एकवचन वितरण: Difference between revisions
No edit summary |
No edit summary |
||
(3 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
{{Distinguish|एकवचन वितरण (अवकलन ज्यामिति)}} | {{Distinguish|एकवचन वितरण (अवकलन ज्यामिति)}} | ||
संभाव्यता में, एक विलक्षण वितरण एक [[शून्य सेट|शून्य समूह]] | संभाव्यता में, एक विलक्षण वितरण एक [[शून्य सेट|शून्य समूह]] पर केंद्रित संभाव्यता वितरण है, जहां उस समूह में प्रत्येक बिंदु की [[संभावना]] शून्य है। | ||
== अन्य नाम == | == अन्य नाम == | ||
Line 11: | Line 11: | ||
एक विलक्षण वितरण [[असतत संभाव्यता वितरण]] नहीं है क्योंकि प्रत्येक असतत बिंदु की शून्य संभावना है। दूसरी ओर, न तो इसकी कोई प्रायिकता घनत्व फलन है, क्योंकि ऐसे किसी भी फलन का लेबेस्ग समाकलन शून्य होगा। | एक विलक्षण वितरण [[असतत संभाव्यता वितरण]] नहीं है क्योंकि प्रत्येक असतत बिंदु की शून्य संभावना है। दूसरी ओर, न तो इसकी कोई प्रायिकता घनत्व फलन है, क्योंकि ऐसे किसी भी फलन का लेबेस्ग समाकलन शून्य होगा। | ||
सामान्यतः वितरण को असतत वितरण के रूप में वर्णित किया जा सकता है (संभाव्यता द्रव्यमान फलन | सामान्यतः वितरण को असतत वितरण के रूप में वर्णित किया जा सकता है (संभाव्यता द्रव्यमान फलन के साथ), एक बिल्कुल निरंतर वितरण (संभाव्यता घनत्व के साथ), एकवचन वितरण (न तो), या इनके मिश्रण में विघटित किया जा सकता है। | ||
== उदाहरण == | == उदाहरण == | ||
[[कैंटर वितरण]] एक उदाहरण है; इसका संचयी वितरण कार्य शैतान की सीढ़ी है। उच्च आयामों में कम जिज्ञासु उदाहरण दिखाई देते हैं। उदाहरण के लिए, ऊपरी और निचला फ़्रेचेट-होफ़डिंग सीमा दो आयामों में एकवचन वितरण हैं। | [[कैंटर वितरण]] एक उदाहरण है; इसका संचयी वितरण कार्य शैतान की सीढ़ी है। उच्च आयामों में कम जिज्ञासु उदाहरण दिखाई देते हैं। उदाहरण के लिए, ऊपरी और निचला फ़्रेचेट-होफ़डिंग सीमा दो आयामों में एकवचन वितरण हैं। | ||
== यह भी देखें == | == यह भी देखें == | ||
*एकल उपाय | *एकल उपाय | ||
Line 29: | Line 24: | ||
{{ProbDistributions}} | {{ProbDistributions}} | ||
{{DEFAULTSORT:Singular Distribution}} | {{DEFAULTSORT:Singular Distribution}} | ||
Line 35: | Line 30: | ||
{{probability-stub}} | {{probability-stub}} | ||
[[Category:All stub articles|Singular Distribution]] | |||
[[Category:Articles with hatnote templates targeting a nonexistent page|Singular Distribution]] | |||
[[Category: | [[Category:Collapse templates|Singular Distribution]] | ||
[[Category:Created On 21/03/2023]] | [[Category:Created On 21/03/2023|Singular Distribution]] | ||
[[Category:Machine Translated Page|Singular Distribution]] | |||
[[Category:Navigational boxes| ]] | |||
[[Category:Navigational boxes without horizontal lists|Singular Distribution]] | |||
[[Category:Pages with script errors|Singular Distribution]] | |||
[[Category:Probability stubs|Singular Distribution]] | |||
[[Category:Sidebars with styles needing conversion|Singular Distribution]] | |||
[[Category:Statistics stubs|Singular Distribution]] | |||
[[Category:Template documentation pages|Documentation/doc]] | |||
[[Category:Templates generating microformats|Singular Distribution]] | |||
[[Category:Templates that are not mobile friendly|Singular Distribution]] | |||
[[Category:Templates using TemplateData|Singular Distribution]] | |||
[[Category:Wikipedia metatemplates|Singular Distribution]] | |||
[[Category:संभाव्यता वितरण के प्रकार|Singular Distribution]] |
Latest revision as of 11:52, 3 May 2023
संभाव्यता में, एक विलक्षण वितरण एक शून्य समूह पर केंद्रित संभाव्यता वितरण है, जहां उस समूह में प्रत्येक बिंदु की संभावना शून्य है।
अन्य नाम
इन वितरणों को कभी-कभी एकवचन निरंतर वितरण कहा जाता है, क्योंकि उनके संचयी वितरण कार्य एकवचन कार्य और निरंतर कार्य होते हैं।
गुण
लेबेस्ग माप के संबंध में इस तरह के वितरण बिल्कुल निरंतर नहीं हैं।
एक विलक्षण वितरण असतत संभाव्यता वितरण नहीं है क्योंकि प्रत्येक असतत बिंदु की शून्य संभावना है। दूसरी ओर, न तो इसकी कोई प्रायिकता घनत्व फलन है, क्योंकि ऐसे किसी भी फलन का लेबेस्ग समाकलन शून्य होगा।
सामान्यतः वितरण को असतत वितरण के रूप में वर्णित किया जा सकता है (संभाव्यता द्रव्यमान फलन के साथ), एक बिल्कुल निरंतर वितरण (संभाव्यता घनत्व के साथ), एकवचन वितरण (न तो), या इनके मिश्रण में विघटित किया जा सकता है।
उदाहरण
कैंटर वितरण एक उदाहरण है; इसका संचयी वितरण कार्य शैतान की सीढ़ी है। उच्च आयामों में कम जिज्ञासु उदाहरण दिखाई देते हैं। उदाहरण के लिए, ऊपरी और निचला फ़्रेचेट-होफ़डिंग सीमा दो आयामों में एकवचन वितरण हैं।
यह भी देखें
- एकल उपाय
- लेबेस्ग्यू का अपघटन प्रमेय
बाहरी संबंध