(''X'') का प्रत्येक बंद बिंदु एक निश्चित प्रणाली X की एक संवृत्त उपप्रणाली से अनुरूप है, और प्रत्येक संवृत्त उपप्रणाली को ऐसे बिंदु द्वारा दर्शाया जाता है। हिल्बर्ट प्रणाली का एक सरल उदाहरण प्रक्षेपीय समष्‍टि <math>\mathbb{P}^n</math> के कोटि <math>d</math> ऊनविम पृष्ठ को पैरामिट्रीकृत करने वाली हिल्बर्ट प्रणाली है। यह प्रक्षेपी बंडल द्वारा दिया जाता है <blockquote>
<math>\mathcal{Hilb}_d(\mathbb{P}^n) = \mathbb{P}(\Gamma(\mathcal{O}(d)))</math> </blockquote>
द्वारा दिए गए सार्वभौमिक वर्ग के साथ <blockquote> द्वारा दिया गया<math>\mathcal{U} = \{ (V(f), f) : f \in \Gamma(\mathcal{O}(d)) \}</math></blockquote>जहाँ <math>V(f)</math> डिग्री d सजातीय बहुपद f के लिए संबद्ध प्रक्षेपी प्रणाली है।


== परिभाषाएँ ==
== परिभाषाएँ ==
चीजों की कई संबंधित धारणाएं हैं जिन्हें हम मोडुली समष्टि कह सकते हैं। इनमें से प्रत्येक परिभाषा ज्यामितीय वस्तुओं का प्रतिनिधित्व करने के लिए अंतरिक्ष एम के बिंदुओं के लिए इसका क्या अर्थ है, इसकी एक अलग धारणा को औपचारिक रूप देती है।
वस्तुओ की कई संबंधित धारणाएं हैं जिन्हें हम मोडुली समष्टि कह सकते हैं। इनमें से प्रत्येक परिभाषा ज्यामितीय वस्तुओं का प्रतिनिधित्व करने के लिए समष्टि M के बिंदुओं के लिए इसका क्या अर्थ है, इसकी एक अलग धारणा को औपचारिक रूप देती है।


=== ठीक मोडुलि समष्टि ===
=== सूक्ष्म मोडुलि समष्टि ===
यह मानक अवधारणा है। ह्यूरिस्टिक रूप से, यदि हमारे पास एक समष्टि एम है जिसके लिए प्रत्येक बिंदु एम एम बीजगणित-ज्यामितीय वस्तु यू से अनुरूप है<sub>m</sub>, तो हम इन वस्तुओं को एम पर एक [[टॉटोलॉजिकल बंडल]] परिवार यू में इकट्ठा कर सकते हैं। (उदाहरण के लिए, ग्रासमैनियन 'जी' (के, वी) रैंक के बंडल को ले जाता है जिसका फाइबर किसी भी बिंदु पर [एल] ∊ 'जी' (के, V) केवल रैखिक उपसमष्टि L ⊂ V है।) M को परिवार U का 'आधार समष्टि' कहा जाता है। हम कहते हैं कि सार्वभौमिक बंडल 'सार्वभौमिक' है यदि बीजगणित-ज्यामितीय वस्तुओं का कोई परिवार किसी आधार समष्टि B पर T है। यू का [[पुलबैक (श्रेणी सिद्धांत)]] एक अद्वितीय मानचित्र बी → एम के साथ। एक सूक्ष्म मोडुलि समष्टि एक समष्टि एम है जो एक सार्वभौमिक परिवार का आधार है।
यह मानक अवधारणा है। स्वानुभविक रूप से, यदि हमारे पास एक समष्टि M है जिसके लिए प्रत्येक बिंदु ''m'' ''M'' बीजगणित-ज्यामितीय वस्तु ''U<sub>m</sub>'' से अनुरूप है, तो हम इन वस्तुओं को ''M'' पर एक [[टॉटोलॉजिकल बंडल|पुनरुक्तात्मक]] वर्ग U में संग्रहित कर सकते हैं। उदाहरण के लिए, ग्रासमैनियन ''''G'''(''k'', ''V'') श्रेणी K के समुच्चय को ले जाता है जिसका सूत्र किसी भी बिंदु पर [''L''] ∊ '''G'''(''k'', ''V'') केवल रैखिक उपसमष्टि L ⊂ V है। M को वर्ग U का 'आधार स्थान' कहा जाता है। हम कहते हैं कि ऐसा वर्ग सार्वभौमिक है यदि बीजगणित-ज्यामितीय वस्तुओं का कोई भी वर्ग किसी भी आधार स्थान B पर T एक अद्वितीय मानचित्र B → M के साथ U का [[पुलबैक (श्रेणी सिद्धांत)]] है। सूक्ष्म मोडुलि समष्टि एक समष्टि M है जो एक सार्वभौमिक वर्ग का आधार है।


अधिक सटीक रूप से, मान लीजिए कि हमारे पास योजनाओं से लेकर सेट तक एक फ़ैक्टर एफ है, जो एक योजना बी को आधार बी के साथ वस्तुओं के सभी उपयुक्त परिवारों के सेट को असाइन करता है। एक समष्टि एम, फ़ंक्टर एफ के लिए एक 'ठीक मोडुली समष्टि' है यदि एम प्रतिनिधित्व योग्य है functor F, यानी एक प्राकृतिक समरूपता है
अधिक परिशुद्ध रूप से, मान लीजिए कि हमारे पास योजनाओं से लेकर समुच्चय तक एक फलननिर्धारक F है, जो एक प्रणाली B को आधार B के साथ वस्तुओं के सभी उपयुक्त वर्गों के समुच्चय को निर्धारित करता है। समष्टि M, फलननिर्धारक F के लिए एक 'सूक्ष्म मोडुली समष्टि' है यदि M प्रतिनिधित्व योग्य है फलननिर्धारक F, अर्थात एक प्राकृतिक समरूपता τ : ''F'' → '''Hom'''(, ''M'') है, जहां '''Hom'''(, ''M'') बिंदुओं का फलननिर्धारक है। इसका तात्पर्य है कि M एक सार्वभौमिक वर्ग रखता है; यह वर्ग पर पहचान मानचित्र '''1'''<sub>''M''</sub> ∊ '''Hom'''(''M'', ''M'') के अनुरूप वर्ग है।
τ : F → 'होम' (-, एम), जहां 'होम' (-, एम) बिंदुओं का फ़ैक्टर है। इसका तात्पर्य है कि एम एक सार्वभौमिक परिवार रखता है; यह परिवार पहचान मानचित्र '1' के अनुरूप एम पर परिवार है<sub>''M''</sub> ∊ होम('''', '''')


===मोटे मॉडुलि समष्टि===
===स्थूल मॉडुलि समष्टि===
बारीक मोडुली समष्टि वांछनीय हैं, लेकिन वे हमेशा मौजूद नहीं होते हैं और प्रायः निर्माण करना मुश्किल होता है, इसलिए गणितज्ञ कभी-कभी एक कमजोर धारणा का उपयोग करते हैं, मोटे मोडुली समष्टि का विचार। यदि कोई प्राकृतिक रूपांतरण τ मौजूद है तो एक समष्टि M, क्रियाकलाप F के लिए एक 'स्थूल मोडुलि समष्टि' है: F → 'होम' (-, M) और τ ऐसे प्राकृतिक परिवर्तनों के बीच सार्वभौमिक है। अधिक ठोस रूप से, M, F के लिए एक मोटे मोडुली समष्टि है यदि कोई परिवार T आधार B पर एक मानचित्र φ को जन्म देता है<sub>''T''</sub> : बी एम और कोई भी दो वस्तुएं वी और डब्ल्यू (एक बिंदु पर परिवारों के रूप में माना जाता है) एम के एक ही बिंदु के अनुरूप हैं यदि और केवल अगर वी और डब्ल्यू आइसोमोर्फिक हैं। इस प्रकार, एम एक ऐसा समष्टि है जिसमें प्रत्येक वस्तु के लिए एक बिंदु होता है जो एक परिवार में प्रकट हो सकता है, और जिसकी ज्यामिति परिवारों में वस्तुओं के भिन्न होने के तरीकों को दर्शाती है। ध्यान दें, हालांकि, एक मोटे मोडुली समष्टि में आवश्यक रूप से उपयुक्त वस्तुओं का कोई परिवार नहीं होता है, केवल एक सार्वभौमिक होने दें।
सूक्ष्म मोडुली समष्टि वांछनीय हैं, लेकिन वे सदैव सम्मिलित नहीं होते हैं और प्रायः निर्माण करना कठिन होता है, इसलिए गणितज्ञ कभी-कभी एक दुर्बल धारणा का उपयोग करते हैं जो स्थूल मोडुली समष्टि का विचार है। यदि कोई प्राकृतिक रूपांतरण τ : F → '''Hom'''(-, M) सम्मिलित है और τ ऐसे प्राकृतिक परिवर्तनों के बीच सार्वभौमिक है, तो एक समष्टि M, फलननिर्धारक F के लिए एक स्थूल मोडुली समष्टि है। अधिक ठोस रूप से, M, F के लिए एक स्थूल मोडुली समष्टि है यदि कोई वर्ग T एक आधार B पर एक मानचित्र φT : B M और किन्हीं दो वस्तुओं V और W (एक बिंदु पर वर्गों के रूप में माना जाता है) को समान बिंदु के अनुरूप बनाता है। M यदि और केवल यदि V और W समरूपी हैं। इस प्रकार, M एक ऐसा समष्टि है जिसमें प्रत्येक वस्तु के लिए एक बिंदु होता है जो एक वर्ग में प्रकट हो सकता है, और जिसकी ज्यामिति वर्गों में वस्तुओं के भिन्न होने के तरीकों को दर्शाती है। हालांकि, ध्यान दें कि, एक स्थूल मोडुली समष्टि में आवश्यक रूप से उपयुक्त वस्तुओं का कोई वर्ग नहीं होता है, केवल एक सार्वभौमिक होने दें।


दूसरे शब्दों में, एक फाइन मॉडुलि समष्टि में बेस समष्टि M और यूनिवर्सल फैमिली U → M दोनों शामिल होते हैं, जबकि मोटे मॉड्यूलि समष्टि में केवल बेस समष्टि M होता है।
दूसरे शब्दों में, एक सूक्ष्म मॉडुलि समष्टि में आधार स्थान M और सार्वभौमिक वर्ग U → M दोनों सम्मिलित होते हैं, जबकि स्थूल मॉड्यूलि समष्टि में केवल आधार स्थान M होता है।


=== मोडुली चित्ति<!--'Moduli stack' redirects here-->===
=== मोडुली चित्ति===
प्रायः ऐसा होता है कि दिलचस्प ज्यामितीय वस्तुएं कई प्राकृतिक [[automorphism]] से सुसज्जित होती हैं। यह विशेष रूप से एक सूक्ष्म मोडुली समष्टि के अस्तित्व को असंभव बनाता है (सहजता से, विचार यह है कि यदि एल कुछ ज्यामितीय वस्तु है, तो तुच्छ परिवार L × [0,1] को सर्कल 'एस' पर एक मुड़ परिवार में बनाया जा सकता है।<sup>1</sup> एल × {0} को एल × {1} के साथ एक गैर-तुच्छ ऑटोमोर्फिज्म के माध्यम से पहचान कर। अब यदि सूक्ष्म मॉडुलि समष्टि X अस्तित्व में है, तो मानचित्र 'S'<sup>1</sup> → X को स्थिर नहीं होना चाहिए, लेकिन तुच्छता से किसी भी उचित खुले सेट पर स्थिर होना चाहिए), फिर भी कभी-कभी मोटे मोडुली समष्टि प्राप्त कर सकते हैं। हालांकि, यह दृष्टिकोण आदर्श नहीं है, क्योंकि ऐसे स्थानों के अस्तित्व की गारंटी नहीं है, जब वे मौजूद होते हैं तो वे प्रायः एकवचन होते हैं, और उन वस्तुओं के कुछ गैर-तुच्छ परिवारों के बारे में विवरण याद करते हैं जिन्हें वे वर्गीकृत करते हैं।
प्रायः ऐसा होता है कि रोचक ज्यामितीय वस्तुएं कई प्राकृतिक [[automorphism|स्वाकारिकता]] से सुसज्जित होती हैं। यह विशेष रूप से एक सूक्ष्म मोडुली समष्टि के अस्तित्व को असंभव बनाता है सामान्य रूप से, विचार यह है कि यदि एल कुछ ज्यामितीय वस्तु है, तो सामान्य वर्ग L × [0,1] को वृत्त ''''S'''<sup>1</sup>' <sup>1</sup> L × {0} को L × {1} के साथ एक गैर-सामान्य स्वाकारिकता के माध्यम से पहचान कर व्यावर्तित वर्ग में बनाया जा सकता है। अब यदि सूक्ष्म मॉडुलि समष्टि X अस्तित्व में है, तो मानचित्र 'S'<sup>1</sup> → X को स्थिर नहीं होना चाहिए, लेकिन सामान्यतः से किसी भी उपयुक्त विवृत समुच्चय पर स्थिर होना चाहिए, फिर भी कभी-कभी स्थूल मोडुली समष्टि प्राप्त कर सकते हैं। हालांकि, यह दृष्टिकोण आदर्श नहीं है, क्योंकि ऐसे समष्टि के अस्तित्व की प्रत्याभूति नहीं है, जब वे सम्मिलित होते हैं तो वे प्रायः असामान्य होते हैं, और उन वस्तुओं के कुछ गैर-सामान्य वर्गों के बारे में विवरण स्मरण करते हैं जिन्हें वे वर्गीकृत करते हैं।


समरूपताओं को याद करके वर्गीकरण को समृद्ध करने के लिए एक अधिक परिष्कृत दृष्टिकोण है। अधिक सटीक रूप से, किसी भी आधार पर बी बी पर परिवारों की श्रेणी पर विचार कर सकता है, जिसमें परिवारों के बीच केवल समरूपता के रूप में लिया जाता है। एक तब [[रेशेदार श्रेणी]] पर विचार करता है जो किसी भी समष्टि बी को बी से अधिक परिवारों के समूह को निर्दिष्ट करता है। मॉड्यूलि समस्या का वर्णन करने के लिए ग्रुपोइड्स में फाइबर की गई इन श्रेणियों का उपयोग ग्रोथेंडिक (1960/61) तक जाता है। सामान्य तौर पर, उन्हें योजनाओं या बीजगणितीय रिक्त समष्टि द्वारा प्रदर्शित नहीं किया जा सकता है, लेकिन कई मामलों में, उनके पास बीजगणितीय चित्ति की प्राकृतिक संरचना होती है।
समरूपताओं को याद करके वर्गीकरण को समृद्ध करने के लिए एक अधिक परिष्कृत दृष्टिकोण है। अधिक परिशुद्ध रूप से, किसी भी आधार पर B पर वर्गों की श्रेणी पर विचार कर सकता है, जिसमें वर्गों के बीच केवल समरूपता के रूप में लिया जाता है। एक तब [[रेशेदार श्रेणी|तंतुमय श्रेणी]] पर विचार करता है जो किसी भी समष्टि B को B से अधिक वर्गों के बंडल को निर्दिष्ट करता है। मॉड्यूलि समस्या का वर्णन करने के लिए वर्गीकृत में सूत्र की गई इन श्रेणियों का उपयोग ग्रोथेंडिक (1960/61) तक जाता है। सामान्य रूप से, उन्हें योजनाओं या बीजगणितीय समष्टि द्वारा प्रदर्शित नहीं किया जा सकता है, लेकिन कई स्थितियों में, उनके पास बीजगणितीय चित्ति की प्राकृतिक संरचना होती है।


Deligne-Mumford (1969) में बीजगणितीय चित्ति और मॉडुलि समस्याओं का विश्लेषण करने के लिए उनका उपयोग एक दिए गए प्रजाति के बीजगणितीय वक्र के (मोटे) मोडुली की इरेड्यूसबिलिटी को साबित करने के लिए एक उपकरण के रूप में दिखाई दिया। बीजगणितीय चित्ति की भाषा अनिवार्य रूप से रेशेदार श्रेणी को देखने के लिए एक व्यवस्थित तरीका प्रदान करती है जो एक समष्टि के रूप में मोडुली समस्या का गठन करती है, और 'मॉड्यूली चित्ति'<!--boldface per WP:R#PLA--> कई मॉडुलि समस्याओं में से अधिकांश संबंधित मोटे मॉडुलि समष्टि की तुलना में बेहतर व्यवहार (जैसे सरल) है।
डेलिग्ने-ममफोर्ड (1969) में बीजगणितीय चित्ति और मॉडुलि समस्याओं का विश्लेषण करने के लिए उनका उपयोग एक दिए गए वर्ग के बीजगणितीय वक्र के (स्थूल) मोडुली की अपरिवर्तनीयता को परिणाम करने के लिए एक उपकरण के रूप में दिखाई दिया। बीजगणितीय चित्ति की भाषा अनिवार्य रूप से तंतुमय श्रेणी को देखने के लिए एक व्यवस्थित तरीका प्रदान करती है जो एक समष्टि के रूप में मोडुली समस्या का निर्माण करती है, और 'मॉड्यूली चित्ति' कई मॉडुलि समस्याओं में से अधिकांश संबंधित स्थूल मॉडुलि समष्टि की तुलना में अधिकतम व्यवहार (जैसे सरल) है।


== अन्य उदाहरण ==
== अन्य उदाहरण ==


=== वक्रों का मापांक ===
=== वक्रों का मापांक ===
{{details|Moduli of algebraic curves}}
{{details|बीजगणितीय वक्रों का मापांक}}
 
मोडुली चित्ति <math>\mathcal{M}_{g}</math> वर्ग g के सामान्य प्रक्षेपी वक्र के वर्गों को उनके समरूपताओं के साथ वर्गीकृत करता है। जब g > 1, इस चित्ति को नई सीमा बिंदुओं को जोड़कर संकुचित किया जा सकता है जो स्थिर केंद्रक वक्रों (उनके समरूपताओं के साथ) के अनुरूप होता है। एक वक्र स्थिर होता है यदि इसमें केवल समाकारिकता का परिमित बंडल होता है। परिणामी चित्ति <math>\overline{\mathcal{M}}_{g}</math> को दर्शाया गया है। दोनों मोडुली चित्ति वक्रों के सार्वभौमिक वर्गों को ले जाते हैं। सामान्य या स्थिर वक्रों के समरूपता वर्गों का प्रतिनिधित्व करने वाले स्थूल मोडुली समष्टि को भी परिभाषित किया जा सकता है। मोडुली चित्ति की धारणा का आविष्कार करने से पहले इन स्थूल मॉडुलि समष्टि का वास्तव में अध्ययन किया गया था। वास्तव में, मोडुली चित्ति के विचार का आविष्कार डेलिग्ने और ममफोर्ड द्वारा किया गया था ताकि स्थूल मॉडुलि समष्टि की उत्पादकता को परिणाम करने का प्रयास किया जा सके। हाल के वर्षों में, यह स्पष्ट हो गया है कि वक्रों का चित्ति वास्तव में अधिक मौलिक वस्तु है।
 
ऊपर के दोनों चित्ति का आयाम 3g−3 है; इसलिए एक स्थिर केंद्रक वक्र को पूरी तरह से 3g−3 मापदंडों के मानो को जब g> 1 चयन करके निर्दिष्ट किया जा सकता है। निचले वर्ग में, किसी को समाकारिकता के सामान्य वर्गों की उपस्थिति के लिए उनकी संख्या घटाकर गणना करनी चाहिए। वर्ग शून्य का परिशुद्ध एक जटिल वक्र है, रीमैन वृत्त और इसके समरूपता का बंडल प्रक्षेपी सामान्य रैखिक (पीजीएल(2)) है। इसलिए, <math>\mathcal{M}_0</math> का आयाम है


मोडुली चित्ति <math>\mathcal{M}_{g}</math> प्रजाति जी के चिकने प्रोजेक्टिव कर्व्स के परिवारों को उनके समरूपताओं के साथ वर्गीकृत करता है। जब g > 1, इस चित्ति को नई सीमा बिंदुओं को जोड़कर संकुचित किया जा सकता है जो स्थिर नोडल वक्रों (उनके समरूपताओं के साथ) के अनुरूप होता है। एक वक्र स्थिर होता है यदि इसमें केवल ऑटोमोर्फिज्म का परिमित समूह होता है। परिणामी चित्ति को दर्शाया गया है <math>\overline{\mathcal{M}}_{g}</math>. दोनों मोडुली चित्ति वक्रों के सार्वभौमिक परिवारों को ले जाते हैं। चिकने या स्थिर वक्रों के समरूपता वर्गों का प्रतिनिधित्व करने वाले मोटे मोडुली रिक्त समष्टि को भी परिभाषित किया जा सकता है। मोडुली चित्ति की धारणा का आविष्कार करने से पहले इन मोटे मॉडुलि रिक्त समष्टि का वास्तव में अध्ययन किया गया था। वास्तव में, मोडुली चित्ति के विचार का आविष्कार डेलिग्ने और ममफोर्ड द्वारा किया गया था ताकि मोटे मॉडुलि रिक्त समष्टि की प्रोजेक्टिविटी को साबित करने का प्रयास किया जा सके। हाल के वर्षों में, यह स्पष्ट हो गया है कि वक्रों का चित्ति वास्तव में अधिक मौलिक वस्तु है।
: आयाम(वर्ग शून्य वक्र की समष्टि) - आयाम(समाकारिकता का बंडल) = 0 - आयाम(पीजीएल(2)) = -3


ऊपर के दोनों चित्ति का आयाम 3g−3 है; इसलिए एक स्थिर नोडल वक्र को पूरी तरह से 3g−3 मापदंडों के मूल्यों को चुनकर निर्दिष्ट किया जा सकता है, जब g> 1. निचले प्रजाति में, किसी को ऑटोमोर्फिज्म के चिकने परिवारों की उपस्थिति के लिए उनकी संख्या घटाकर हिसाब देना चाहिए। प्रजाति ज़ीरो का बिल्कुल एक जटिल वक्र है, रीमैन स्फेयर, और इसके समरूपता का समूह पीजीएल (2) है। इसलिए, का आयाम <math>\mathcal{M}_0</math> है
इसी तरह, वर्ग 1 में, वक्र का एक आयामी समष्टि है, लेकिन इस तरह के प्रत्येक वक्र में समाकारिकता का एक आयामी बंडल होता है। इसलिए, चित्ति <math>\mathcal{M}_1</math> आयाम 0 है। अतः g > 1 होने पर स्थूल मॉडुलि समष्टि का आयाम 3g−3 होता है, क्योंकि वर्ग g > 1 के साथ वक्र केवल एक परिमित बंडल होता है, जैसे कि आयाम (समाकारिकता का एक बंडल) = 0 है। अंततः, वर्ग शून्य, स्थूल मोडुलि समष्टि का आयाम शून्य है, और वर्ग एक में इसका आयाम एक है।


: डिम (प्रजाति जीरो कर्व्स का समष्टि) - डिम (ऑटोमोर्फिज्म का समूह) = 0 - डिम (पीजीएल (2)) = -3।
n चिह्नित बिंदुओं के साथ वर्ग g केंद्रक वक्र के मोडुली चित्ति पर विचार करके भी समस्या को समृद्ध किया जा सकता है। इस तरह के चिह्नित वक्रों को स्थिर कहा जाता है यदि चिह्नित बिंदुओं को सही करने वाले वक्र समाकारिकता का उपसमूह परिमित है। n-चिन्हित बिंदुओं के साथ सामान्य (या स्थिर) वर्ग g वक्र के परिणामी मोडुली चित्ति <math>\mathcal{M}_{g,n}</math> (या <math>\overline{\mathcal{M}}_{g,n}</math>) को निरूपित किया जाता है, और आयाम 3g − 3 + n है।


इसी तरह, प्रजाति 1 में, वक्र का एक आयामी समष्टि है, लेकिन इस तरह के प्रत्येक वक्र में ऑटोमोर्फिज्म का एक आयामी समूह होता है। इसलिए, चित्ति <math>\mathcal{M}_1</math> आयाम 0 है। जी > 1 होने पर स्थूल मॉडुलि रिक्त समष्टि का आयाम 3g−3 होता है, क्योंकि प्रजाति g > 1 के साथ वक्र केवल एक परिमित समूह होता है, जैसे कि मंद (ऑटोमोर्फिज्म का एक समूह) = 0। आखिरकार, में प्रजाति ज़ीरो, मोटे मोडुलि समष्टि का डायमेंशन ज़ीरो है, और प्रजाति वन में इसका डायमेंशन वन है।
विशेष संबंध की एक स्थिति एक चिन्हित बिंदु के साथ वर्ग 1 वक्र के मोडुली चित्ति <math>\overline{\mathcal{M}}_{1,1}</math> एक चिह्नित बिंदु के साथ वर्ग 1 वक्र है। यह [[अण्डाकार वक्र|दीर्घवृत्‍तीय वक्रो]] का चित्ति है, और बहुत अध्ययन किए गए [[मॉड्यूलर रूप|प्रतिरूपक रूप]] का प्राकृतिक स्थान है, जो इस चित्ति पर भाग के अनंतकी खंड हैं।


एन चिह्नित बिंदुओं के साथ प्रजाति जी नोडल कर्व्स के मोडुली चित्ति पर विचार करके भी समस्या को समृद्ध किया जा सकता है। इस तरह के चिह्नित वक्रों को स्थिर कहा जाता है यदि वक्र ऑटोमोर्फिज्म का उपसमूह जो चिह्नित बिंदुओं को ठीक करता है, परिमित है। एन-चिन्हित बिंदुओं के साथ चिकने (या स्थिर) प्रजाति जी कर्व्स के परिणामी मोडुली चित्ति को निरूपित किया जाता है <math>\mathcal{M}_{g,n}</math> (या <math>\overline{\mathcal{M}}_{g,n}</math>), और आयाम 3g − 3 + n है।
===विविधता का मापांक===
उच्च आयामों में, बीजगणितीय विविधता के मॉड्यूल का निर्माण और अध्ययन करना अधिक कठिन होता है। उदाहरण के लिए, ऊपर चर्चित दीर्घवृत्ताकार वक्रों के मॉडुलि समष्टि का उच्च-आयामी एनालॉग एबेलियन विविधता का मोडुली समष्टि है, जैसे कि [[सीगल मॉड्यूलर किस्म|सीगल प्रतिरूपक असमरूपता]] है। यह सीगल प्रतिरूपक प्रतिघात सिद्धांत की अंतर्निहित समस्या है। शिमूरा विविधता भी देखें।


मॉड्यूली चित्ति विशेष रुचि का मामला है <math>\overline{\mathcal{M}}_{1,1}</math> एक चिह्नित बिंदु के साथ प्रजाति 1 वक्र है। यह [[अण्डाकार वक्र]]ों का चित्ति है, और बहुत अध्ययन किए गए [[मॉड्यूलर रूप]]ों का प्राकृतिक घर है, जो इस चित्ति पर बंडलों के मेरोमोर्फिक खंड हैं।
न्यूनतम मॉडल क्रमादेश से उत्पन्न होने वाली तकनीकों का उपयोग करते हुए, जेनोस कोल्लार और [[निकोलस शेफर्ड-बैरन]] द्वारा सामान्य प्रकार की विविधता के मोडुली समष्टि का निर्माण किया गया, जिसे अब केएसबी मोडुली समष्टि के रूप में जाना जाता है।<ref>J. Kollar. Moduli of varieties of general type, Handbook of moduli. Vol. II, 2013, pp. 131–157.</ref>


===किस्मों का मोडुली===
अवकल ज्यामिति और द्विपरिमेय ज्यामिति से एक साथ उत्पन्न होने वाली तकनीकों का उपयोग करते हुए, k-स्थिर किस्मों के एक विशेष वर्ग तक सीमित करके फानो किस्मों के मोडुली समष्टि का निर्माण किया गया है। इस संस्थापन में [[ कौचर बिरकर |कौचर बिरकर]] द्वारा सिद्ध की गई फ़ानो विविधता की सीमा के बारे में महत्वपूर्ण परिणामों का उपयोग किया जाता है, जिसके लिए उन्हें 2018 [[ फील्ड मेडल |क्षेत्र मेडल]] से सम्मानित किया गया था।
उच्च आयामों में, बीजगणितीय किस्मों के मॉड्यूल का निर्माण और अध्ययन करना अधिक कठिन होता है। उदाहरण के लिए, ऊपर चर्चित अण्डाकार वक्रों के मॉडुलि समष्टि का उच्च-आयामी एनालॉग एबेलियन किस्मों का मोडुली समष्टि है, जैसे कि [[सीगल मॉड्यूलर किस्म]]। यह [[सील मॉड्यूलर रूप]] थ्योरी की अंतर्निहित समस्या है। [[शिमुरा किस्म]] भी देखें।


न्यूनतम मॉडल कार्यक्रम से उत्पन्न होने वाली तकनीकों का उपयोग करते हुए, जेनोस कोल्लार और [[निकोलस शेफर्ड-बैरन]] द्वारा सामान्य प्रकार की किस्मों के मोडुली रिक्त समष्टि का निर्माण किया गया, जिसे अब केएसबी मोडुली समष्टि के रूप में जाना जाता है।<ref>J. Kollar. Moduli of varieties of general type, Handbook of moduli. Vol. II, 2013, pp. 131–157.</ref>
कैलाबी-यौ विविधता के मॉडुलि समष्टि का निर्माण एक महत्वपूर्ण विवृत समस्या है, और केवल विशेष स्थिति जैसे कि [[K3 सतह]] या एबेलियन विविधता के मोडुली समष्टि को समझा जाता है।<ref>Huybrechts, D., 2016. ''Lectures on K3 surfaces'' (Vol. 158). Cambridge University Press.</ref>
डिफरेंशियल ज्योमेट्री और बाइरेशनल ज्योमेट्री से एक साथ उत्पन्न होने वाली तकनीकों का उपयोग करते हुए, फैनो किस्मों के मोडुली समष्टि का निर्माण फैनो किस्मों के के-स्थिरता के एक विशेष वर्ग तक सीमित करके हासिल किया गया है। के-स्थिर किस्में। इस सेटिंग में [[ कौचर बिरकर ]] द्वारा सिद्ध की गई फ़ानो किस्मों की सीमा के बारे में महत्वपूर्ण परिणामों का उपयोग किया जाता है, जिसके लिए उन्हें 2018 [[ फील्ड मेडल ]] से सम्मानित किया गया था।


कैलाबी-यौ किस्मों के मॉडुलि रिक्त समष्टि का निर्माण एक महत्वपूर्ण खुली समस्या है, और केवल विशेष मामले जैसे कि [[K3 सतह]] या एबेलियन किस्मों के मोडुली रिक्त समष्टि को समझा जाता है।<ref>Huybrechts, D., 2016. ''Lectures on K3 surfaces'' (Vol. 158). Cambridge University Press.</ref>




=== वेक्टर बंडलों का मॉड्यूल ===
=== वेक्टर बंडलों का मॉड्यूल ===
एक अन्य महत्वपूर्ण मोडुली समस्या मोडुली चित्ति वेक्ट की ज्यामिति (विभिन्न सबस्टैक) को समझना है<sub>''n''</sub>(X) एक निश्चित [[बीजगणितीय किस्म]] X पर रैंक n [[वेक्टर बंडल]]ों का।<ref>{{Cite web|title=वेक्टर बंडलों के बीजगणितीय ढेर और मोडुली|url=https://impa.br/wp-content/uploads/2017/04/PM_36.pdf|url-status=live}}</ref> इस चित्ति का सबसे अधिक अध्ययन तब किया गया है जब X एक-आयामी है, और विशेष रूप से जब n एक के बराबर है। इस मामले में, मोटे मोडुली समष्टि [[पिकार्ड योजना]] है, जो वक्रों के मोडुली समष्टि की तरह चित्ति का आविष्कार करने से पहले अध्ययन किया गया था। जब बंडलों की रैंक 1 और डिग्री शून्य होती है, मोटे मॉड्यूलि समष्टि का अध्ययन जैकोबियन किस्म का अध्ययन होता है।
अन्य महत्वपूर्ण मोडुली समस्या एक निश्चित बीजगणितीय किस्म X पर श्रेणी n वेक्टर बंडलों के मोडुली चित्ति Vect<sub>''n''</sub>(''X'') की (विभिन्न उपचित्ति) की ज्यामिति को समझना है।<ref>{{Cite web|title=वेक्टर बंडलों के बीजगणितीय ढेर और मोडुली|url=https://impa.br/wp-content/uploads/2017/04/PM_36.pdf|url-status=live}}</ref> इस चित्ति का सबसे अधिक अध्ययन तब किया गया है जब X एक-आयामी है, और विशेष रूप से जब n एक के बराबर है। इस स्थिति में, स्थूल मोडुली समष्टि [[पिकार्ड योजना|पिकार्ड प्रणाली]] है, जो वक्रों के मोडुली समष्टि की तरह चित्ति का आविष्कार करने से पहले अध्ययन किया गया था। जब बंडलों की श्रेणी 1 और कोटि शून्य होती है, स्थूल मॉड्यूलि समष्टि का अध्ययन जैकोबियन प्रकार का अध्ययन होता है।


भौतिकी के अनुप्रयोगों में, सदिश बंडलों के मापांकों की संख्या और [[फाइबर बंडल]]ों के मापांकों की संख्या की निकटता से संबंधित समस्या। मुख्य जी-बंडलों को [[गेज सिद्धांत]] में महत्वपूर्ण पाया गया है।{{citation needed|date=June 2013}}
भौतिकी के अनुप्रयोगों में, सदिश बंडलों के मापांकों की संख्या और [[फाइबर बंडल|सूत्र बंडल]] के मापांकों की संख्या की निकटता से संबंधित समस्या होती है। मुख्य G-बंडलों को [[गेज सिद्धांत]] में महत्वपूर्ण पाया गया है।{{citation needed|date=June 2013}}


=== मॉड्युली समष्टि का आयतन ===
=== मॉड्युली समष्टि का आयतन ===
सरल जियोडेसिक्स और वील-पीटरसन [https://www.math.stonybrook.edu/~mlyubich/Archive/Geometry/Teichmuller%20Space/Mirz3.pdf वॉल्यूम्स ऑफ़ मोडुली स्पेसेस] बॉर्डर वाली रीमैन सतहें।
परिवेशित रीमैन सतहों के [https://www.math.stonybrook.edu/~mlyubich/Archive/Geometry/Teichmuller%20Space/Mirz3.pdf मॉड्युली समष्टि] के सरल अल्पांतरी और वेइल पीटरसन आयतन सम्मिलित है।


== मोडुली समष्टि बनाने की विधियाँ ==
== मोडुली समष्टि बनाने की विधियाँ ==
मोडुली समस्याओं का आधुनिक सूत्रीकरण और मोडुली फंक्शनलर्स (या अधिक सामान्यतः ग्रुपोइड्स में रेशेदार श्रेणी) के संदर्भ में मोडुली समष्टि की परिभाषा, और रिक्त समष्टि (लगभग) उनका प्रतिनिधित्व करते हुए, ग्रोथेंडिक (1960/61) में वापस आते हैं, जिसमें उन्होंने वर्णित किया एक उदाहरण के रूप में जटिल विश्लेषणात्मक ज्यामिति में Teichmüller रिक्त समष्टि का उपयोग करके सामान्य रूपरेखा, दृष्टिकोण और मुख्य समस्याएं। वार्ता, विशेष रूप से, मॉडुलि रिक्त समष्टि के निर्माण की सामान्य विधि का वर्णन करती है, जो पहले विचाराधीन मोडुली समस्या को कठोर करती है।
मोडुली समस्याओं का आधुनिक सूत्रीकरण और मोडुली फलननिर्धारक (या अधिक सामान्यतः वर्गीकृत में तंतुमय श्रेणी) के संदर्भ में मोडुली समष्टि की परिभाषा, और समष्टि (लगभग) उनका प्रतिनिधित्व करते हुए, ग्रोथेंडिक (1960/61) में वापस आते हैं, जिसमें उन्होंने वर्णित किया एक उदाहरण के रूप में जटिल विश्लेषणात्मक ज्यामिति में टीचमुल्लर समष्टि का उपयोग करके सामान्य रूपरेखा, दृष्टिकोण और मुख्य समस्याएं। वार्ता, विशेष रूप से, मॉडुलि समष्टि के निर्माण की सामान्य विधि का वर्णन करती है, जो पहले विचाराधीन मोडुली समस्या को कठिन बनती है।


अधिक सटीक रूप से, वर्गीकृत की जा रही वस्तुओं के गैर-तुच्छ ऑटोमोर्फिज़्म का अस्तित्व एक ठीक मोडुली समष्टि को असंभव बना देता है। हालांकि, मूल वस्तुओं को अतिरिक्त डेटा के साथ वर्गीकृत करने की एक संशोधित मोडुली समस्या पर विचार करना प्रायः संभव होता है, इस तरह से चयन किया जाता है कि पहचान ही एकमात्र ऑटोमोर्फिज्म है जो अतिरिक्त डेटा का भी सम्मान करता है। कठोर डेटा के उपयुक्त विकल्प के साथ, संशोधित मोडुली समस्या में एक (ठीक) मोडुली समष्टि टी होगा, जिसे प्रायः एक उपयुक्त हिल्बर्ट स्कीम या कोट स्कीम की उपयोजना के रूप में वर्णित किया जाता है। कठोर डेटा को इसके अलावा चयन किया जाता है ताकि यह एक बीजगणितीय संरचना समूह G के साथ एक प्रमुख बंडल से अनुरूप हो। इस प्रकार कोई G की क्रिया द्वारा भागफल लेकर कठोर समस्या से मूल तक वापस जा सकता है, और मॉड्यूलि समष्टि के निर्माण की समस्या एक योजना (या अधिक सामान्य समष्टि) खोजने का बन जाता है जो (एक उपयुक्त मजबूत अर्थ में) जी की कार्रवाई से टी का भागफल टी/जी है। अंतिम समस्या, सामान्य रूप से, समाधान स्वीकार नहीं करती है; हालाँकि, इसे 1965 में [[डेविड ममफोर्ड]] द्वारा विकसित ग्राउंडब्रेकिंग [[ज्यामितीय अपरिवर्तनीय सिद्धांत]] (GIT) द्वारा संबोधित किया गया है, जो दर्शाता है कि उपयुक्त परिस्थितियों में भागफल वास्तव में मौजूद है।
अधिक परिशुद्ध रूप से, वर्गीकृत की जा रही वस्तुओं के गैर-सामान्य स्वाकारिकता का अस्तित्व एक शुद्ध मोडुली समष्टि को असंभव बना देता है। हालांकि, मूल वस्तुओं को अतिरिक्त डेटा के साथ वर्गीकृत करने की एक संशोधित मोडुली समस्या पर विचार करना प्रायः संभव होता है, इस तरह से चयन किया जाता है कि पहचान ही एकमात्र समाकारिकता है जो अतिरिक्त डेटा का भी सम्मान करता है। कठिन डेटा के उपयुक्त विकल्प के साथ, संशोधित मोडुली समस्या में एक (शुद्ध) मोडुली समष्टि T होगा, जिसे प्रायः एक उपयुक्त हिल्बर्ट प्रणाली या कोट प्रणाली की उपयोजना के रूप में वर्णित किया जाता है। कठिन डेटा को इसके अतिरिक्त चयन किया जाता है ताकि यह एक बीजगणितीय संरचना बंडल G के साथ एक प्रमुख बंडल से अनुरूप हो। इस प्रकार कोई G की क्रिया द्वारा भागफल लेकर कठिन समस्या से मूल तक वापस जा सकता है, और मॉड्यूलि समष्टि के निर्माण की समस्या एक प्रणाली (या अधिक सामान्य समष्टि) खोजने का बन जाता है जो (एक उपयुक्त प्रबल अर्थ में) G की संक्रिया से T का भागफल T/G है। अंतिम समस्या, सामान्य रूप से, समाधान स्वीकार नहीं करती है; हालाँकि, इसे 1965 में [[डेविड ममफोर्ड]] द्वारा विकसित ग्राउंडब्रेकिंग [[ज्यामितीय अपरिवर्तनीय सिद्धांत]] (जीआईटी) द्वारा संबोधित किया गया है, जो दर्शाता है कि उपयुक्त परिस्थितियों में भागफल वास्तव में सम्मिलित है।


यह देखने के लिए कि यह कैसे काम कर सकता है, प्रजाति जी> 2 के सरल वक्र पैरामीट्रिजिंग की समस्या पर विचार करें। डिग्री डी> 2 जी की एक [[पूर्ण रैखिक प्रणाली]] के साथ एक सरल वक्र प्रोजेक्टिव समष्टि 'पी' के बंद एक आयामी उप-योजना के बराबर है।<sup>डी−जी</sup>. नतीजतन, चिकने वक्र और रैखिक प्रणालियों (कुछ मानदंडों को पूरा करने वाले) के मोडुली समष्टि को पर्याप्त उच्च-आयामी प्रक्षेपी समष्टि की हिल्बर्ट योजना में एम्बेड किया जा सकता है। हिल्बर्ट योजना में इस लोकस एच में पीजीएल (एन) की क्रिया है जो रैखिक प्रणाली के तत्वों को मिलाती है; नतीजतन, सरल वक्र के मॉड्युली समष्टि को प्रक्षेप्य सामान्य रैखिक समूह द्वारा H के भागफल के रूप में पुनर्प्राप्त किया जाता है।
यह देखने के लिए कि यह कैसे काम कर सकता है, वर्ग g> 2 के सरल वक्र प्राचलीकरण की समस्या पर विचार करें। कोटि d> 2 जी की एक [[पूर्ण रैखिक प्रणाली]] के साथ एक सरल वक्र प्रक्षेपीय समष्‍टि ''''P'''<sup>''d−g''</sup>' के बंद एक आयामी उप-प्रणाली के बराबर है। परिणामस्वरूप, सामान्य वक्र और रैखिक प्रणालियों (कुछ मानदंडों को पूरा करने वाले) के मोडुली समष्टि को उयुक्त उच्च-आयामी प्रक्षेपी समष्टि की हिल्बर्ट प्रणाली में अन्तः स्थापित किया जा सकता है। हिल्बर्ट प्रणाली में इस बिन्दुपथ H में पीजीएल (n) की संक्रिया है जो रैखिक प्रणाली के तत्वों को मिलाती है; परिणामस्वरूप, सरल वक्र के मॉड्युली समष्टि को प्रक्षेप्य सामान्य रैखिक बंडल द्वारा H के भागफल के रूप में पुनर्प्राप्त किया जाता है।


एक अन्य सामान्य दृष्टिकोण मुख्य रूप से [[माइकल आर्टिन]] के साथ जुड़ा हुआ है। यहाँ विचार यह है कि जिस तरह की वस्तु को वर्गीकृत किया जाना है, उसके साथ प्रारंभ किया जाए और उसके [[विरूपण सिद्धांत]] का अध्ययन किया जाए। इसका अर्थ है कि पहले अतिसूक्ष्म विकृति का निर्माण करना, फिर 'पूर्व-प्रतिनिधित्व' प्रमेय को एक [[औपचारिक योजना]] आधार पर एक वस्तु में एक साथ रखने की अपील करना। इसके बाद, अलेक्जेंड्रे ग्रोथेंडिक के लिए एक अपील | ग्रोथेंडिक की [[ग्रोथेंडिक अस्तित्व प्रमेय]] एक आधार पर वांछित प्रकार की एक वस्तु प्रदान करती है जो एक पूर्ण स्थानीय रिंग है। इस वस्तु को आर्टिन के सन्निकटन प्रमेय के माध्यम से अनुमानित रूप से उत्पन्न वलय पर परिभाषित वस्तु द्वारा अनुमानित किया जा सकता है। इस बाद वाली वलय की एक वलय के स्पेक्ट्रम को वांछित मोडुली समष्टि पर एक प्रकार का समन्वय चार्ट देने के रूप में देखा जा सकता है। इन चार्टों को पर्याप्त रूप से एक साथ जोड़कर, हम अंतरिक्ष को कवर कर सकते हैं, लेकिन हमारे स्पेक्ट्रा के मिलन से मॉड्यूलि समष्टि तक का नक्शा सामान्य रूप से एक से कई होगा। इसलिए, हम पूर्व पर एक [[तुल्यता संबंध]] को परिभाषित करते हैं; अनिवार्य रूप से, दो बिंदु समतुल्य होते हैं यदि प्रत्येक के ऊपर की वस्तुएं आइसोमॉर्फिक हों। यह एक योजना और एक तुल्यता संबंध देता है, जो एक बीजगणितीय समष्टि को परिभाषित करने के लिए पर्याप्त है (वास्तव में एक बीजगणितीय चित्ति अगर हम सावधान रहें) यदि हमेशा एक योजना नहीं है।
अन्य सामान्य दृष्टिकोण मुख्य रूप से [[माइकल आर्टिन]] के साथ जुड़ा हुआ है। यहाँ विचार यह है कि जिस तरह की वस्तु को वर्गीकृत किया जाना है, उसके साथ प्रारंभ किया जाए और उसके [[विरूपण सिद्धांत]] का अध्ययन किया जाए। इसका अर्थ है कि पहले अतिसूक्ष्म विकृति का निर्माण करना, फिर 'पूर्व-प्रतिनिधित्व' प्रमेय को एक [[औपचारिक योजना|औपचारिक प्रणाली]] आधार पर एक वस्तु में एक साथ रखने की उपेक्षा करता है। इसके बाद, ग्रोथेंडिक की [[ग्रोथेंडिक अस्तित्व प्रमेय]] एक आधार पर वांछित प्रकार की एक वस्तु प्रदान करती है जो एक पूर्ण स्थानीय वलय है। इस वस्तु को आर्टिन के सन्निकटन प्रमेय के माध्यम से अनुमानित रूप से उत्पन्न वलय पर परिभाषित वस्तु द्वारा अनुमानित किया जा सकता है। इस बाद वाली वलय की एक वलय के स्पेक्ट्रम को वांछित मोडुली समष्टि पर एक प्रकार का समन्वय आरेख देने के रूप में देखा जा सकता है। इन आरेखों को उयुक्त रूप से एक साथ जोड़कर, हम समष्टि को आच्छादित कर सकते हैं, लेकिन हमारे दीप्ति रेखाएं के संयोजन से मॉड्यूलि समष्टि तक का मानचित्र सामान्य रूप से एक से अधिक होगा। इसलिए, हम पूर्व पर एक [[तुल्यता संबंध]] को परिभाषित करते हैं; अनिवार्य रूप से, दो बिंदु समतुल्य होते हैं यदि प्रत्येक के ऊपर की वस्तुएं समरूपी हों। यह एक प्रणाली और एक तुल्यता संबंध देता है, जो एक बीजगणितीय समष्टि को परिभाषित करने के लिए उयुक्त है (वास्तव में एक बीजगणितीय चित्ति यदि हम सावधान रहें) यदि सदैव एक प्रणाली नहीं है।


== भौतिकी में ==
== भौतिकी में ==
{{details|moduli (physics)}}
{{details|मॉडुली (भौतिकी) }}
मॉडुलि समष्टि शब्द का प्रयोग कभी-कभी भौतिक विज्ञान में [[अदिश क्षेत्र]] के एक सेट के वैक्यूम अपेक्षा मूल्यों के मोडुली समष्टि या संभावित [[स्ट्रिंग पृष्ठभूमि]] के मोडुली समष्टि के लिए विशेष रूप से संदर्भित करने के लिए किया जाता है।
मॉडुलि समष्टि शब्द का प्रयोग कभी-कभी भौतिक विज्ञान में [[अदिश क्षेत्र]] के एक समुच्चय के निर्वात अपेक्षा मानो के मोडुली समष्टि या संभावित [[स्ट्रिंग पृष्ठभूमि]] के मोडुली समष्टि के लिए विशेष रूप से संदर्भित करने के लिए किया जाता है।


मॉडुलि रिक्त समष्टि भौतिकी में [[टोपोलॉजिकल क्षेत्र सिद्धांत]] में भी दिखाई देते हैं, जहां कोई विभिन्न बीजगणितीय मोडुली समष्टि के प्रतिच्छेदन संख्या की गणना करने के लिए [[ फेनमैन पथ अभिन्न ]] का उपयोग कर सकता है।
मॉडुलि समष्टि भौतिकी में [[टोपोलॉजिकल क्षेत्र सिद्धांत|सांंस्थितिक क्षेत्र सिद्धांत]] में भी दिखाई देते हैं, जहां कोई विभिन्न बीजगणितीय मोडुली समष्टि के प्रतिच्छेदन संख्या की गणना करने के लिए [[ फेनमैन पथ अभिन्न |फेनमैन पथ समाकल]] का उपयोग कर सकता है।


== यह भी देखें ==
== यह भी देखें ==


=== निर्माण उपकरण ===
=== निर्माण उपकरण ===
* हिल्बर्ट योजना
* हिल्बर्ट प्रणाली
* भाव योजना
* कुओट प्रणाली
* विरूपण सिद्धांत
* विरूपण सिद्धांत
* [[जीआईटी भागफल]]
* [[जीआईटी भागफल]]
*आर्टिन की कसौटी, मोडुली फ़ैक्टरों से बीजगणितीय चित्ति के रूप में मोडुली रिक्त समष्टि के निर्माण के लिए सामान्य मानदंड
*आर्टिन का मानदंड, मोडुली फलन निर्धारक से बीजगणितीय चित्ति के रूप में मोडुली समष्टि के निर्माण के लिए सामान्य मानदंड


=== मोडुली समष्टि ===
=== मोडुली समष्टि ===
* बीजगणितीय वक्रों का मापांक
* बीजगणितीय वक्रों का मापांक
* [[अण्डाकार वक्रों का मोडुली ढेर|अण्डाकार वक्रों का मोडुली चित्ति]]  
* [[अण्डाकार वक्रों का मोडुली ढेर|दीर्घवृत्ताकार वक्रों का मोडुली चित्ति]]
*फ़ानो किस्मों की के-स्थिरता| के-स्थिर फ़ानो किस्मों के मोडुली समष्टि
*k-स्थिर फ़ानो विविधता के मोडुली समष्टि
* [[मॉड्यूलर वक्र]]
* [[मॉड्यूलर वक्र|प्रतिरूपक वक्र]]
* [[पिकार्ड फ़ैक्टर]]
* [[पिकार्ड फ़ैक्टर|पिकार्ड फलननिर्धारक]]
*कोट स्कीम# एक कर्व पर सेमीटेबल वेक्टर बंडल
*एक वक्र पर अर्धस्थिर चित्ति का मोडुली
* [[Kontsevich अंतरिक्ष मॉड्यूल]]
* [[Kontsevich अंतरिक्ष मॉड्यूल|कोंटेसेविच समष्टि मॉड्यूल]]
* सेमीस्टेबल शीशों का मोडुली
* अर्धस्थिर चित्ति का मोडुली


==संदर्भ==
==संदर्भ==
Line 239: Line 246:
*{{cite book |first=J. |last=Lurie |author-link=Jacob Lurie |chapter=Moduli Problems for Ring Spectra |title=Proceedings of the International Congress of Mathematicians 2010 (ICM 2010) |pages=1099–1125 |year=2011 |doi=10.1142/9789814324359_0088 }}
*{{cite book |first=J. |last=Lurie |author-link=Jacob Lurie |chapter=Moduli Problems for Ring Spectra |title=Proceedings of the International Congress of Mathematicians 2010 (ICM 2010) |pages=1099–1125 |year=2011 |doi=10.1142/9789814324359_0088 }}


{{String theory topics |state=collapsed}}
[[Category:All articles with unsourced statements]]
 
[[Category:Articles with hatnote templates targeting a nonexistent page]]
{{Authority control}}[[Category: मोडुली सिद्धांत]] [[Category: अपरिवर्तनीय सिद्धांत]]  
[[Category:Articles with invalid date parameter in template]]
 
[[Category:Articles with unsourced statements from June 2013]]
 
[[Category:CS1 maint]]
 
[[Category:Collapse templates]]
[[Category: Machine Translated Page]]
[[Category:Created On 11/04/2023]]
[[Category:Created On 11/04/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]

Latest revision as of 18:27, 1 May 2023

गणित में, विशेष रूप से बीजगणितीय ज्यामिति में, मॉड्युली समष्टि एक ज्यामितीय समष्टि सामान्य रूप से प्रणाली (गणित) या बीजगणितीय चित्ति (स्टैक) होता है, जिसके बिंदु कुछ निश्चित प्रकार के बीजगणितीय-ज्यामितीय वस्तुओं या ऐसी वस्तुओं के समरूपता वर्गो का प्रतिनिधित्व करते हैं। ऐसे समष्टि प्रायः वर्गीकरण समस्याओं के समाधान के रूप में उत्पन्न होते हैं: यदि कोई यह दिखा सकता है कि रोचक वस्तुओं का समुच्चय (उदाहरण के लिए, एक निश्चित वर्ग के सरल बीजगणितीय वक्र) को एक ज्यामितीय समष्टि की संरचना दी जा सकती है, तो परिणामी समष्टि पर निर्देशांक प्रस्तुत करके ऐसी वस्तुओं को पैरामीट्रिज किया जा सकता है। इस संदर्भ में, मापांक शब्द का प्रयोग पैरामीटर के पर्याय के रूप में किया जाता है; मॉडुलि समष्टि को पहले वस्तुओं के समष्टि के अतिरिक्त मापदंडों के समष्टि के रूप में समझा गया था। मॉड्यूलि समष्टि का एक प्रकार औपचारिक मोडुली है। बर्नहार्ड रीमैन ने पहली बार 1857 में मोडुली शब्द का उपयोग किया था।[1]


कारण

मॉड्यूलि समष्टि ज्यामितीय वर्गीकरण समस्याओं के समाधान के समष्टि हैं। अर्थात, मॉड्यूलि समष्टि के अंक ज्यामितीय समस्याओं के समाधान के अनुरूप हैं। यहां अलग-अलग समाधानों की पहचान की जाती है यदि वे समरूपी हैं, अर्थात ज्यामितीय रूप से समान होते है। मॉडुलि समष्टि को समस्या के लिए मापदंडों का एक सार्वभौमिक समष्टि देने के बारे में विचार किया जा सकता है। उदाहरण के लिए, यूक्लिडियन तल में सभी वृत्तों को सर्वांगसमता तक खोजने की समस्या पर विचार करें। किसी भी वृत्त को तीन बिंदु देकर विशिष्ट रूप से वर्णित किया जा सकता है, लेकिन तीन बिंदुओं के कई अलग-अलग समुच्चय समान वृत्त देते हैं अर्थात समानता एक से अनेक है। हालाँकि, वृत्तों को उनके केंद्र और त्रिज्या देकर विशिष्ट रूप से परिचालित किया जाता है, यह दो वास्तविक पैरामीटर और एक धनात्मक वास्तविक पैरामीटर है। चूँकि हम केवल सर्वांगसमता तक के वृत्तों में संबंध होता हैं, इसलिए हम ऐसे वृत्तों की पहचान करते हैं जिनके केंद्र अलग-अलग हों, लेकिन समान त्रिज्या हो, और इसलिए केवल त्रिज्या ही भाग के समुच्चय को पैरामीटर करने के लिए उयुक्त है। इसलिए मॉड्यूलि समष्टि धनात्मक वास्तविक संख्या है।

मोडुली समष्टि प्रायः प्राकृतिक ज्यामितीय और सांस्थितिकीय संरचनाओं को भी ले जाते हैं। वृत्तों के उदाहरण में, मोडुली समष्टि केवल एक अमूर्त समुच्चय नहीं है, लेकिन त्रिज्या के अंतर का पूर्ण मान एक आव्यूह (गणित) को परिभाषित करता है, यह निर्धारित करने के लिए कि जब दो वृत्त समीप होते हैं। मॉड्यूलि समष्टि की ज्यामितीय संरचना स्थानीय रूप से हमें बताती है कि ज्यामितीय वर्गीकरण समस्या के दो समाधान समीप हैं, लेकिन सामान्य रूप से मोडुली समष्टि में एक जटिल वैश्विक संरचना भी होती है।

उदाहरण के लिए, विचार करें कि R2 में रेखाओं के समुच्चय का वर्णन कैसे किया जाए जो मूल बिंदु को प्रतिच्छेद करती है। हम इस वर्ग की प्रत्येक रेखा L को एक परिणाम मे निर्दिष्ट करना चाहते हैं जो विशिष्ट रूप से इसे एक मापांक की पहचान कर सके। ऐसी मात्रा का एक उदाहरण 0 ≤ θ < π रेडियन के साथ धनात्मक कोण θ(L) है। और L रेखाओ का समुच्चय इसलिए पैरामीटर युक्त को P1(R) के रूप में जाना जाता है और इसे वास्तविक प्रक्षेप्य रेखा कहा जाता है।

हम R2 में रेखाओं के समुच्चय का भी वर्णन कर सकते हैं जो एक सांस्थितिकीय निर्माण के माध्यम से मूल को प्रतिच्छेद करता है। अतः S1R2 पर विचार करने के लिए और ध्यान दें कि प्रत्येक बिंदु sS1 समुच्चय में एक रेखा L(s) देता है जो मूल बिंदु और s को जोड़ता है। हालाँकि, यह मानचित्र दो से एक है, इसलिए हम P1(R) ≅ S1/~ उत्पन्न करने के लिए s ~ −s की पहचान करना चाहते हैं, जहां इस समष्टि पर सांस्थिति भागफल मानचित्र S1P1(R) द्वारा प्रेरित भागफल सांस्थिति है।

इस प्रकार, जब हम P1(R) पर विचार करते हैं, रेखाओं की मॉड्यूलि समष्टि के रूप में जो R2 में मूल बिन्दु को प्रतिच्छेद करती है, हम उन तरीकों को अभिग्रहण करते हैं जिनमें वर्ग के इकाई (इस स्थिति में रेखा) 0 ≤ θ < π को निरंतर बदलते हुए संशोधित कर सकते हैं।

सामान्य उदाहरण

प्रक्षेपीय समष्‍टि और ग्रासमैनियन

वास्तविक प्रक्षेपीय समष्‍टि Pn एक मोडुली समष्‍टि है जो Rn+1 में रेखाओ की समष्टि को पैरामीट्रिज करता है जो मूल के माध्यम से गुजरता है। इसी प्रकार, जटिल प्रक्षेपीय समष्‍टि Cn+1 में मूल बिन्दु के माध्यम से गुजरने वाली सभी जटिल रेखाओं का समष्टि है।

अधिक सामान्य रूप से, क्षेत्र F पर सदिश समष्टि V का ग्रासमानियन 'G'(k, V), V के सभी k-विमीय रैखिक उपसमष्टि का मॉडुलि समष्टि होता है।

वैश्विक रूप से उत्पन्न वर्गों के साथ वृहत रेखा बंडल के मॉड्यूल के रूप में प्रक्षेपीय समष्‍टि

सार्वभौमिक प्रक्षेप्य समष्टि में जब भी किसी प्रणाली का अन्तः स्थापन होता है,[2][3] तो अन्तः स्थापन एक रेखा बंडल द्वारा दी गई है, और भाग जो सभी समान समय में शून्य नहीं होते हैं। इसका तात्पर्य है, एक बिंदु दिया गया है

एक संबद्ध बिंदु है

रचनाओं द्वारा प्रदान किया गया

फिर, अनुभागों के साथ दो रेखा बंडल समतुल्य हैं

यदि कोई तुल्याकारिता है जैसे कि है। इसका तात्पर्य है संबंधित मोडुली फलननिर्धारक

रचना समुच्चय पर प्रेषित करता है

यह दिखा रहा है कि यह सच है, पुनरुक्ति की एक श्रृंखला के माध्यम से परिचालन किया जा सकता है: कोई भी प्रक्षेप्य अन्तः स्थापन वैश्विक रूप से उत्पन्न शीफ वर्गों के साथ देता है। इसके विपरीत, एक विस्तृत रेखा बंडल दिया गया है। वैश्विक रूप से उत्पन्न अनुभाग ऊपर के रूप में एक अन्तः स्थापन देता है।

चाउ प्रकार

चाउ प्रकार Chow(d,P3) एक प्रक्षेपी बीजगणितीय प्रकार है जो P3 में कोटि d वक्रों को पैरामीट्रिज करती है। इसका निर्माण निम्नानुसार किया गया है। मान लीजिए C, P3 में कोटि d का एक वक्र है, फिर P3 में उन सभी रेखाओं पर विचार करें जो वक्र C को प्रतिच्छेद करती हैं। यह G(2, 4) में एक कोटि d भाजक DC है, जो P3 में रेखाओं का ग्रासमानियन है। जब C भिन्न होता है, तो C को DC से जोड़कर, हम ग्रासमानियन चाउ (d, P3) के कोटि d विभाजकों के समष्टि के उपसमुच्चय के रूप में कोटि d वक्रों का एक पैरामीटर स्थान प्राप्त करते हैं।

हिल्बर्ट प्रणाली

हिल्बर्ट प्रणाली Hilb(X) एक मोडुली प्रणाली है। Hilb(X) का प्रत्येक बंद बिंदु एक निश्चित प्रणाली X की एक संवृत्त उपप्रणाली से अनुरूप है, और प्रत्येक संवृत्त उपप्रणाली को ऐसे बिंदु द्वारा दर्शाया जाता है। हिल्बर्ट प्रणाली का एक सरल उदाहरण प्रक्षेपीय समष्‍टि के कोटि ऊनविम पृष्ठ को पैरामिट्रीकृत करने वाली हिल्बर्ट प्रणाली है। यह प्रक्षेपी बंडल द्वारा दिया जाता है

द्वारा दिए गए सार्वभौमिक वर्ग के साथ

द्वारा दिया गया

जहाँ डिग्री d सजातीय बहुपद f के लिए संबद्ध प्रक्षेपी प्रणाली है।

परिभाषाएँ

वस्तुओ की कई संबंधित धारणाएं हैं जिन्हें हम मोडुली समष्टि कह सकते हैं। इनमें से प्रत्येक परिभाषा ज्यामितीय वस्तुओं का प्रतिनिधित्व करने के लिए समष्टि M के बिंदुओं के लिए इसका क्या अर्थ है, इसकी एक अलग धारणा को औपचारिक रूप देती है।

सूक्ष्म मोडुलि समष्टि

यह मानक अवधारणा है। स्वानुभविक रूप से, यदि हमारे पास एक समष्टि M है जिसके लिए प्रत्येक बिंदु mM बीजगणित-ज्यामितीय वस्तु Um से अनुरूप है, तो हम इन वस्तुओं को M पर एक पुनरुक्तात्मक वर्ग U में संग्रहित कर सकते हैं। उदाहरण के लिए, ग्रासमैनियन 'G(k, V) श्रेणी K के समुच्चय को ले जाता है जिसका सूत्र किसी भी बिंदु पर [L] ∊ G(k, V) केवल रैखिक उपसमष्टि L ⊂ V है। M को वर्ग U का 'आधार स्थान' कहा जाता है। हम कहते हैं कि ऐसा वर्ग सार्वभौमिक है यदि बीजगणित-ज्यामितीय वस्तुओं का कोई भी वर्ग किसी भी आधार स्थान B पर T एक अद्वितीय मानचित्र B → M के साथ U का पुलबैक (श्रेणी सिद्धांत) है। सूक्ष्म मोडुलि समष्टि एक समष्टि M है जो एक सार्वभौमिक वर्ग का आधार है।

अधिक परिशुद्ध रूप से, मान लीजिए कि हमारे पास योजनाओं से लेकर समुच्चय तक एक फलननिर्धारक F है, जो एक प्रणाली B को आधार B के साथ वस्तुओं के सभी उपयुक्त वर्गों के समुच्चय को निर्धारित करता है। समष्टि M, फलननिर्धारक F के लिए एक 'सूक्ष्म मोडुली समष्टि' है यदि M प्रतिनिधित्व योग्य है फलननिर्धारक F, अर्थात एक प्राकृतिक समरूपता τ : FHom(−, M) है, जहां Hom(−, M) बिंदुओं का फलननिर्धारक है। इसका तात्पर्य है कि M एक सार्वभौमिक वर्ग रखता है; यह वर्ग पर पहचान मानचित्र 1MHom(M, M) के अनुरूप वर्ग है।

स्थूल मॉडुलि समष्टि

सूक्ष्म मोडुली समष्टि वांछनीय हैं, लेकिन वे सदैव सम्मिलित नहीं होते हैं और प्रायः निर्माण करना कठिन होता है, इसलिए गणितज्ञ कभी-कभी एक दुर्बल धारणा का उपयोग करते हैं जो स्थूल मोडुली समष्टि का विचार है। यदि कोई प्राकृतिक रूपांतरण τ : F → Hom(-, M) सम्मिलित है और τ ऐसे प्राकृतिक परिवर्तनों के बीच सार्वभौमिक है, तो एक समष्टि M, फलननिर्धारक F के लिए एक स्थूल मोडुली समष्टि है। अधिक ठोस रूप से, M, F के लिए एक स्थूल मोडुली समष्टि है यदि कोई वर्ग T एक आधार B पर एक मानचित्र φT : B → M और किन्हीं दो वस्तुओं V और W (एक बिंदु पर वर्गों के रूप में माना जाता है) को समान बिंदु के अनुरूप बनाता है। M यदि और केवल यदि V और W समरूपी हैं। इस प्रकार, M एक ऐसा समष्टि है जिसमें प्रत्येक वस्तु के लिए एक बिंदु होता है जो एक वर्ग में प्रकट हो सकता है, और जिसकी ज्यामिति वर्गों में वस्तुओं के भिन्न होने के तरीकों को दर्शाती है। हालांकि, ध्यान दें कि, एक स्थूल मोडुली समष्टि में आवश्यक रूप से उपयुक्त वस्तुओं का कोई वर्ग नहीं होता है, केवल एक सार्वभौमिक होने दें।

दूसरे शब्दों में, एक सूक्ष्म मॉडुलि समष्टि में आधार स्थान M और सार्वभौमिक वर्ग U → M दोनों सम्मिलित होते हैं, जबकि स्थूल मॉड्यूलि समष्टि में केवल आधार स्थान M होता है।

मोडुली चित्ति

प्रायः ऐसा होता है कि रोचक ज्यामितीय वस्तुएं कई प्राकृतिक स्वाकारिकता से सुसज्जित होती हैं। यह विशेष रूप से एक सूक्ष्म मोडुली समष्टि के अस्तित्व को असंभव बनाता है सामान्य रूप से, विचार यह है कि यदि एल कुछ ज्यामितीय वस्तु है, तो सामान्य वर्ग L × [0,1] को वृत्त 'S1' 1 L × {0} को L × {1} के साथ एक गैर-सामान्य स्वाकारिकता के माध्यम से पहचान कर व्यावर्तित वर्ग में बनाया जा सकता है। अब यदि सूक्ष्म मॉडुलि समष्टि X अस्तित्व में है, तो मानचित्र 'S'1 → X को स्थिर नहीं होना चाहिए, लेकिन सामान्यतः से किसी भी उपयुक्त विवृत समुच्चय पर स्थिर होना चाहिए, फिर भी कभी-कभी स्थूल मोडुली समष्टि प्राप्त कर सकते हैं। हालांकि, यह दृष्टिकोण आदर्श नहीं है, क्योंकि ऐसे समष्टि के अस्तित्व की प्रत्याभूति नहीं है, जब वे सम्मिलित होते हैं तो वे प्रायः असामान्य होते हैं, और उन वस्तुओं के कुछ गैर-सामान्य वर्गों के बारे में विवरण स्मरण करते हैं जिन्हें वे वर्गीकृत करते हैं।

समरूपताओं को याद करके वर्गीकरण को समृद्ध करने के लिए एक अधिक परिष्कृत दृष्टिकोण है। अधिक परिशुद्ध रूप से, किसी भी आधार पर B पर वर्गों की श्रेणी पर विचार कर सकता है, जिसमें वर्गों के बीच केवल समरूपता के रूप में लिया जाता है। एक तब तंतुमय श्रेणी पर विचार करता है जो किसी भी समष्टि B को B से अधिक वर्गों के बंडल को निर्दिष्ट करता है। मॉड्यूलि समस्या का वर्णन करने के लिए वर्गीकृत में सूत्र की गई इन श्रेणियों का उपयोग ग्रोथेंडिक (1960/61) तक जाता है। सामान्य रूप से, उन्हें योजनाओं या बीजगणितीय समष्टि द्वारा प्रदर्शित नहीं किया जा सकता है, लेकिन कई स्थितियों में, उनके पास बीजगणितीय चित्ति की प्राकृतिक संरचना होती है।

डेलिग्ने-ममफोर्ड (1969) में बीजगणितीय चित्ति और मॉडुलि समस्याओं का विश्लेषण करने के लिए उनका उपयोग एक दिए गए वर्ग के बीजगणितीय वक्र के (स्थूल) मोडुली की अपरिवर्तनीयता को परिणाम करने के लिए एक उपकरण के रूप में दिखाई दिया। बीजगणितीय चित्ति की भाषा अनिवार्य रूप से तंतुमय श्रेणी को देखने के लिए एक व्यवस्थित तरीका प्रदान करती है जो एक समष्टि के रूप में मोडुली समस्या का निर्माण करती है, और 'मॉड्यूली चित्ति' कई मॉडुलि समस्याओं में से अधिकांश संबंधित स्थूल मॉडुलि समष्टि की तुलना में अधिकतम व्यवहार (जैसे सरल) है।

अन्य उदाहरण

वक्रों का मापांक

मोडुली चित्ति वर्ग g के सामान्य प्रक्षेपी वक्र के वर्गों को उनके समरूपताओं के साथ वर्गीकृत करता है। जब g > 1, इस चित्ति को नई सीमा बिंदुओं को जोड़कर संकुचित किया जा सकता है जो स्थिर केंद्रक वक्रों (उनके समरूपताओं के साथ) के अनुरूप होता है। एक वक्र स्थिर होता है यदि इसमें केवल समाकारिकता का परिमित बंडल होता है। परिणामी चित्ति को दर्शाया गया है। दोनों मोडुली चित्ति वक्रों के सार्वभौमिक वर्गों को ले जाते हैं। सामान्य या स्थिर वक्रों के समरूपता वर्गों का प्रतिनिधित्व करने वाले स्थूल मोडुली समष्टि को भी परिभाषित किया जा सकता है। मोडुली चित्ति की धारणा का आविष्कार करने से पहले इन स्थूल मॉडुलि समष्टि का वास्तव में अध्ययन किया गया था। वास्तव में, मोडुली चित्ति के विचार का आविष्कार डेलिग्ने और ममफोर्ड द्वारा किया गया था ताकि स्थूल मॉडुलि समष्टि की उत्पादकता को परिणाम करने का प्रयास किया जा सके। हाल के वर्षों में, यह स्पष्ट हो गया है कि वक्रों का चित्ति वास्तव में अधिक मौलिक वस्तु है।

ऊपर के दोनों चित्ति का आयाम 3g−3 है; इसलिए एक स्थिर केंद्रक वक्र को पूरी तरह से 3g−3 मापदंडों के मानो को जब g> 1 चयन करके निर्दिष्ट किया जा सकता है। निचले वर्ग में, किसी को समाकारिकता के सामान्य वर्गों की उपस्थिति के लिए उनकी संख्या घटाकर गणना करनी चाहिए। वर्ग शून्य का परिशुद्ध एक जटिल वक्र है, रीमैन वृत्त और इसके समरूपता का बंडल प्रक्षेपी सामान्य रैखिक (पीजीएल(2)) है। इसलिए, का आयाम है

आयाम(वर्ग शून्य वक्र की समष्टि) - आयाम(समाकारिकता का बंडल) = 0 - आयाम(पीजीएल(2)) = -3

इसी तरह, वर्ग 1 में, वक्र का एक आयामी समष्टि है, लेकिन इस तरह के प्रत्येक वक्र में समाकारिकता का एक आयामी बंडल होता है। इसलिए, चित्ति आयाम 0 है। अतः g > 1 होने पर स्थूल मॉडुलि समष्टि का आयाम 3g−3 होता है, क्योंकि वर्ग g > 1 के साथ वक्र केवल एक परिमित बंडल होता है, जैसे कि आयाम (समाकारिकता का एक बंडल) = 0 है। अंततः, वर्ग शून्य, स्थूल मोडुलि समष्टि का आयाम शून्य है, और वर्ग एक में इसका आयाम एक है।

n चिह्नित बिंदुओं के साथ वर्ग g केंद्रक वक्र के मोडुली चित्ति पर विचार करके भी समस्या को समृद्ध किया जा सकता है। इस तरह के चिह्नित वक्रों को स्थिर कहा जाता है यदि चिह्नित बिंदुओं को सही करने वाले वक्र समाकारिकता का उपसमूह परिमित है। n-चिन्हित बिंदुओं के साथ सामान्य (या स्थिर) वर्ग g वक्र के परिणामी मोडुली चित्ति (या ) को निरूपित किया जाता है, और आयाम 3g − 3 + n है।

विशेष संबंध की एक स्थिति एक चिन्हित बिंदु के साथ वर्ग 1 वक्र के मोडुली चित्ति एक चिह्नित बिंदु के साथ वर्ग 1 वक्र है। यह दीर्घवृत्‍तीय वक्रो का चित्ति है, और बहुत अध्ययन किए गए प्रतिरूपक रूप का प्राकृतिक स्थान है, जो इस चित्ति पर भाग के अनंतकी खंड हैं।

विविधता का मापांक

उच्च आयामों में, बीजगणितीय विविधता के मॉड्यूल का निर्माण और अध्ययन करना अधिक कठिन होता है। उदाहरण के लिए, ऊपर चर्चित दीर्घवृत्ताकार वक्रों के मॉडुलि समष्टि का उच्च-आयामी एनालॉग एबेलियन विविधता का मोडुली समष्टि है, जैसे कि सीगल प्रतिरूपक असमरूपता है। यह सीगल प्रतिरूपक प्रतिघात सिद्धांत की अंतर्निहित समस्या है। शिमूरा विविधता भी देखें।

न्यूनतम मॉडल क्रमादेश से उत्पन्न होने वाली तकनीकों का उपयोग करते हुए, जेनोस कोल्लार और निकोलस शेफर्ड-बैरन द्वारा सामान्य प्रकार की विविधता के मोडुली समष्टि का निर्माण किया गया, जिसे अब केएसबी मोडुली समष्टि के रूप में जाना जाता है।[4]

अवकल ज्यामिति और द्विपरिमेय ज्यामिति से एक साथ उत्पन्न होने वाली तकनीकों का उपयोग करते हुए, k-स्थिर किस्मों के एक विशेष वर्ग तक सीमित करके फानो किस्मों के मोडुली समष्टि का निर्माण किया गया है। इस संस्थापन में कौचर बिरकर द्वारा सिद्ध की गई फ़ानो विविधता की सीमा के बारे में महत्वपूर्ण परिणामों का उपयोग किया जाता है, जिसके लिए उन्हें 2018 क्षेत्र मेडल से सम्मानित किया गया था।

कैलाबी-यौ विविधता के मॉडुलि समष्टि का निर्माण एक महत्वपूर्ण विवृत समस्या है, और केवल विशेष स्थिति जैसे कि K3 सतह या एबेलियन विविधता के मोडुली समष्टि को समझा जाता है।[5]


वेक्टर बंडलों का मॉड्यूल

अन्य महत्वपूर्ण मोडुली समस्या एक निश्चित बीजगणितीय किस्म X पर श्रेणी n वेक्टर बंडलों के मोडुली चित्ति Vectn(X) की (विभिन्न उपचित्ति) की ज्यामिति को समझना है।[6] इस चित्ति का सबसे अधिक अध्ययन तब किया गया है जब X एक-आयामी है, और विशेष रूप से जब n एक के बराबर है। इस स्थिति में, स्थूल मोडुली समष्टि पिकार्ड प्रणाली है, जो वक्रों के मोडुली समष्टि की तरह चित्ति का आविष्कार करने से पहले अध्ययन किया गया था। जब बंडलों की श्रेणी 1 और कोटि शून्य होती है, स्थूल मॉड्यूलि समष्टि का अध्ययन जैकोबियन प्रकार का अध्ययन होता है।

भौतिकी के अनुप्रयोगों में, सदिश बंडलों के मापांकों की संख्या और सूत्र बंडल के मापांकों की संख्या की निकटता से संबंधित समस्या होती है। मुख्य G-बंडलों को गेज सिद्धांत में महत्वपूर्ण पाया गया है।[citation needed]

मॉड्युली समष्टि का आयतन

परिवेशित रीमैन सतहों के मॉड्युली समष्टि के सरल अल्पांतरी और वेइल पीटरसन आयतन सम्मिलित है।

मोडुली समष्टि बनाने की विधियाँ

मोडुली समस्याओं का आधुनिक सूत्रीकरण और मोडुली फलननिर्धारक (या अधिक सामान्यतः वर्गीकृत में तंतुमय श्रेणी) के संदर्भ में मोडुली समष्टि की परिभाषा, और समष्टि (लगभग) उनका प्रतिनिधित्व करते हुए, ग्रोथेंडिक (1960/61) में वापस आते हैं, जिसमें उन्होंने वर्णित किया एक उदाहरण के रूप में जटिल विश्लेषणात्मक ज्यामिति में टीचमुल्लर समष्टि का उपयोग करके सामान्य रूपरेखा, दृष्टिकोण और मुख्य समस्याएं। वार्ता, विशेष रूप से, मॉडुलि समष्टि के निर्माण की सामान्य विधि का वर्णन करती है, जो पहले विचाराधीन मोडुली समस्या को कठिन बनती है।

अधिक परिशुद्ध रूप से, वर्गीकृत की जा रही वस्तुओं के गैर-सामान्य स्वाकारिकता का अस्तित्व एक शुद्ध मोडुली समष्टि को असंभव बना देता है। हालांकि, मूल वस्तुओं को अतिरिक्त डेटा के साथ वर्गीकृत करने की एक संशोधित मोडुली समस्या पर विचार करना प्रायः संभव होता है, इस तरह से चयन किया जाता है कि पहचान ही एकमात्र समाकारिकता है जो अतिरिक्त डेटा का भी सम्मान करता है। कठिन डेटा के उपयुक्त विकल्प के साथ, संशोधित मोडुली समस्या में एक (शुद्ध) मोडुली समष्टि T होगा, जिसे प्रायः एक उपयुक्त हिल्बर्ट प्रणाली या कोट प्रणाली की उपयोजना के रूप में वर्णित किया जाता है। कठिन डेटा को इसके अतिरिक्त चयन किया जाता है ताकि यह एक बीजगणितीय संरचना बंडल G के साथ एक प्रमुख बंडल से अनुरूप हो। इस प्रकार कोई G की क्रिया द्वारा भागफल लेकर कठिन समस्या से मूल तक वापस जा सकता है, और मॉड्यूलि समष्टि के निर्माण की समस्या एक प्रणाली (या अधिक सामान्य समष्टि) खोजने का बन जाता है जो (एक उपयुक्त प्रबल अर्थ में) G की संक्रिया से T का भागफल T/G है। अंतिम समस्या, सामान्य रूप से, समाधान स्वीकार नहीं करती है; हालाँकि, इसे 1965 में डेविड ममफोर्ड द्वारा विकसित ग्राउंडब्रेकिंग ज्यामितीय अपरिवर्तनीय सिद्धांत (जीआईटी) द्वारा संबोधित किया गया है, जो दर्शाता है कि उपयुक्त परिस्थितियों में भागफल वास्तव में सम्मिलित है।

यह देखने के लिए कि यह कैसे काम कर सकता है, वर्ग g> 2 के सरल वक्र प्राचलीकरण की समस्या पर विचार करें। कोटि d> 2 जी की एक पूर्ण रैखिक प्रणाली के साथ एक सरल वक्र प्रक्षेपीय समष्‍टि 'Pd−g' के बंद एक आयामी उप-प्रणाली के बराबर है। परिणामस्वरूप, सामान्य वक्र और रैखिक प्रणालियों (कुछ मानदंडों को पूरा करने वाले) के मोडुली समष्टि को उयुक्त उच्च-आयामी प्रक्षेपी समष्टि की हिल्बर्ट प्रणाली में अन्तः स्थापित किया जा सकता है। हिल्बर्ट प्रणाली में इस बिन्दुपथ H में पीजीएल (n) की संक्रिया है जो रैखिक प्रणाली के तत्वों को मिलाती है; परिणामस्वरूप, सरल वक्र के मॉड्युली समष्टि को प्रक्षेप्य सामान्य रैखिक बंडल द्वारा H के भागफल के रूप में पुनर्प्राप्त किया जाता है।

अन्य सामान्य दृष्टिकोण मुख्य रूप से माइकल आर्टिन के साथ जुड़ा हुआ है। यहाँ विचार यह है कि जिस तरह की वस्तु को वर्गीकृत किया जाना है, उसके साथ प्रारंभ किया जाए और उसके विरूपण सिद्धांत का अध्ययन किया जाए। इसका अर्थ है कि पहले अतिसूक्ष्म विकृति का निर्माण करना, फिर 'पूर्व-प्रतिनिधित्व' प्रमेय को एक औपचारिक प्रणाली आधार पर एक वस्तु में एक साथ रखने की उपेक्षा करता है। इसके बाद, ग्रोथेंडिक की ग्रोथेंडिक अस्तित्व प्रमेय एक आधार पर वांछित प्रकार की एक वस्तु प्रदान करती है जो एक पूर्ण स्थानीय वलय है। इस वस्तु को आर्टिन के सन्निकटन प्रमेय के माध्यम से अनुमानित रूप से उत्पन्न वलय पर परिभाषित वस्तु द्वारा अनुमानित किया जा सकता है। इस बाद वाली वलय की एक वलय के स्पेक्ट्रम को वांछित मोडुली समष्टि पर एक प्रकार का समन्वय आरेख देने के रूप में देखा जा सकता है। इन आरेखों को उयुक्त रूप से एक साथ जोड़कर, हम समष्टि को आच्छादित कर सकते हैं, लेकिन हमारे दीप्ति रेखाएं के संयोजन से मॉड्यूलि समष्टि तक का मानचित्र सामान्य रूप से एक से अधिक होगा। इसलिए, हम पूर्व पर एक तुल्यता संबंध को परिभाषित करते हैं; अनिवार्य रूप से, दो बिंदु समतुल्य होते हैं यदि प्रत्येक के ऊपर की वस्तुएं समरूपी हों। यह एक प्रणाली और एक तुल्यता संबंध देता है, जो एक बीजगणितीय समष्टि को परिभाषित करने के लिए उयुक्त है (वास्तव में एक बीजगणितीय चित्ति यदि हम सावधान रहें) यदि सदैव एक प्रणाली नहीं है।

भौतिकी में

मॉडुलि समष्टि शब्द का प्रयोग कभी-कभी भौतिक विज्ञान में अदिश क्षेत्र के एक समुच्चय के निर्वात अपेक्षा मानो के मोडुली समष्टि या संभावित स्ट्रिंग पृष्ठभूमि के मोडुली समष्टि के लिए विशेष रूप से संदर्भित करने के लिए किया जाता है।

मॉडुलि समष्टि भौतिकी में सांंस्थितिक क्षेत्र सिद्धांत में भी दिखाई देते हैं, जहां कोई विभिन्न बीजगणितीय मोडुली समष्टि के प्रतिच्छेदन संख्या की गणना करने के लिए फेनमैन पथ समाकल का उपयोग कर सकता है।

यह भी देखें

निर्माण उपकरण

  • हिल्बर्ट प्रणाली
  • कुओट प्रणाली
  • विरूपण सिद्धांत
  • जीआईटी भागफल
  • आर्टिन का मानदंड, मोडुली फलन निर्धारक से बीजगणितीय चित्ति के रूप में मोडुली समष्टि के निर्माण के लिए सामान्य मानदंड

मोडुली समष्टि

संदर्भ

  1. Chan, Melody. "Moduli Spaces of Curves: Classical and Tropical" (PDF). AMS.
  2. "Lemma 27.13.1 (01NE)—The Stacks project". stacks.math.columbia.edu. Retrieved 2020-09-12.
  3. "algebraic geometry - What does projective space classify?". Mathematics Stack Exchange. Retrieved 2020-09-12.
  4. J. Kollar. Moduli of varieties of general type, Handbook of moduli. Vol. II, 2013, pp. 131–157.
  5. Huybrechts, D., 2016. Lectures on K3 surfaces (Vol. 158). Cambridge University Press.
  6. "वेक्टर बंडलों के बीजगणितीय ढेर और मोडुली" (PDF).{{cite web}}: CS1 maint: url-status (link)



टिप्पणियाँ


अनुसंधान लेख

मौलिक कागजात

  • डेविड ममफोर्ड|ममफोर्ड, डेविड, ज्यामितीय अपरिवर्तनीय सिद्धांत। गणित और उनके सीमावर्ती क्षेत्रों के परिणाम, नई श्रृंखला, वॉल्यूम 34 स्प्रिंगर-वर्लग, बर्लिन-न्यूयॉर्क 1965 vi+145 पीपी MR0214602
  • ममफोर्ड, डेविड; फोगार्टी, जे.; किरवान, एफ। ज्यामितीय अपरिवर्तनीय सिद्धांत। तीसरा संस्करण। गणित और संबंधित क्षेत्रों में परिणाम (2) (गणित और संबंधित क्षेत्रों में परिणाम (2)), 34. स्प्रिंगर-वेरलाग, बर्लिन, 1994. xiv+292 पीपी। MR1304906 ISBN 3-540-56963-4

प्रारंभिक अनुप्रयोग

अन्य संदर्भ

  • पापड़ोपोलोस, अथानेसे, संस्करण। (2007), टेचमुलर सिद्धांत की पुस्तिका। वॉल्यूम। मैं, गणित और सैद्धांतिक भौतिकी में आईआरएमए व्याख्यान, 11, यूरोपीय गणितीय सोसायटी (ईएमएस), ज्यूरिख, doi:10.4171/029, ISBN 978-3-03719-029-6, MR2284826
  • पापड़ोपोलोस, अथानेसे, संस्करण। (2009), टेचमुलर थ्योरी की हैंडबुक। वॉल्यूम। द्वितीय, गणित और सैद्धांतिक भौतिकी में आईआरएमए व्याख्यान, 13, यूरोपीय गणितीय सोसायटी (ईएमएस), ज्यूरिख, doi:10.4171/055, ISBN 978-3-03719-055-5, MR2524085
  • पापड़ोपोलोस, अथानेसे, संस्करण। (2012), टेचमुलर थ्योरी की हैंडबुक। वॉल्यूम। III, गणित और सैद्धांतिक भौतिकी में IRMA व्याख्यान, 17, यूरोपीय गणितीय सोसायटी (EMS), ज्यूरिख, doi:10.4171/103, ISBN 978-3-03719-103-3.

अन्य लेख और स्रोत

बाहरी संबंध