रेडियोमेट्री: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(8 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{Short description|Techniques for measuring electromagnetic radiation}}
{{Short description|Techniques for measuring electromagnetic radiation}}
[[File:photometry_radiometry_units.svg|thumb|upright=1.5|फोटोमेट्रिक और रेडियोमेट्रिक मात्राओं की तुलना]]रेडियोमेट्री दृश्य प्रकाश सहित [[विद्युत चुम्बकीय विकिरण]] को [[माप]]ने के लिए तकनीकों का एक सेट है। [[प्रकाशिकी]] में रेडियोमेट्रिक तकनीक अंतरिक्ष में विकिरण की [[शक्ति (भौतिकी)]] के वितरण की विशेषता है, जो कि फोटोमेट्री (प्रकाशिकी) तकनीकों के विपरीत है, जो मानव आँख के साथ प्रकाश की बातचीत की विशेषता है। रेडियोमेट्री और फोटोमेट्री के बीच मूलभूत अंतर यह है कि रेडियोमेट्री संपूर्ण ऑप्टिकल विकिरण स्पेक्ट्रम देती है, जबकि फोटोमेट्री दृश्यमान स्पेक्ट्रम तक सीमित होती है। रेडियोमेट्री [[क्वांटम प्रकाशिकी]] तकनीकों जैसे फोटॉन काउंटिंग से अलग है।
[[File:photometry_radiometry_units.svg|thumb|upright=1.5|फोटोमेट्रिक और विकिरणमापी मात्राओं की तुलना]]विकिरणमिति दृश्य प्रकाश सहित [[विद्युत चुम्बकीय विकिरण]] को [[माप]]ने के लिए विधियों का समुच्चय है। [[प्रकाशिकी]] में विकिरणमापी विधि अंतरिक्ष में विकिरण की [[शक्ति (भौतिकी)]] के वितरण की विशेषता है, जो कि प्रकाशमिति (प्रकाशिकी) विधियों के विपरीत है, जो मानव आँख के साथ प्रकाश की बातचीत की विशेषता है। विकिरणमिति और प्रकाशमिति के बीच मूलभूत अंतर यह है कि विकिरणमिति संपूर्ण प्रकाशीय विकिरण वर्णक्रम देती है, जबकि प्रकाशमिति दृश्यमान वर्णक्रम तक सीमित होती है। विकिरणमिति [[क्वांटम प्रकाशिकी|परिमाण प्रकाशिकी]] विधियों जैसे फोटॉन की गणना से अलग है।


विकिरण प्रवाह को मापने के द्वारा वस्तुओं और गैसों के तापमान को निर्धारित करने के लिए [[रेडियोमीटर]] का उपयोग [[पायरोमेट्री]] कहलाता है। हैंडहेल्ड पाइरोमीटर उपकरणों का अक्सर [[अवरक्त थर्मामीटर]] के रूप में विपणन किया जाता है।
विकिरण प्रवाह को मापने के द्वारा वस्तुओं और गैसों के तापमान को निर्धारित करने के लिए [[रेडियोमीटर|विकिरणमापी]] का उपयोग [[पायरोमेट्री]] कहलाता है। हैंडहेल्ड पाइरोमीटर उपकरणों का अधिकांशतः [[अवरक्त थर्मामीटर]] के रूप में विपणन किया जाता है।


रेडियोमेट्री [[खगोल]] विज्ञान, विशेष रूप से [[रेडियो खगोल विज्ञान]] में महत्वपूर्ण है, और पृथ्वी की सुदूर संवेदन में महत्वपूर्ण भूमिका निभाती है। प्रकाशिकी में ''रेडियोमेट्री'' के रूप में वर्गीकृत माप तकनीकों को कुछ खगोलीय अनुप्रयोगों में फोटोमेट्री (खगोल विज्ञान) | ''फोटोमेट्री'' कहा जाता है, जो प्रकाशिकी शब्द के उपयोग के विपरीत है।
विकिरणमिति [[खगोल]] विज्ञान, विशेष रूप से [[रेडियो खगोल विज्ञान]] में महत्वपूर्ण है, और पृथ्वी की सुदूर संवेदन में महत्वपूर्ण भूमिका निभाती है। प्रकाशिकी में ''विकिरणमिति'' के रूप में वर्गीकृत माप विधियों को कुछ खगोलीय अनुप्रयोगों में प्रकाशमिति (खगोल विज्ञान) | ''प्रकाशमिति'' कहा जाता है, जो प्रकाशिकी शब्द के उपयोग के विपरीत है।


स्पेक्ट्रोरेडियोमेट्री तरंग दैर्ध्य के संकीर्ण बैंड में पूर्ण रेडियोमेट्रिक मात्रा का माप है। <ref>{{cite book|title=फोटोग्राफी का फोकल एनसाइक्लोपीडिया|publisher=[[Focal Press]] | author=Leslie D. Stroebel | author2=Richard D. Zakia | name-list-style=amp | date=1993 | edition=3rd|page=[https://archive.org/details/focalencyclopedi00lesl/page/115 115] |isbn=0-240-51417-3 | url = https://archive.org/details/focalencyclopedi00lesl |url-access=registration|quote=spectroradiometry फोटोग्राफी का फोकल एनसाइक्लोपीडिया.}}</ref>
स्पेक्ट्रो विकिरणमिति तरंग दैर्ध्य के संकीर्ण बैंड में पूर्ण विकिरणमापी मात्रा का माप है। <ref>{{cite book|title=फोटोग्राफी का फोकल एनसाइक्लोपीडिया|publisher=[[Focal Press]] | author=Leslie D. Stroebel | author2=Richard D. Zakia | name-list-style=amp | date=1993 | edition=3rd|page=[https://archive.org/details/focalencyclopedi00lesl/page/115 115] |isbn=0-240-51417-3 | url = https://archive.org/details/focalencyclopedi00lesl |url-access=registration|quote=spectroradiometry फोटोग्राफी का फोकल एनसाइक्लोपीडिया.}}</ref>


'''संपूर्ण ऑप्टिकल विकिरण स्पेक्ट्रम देती है, जबकि फोटोमेट्री दृश्यमान स्पेक्ट्रम तक सीमित होती है। रेडियोमेट्री [[क्वांटम प्रकाशिकी]] तकनीकों जैसे फोटॉन काउंटिंग से अलग है।'''
== विकिरणमापी मात्राएँ ==
== रेडियोमेट्रिक मात्राएँ ==
{{SI radiometry units}}
{{SI radiometry units}}
{{Radiometry coefficients}}
{{Radiometry coefficients}}


== इंटीग्रल और स्पेक्ट्रल रेडियोमेट्रिक मात्रा ==
== अविभाज्य और वर्णक्रमीय विकिरणमापी मात्रा ==
[[अभिन्न]] मात्राएँ (जैसे विकिरण प्रवाह) सभी [[तरंग दैर्ध्य]] या [[आवृत्ति]] के विकिरण के कुल प्रभाव का वर्णन करती हैं, जबकि विद्युत चुम्बकीय स्पेक्ट्रम मात्राएँ (जैसे [[वर्णक्रमीय शक्ति]]) एकल तरंग दैर्ध्य के विकिरण के प्रभाव का वर्णन करती हैं। {{mvar|λ}} या आवृत्ति {{mvar|ν}}. प्रत्येक अभिन्न मात्रा के लिए संबंधित वर्णक्रमीय मात्राएँ होती हैं, उदाहरण के लिए दीप्तिमान प्रवाह Φ<sub>e</sub> वर्णक्रमीय शक्ति Φ से मेल खाती है<sub>e,{{mvar|λ}}</sub> और Φ<sub>e,{{mvar|ν}}</sub>.
[[अभिन्न]] मात्राएँ (जैसे विकिरण प्रवाह) सभी [[तरंग दैर्ध्य]] या [[आवृत्ति]] के विकिरण के कुल प्रभाव का वर्णन करती हैं, जबकि विद्युत चुम्बकीय वर्णक्रम मात्राएँ (जैसे [[वर्णक्रमीय शक्ति]]) एकल तरंग दैर्ध्य {{mvar|λ}} या आवृत्ति {{mvar|ν}} के विकिरण के प्रभाव का वर्णन करती हैं।. प्रत्येक अभिन्न मात्रा के लिए संबंधित वर्णक्रमीय मात्राएँ होती हैं, उदाहरण के लिए दीप्तिमान प्रवाह Φ<sub>e</sub> वर्णक्रमीय शक्ति Φ<sub>e,{{mvar|λ}}</sub> और Φ<sub>e,{{mvar|ν}}</sub> से मेल खाती है


एक अभिन्न मात्रा के वर्णक्रमीय समकक्ष को प्राप्त करने के लिए एक [[सीमा (गणित)]] की आवश्यकता होती है। यह इस विचार से आता है कि सटीक रूप से अनुरोधित तरंग दैर्ध्य फोटॉन के अस्तित्व की संभावना शून्य है। आइए एक उदाहरण के रूप में दीप्तिमान प्रवाह का उपयोग करते हुए उनके बीच संबंध दिखाएं:
एक अभिन्न मात्रा के वर्णक्रमीय समकक्ष को प्राप्त करने के लिए एक [[सीमा (गणित)]] की आवश्यकता होती है। यह इस विचार से आता है कि स्पष्ट रूप से अनुरोधित तरंग दैर्ध्य फोटॉन के अस्तित्व की संभावना शून्य है। आइए उदाहरण के रूप में दीप्तिमान प्रवाह का उपयोग करते हुए उनके बीच संबंध दिखाएं:


इंटीग्रल फ्लक्स, जिसका मात्रक [[वाट]] है:
अविभाज्य फ्लक्स, जिसका मात्रक [[वाट]] है:
<math display=block>\Phi_\mathrm{e}.</math>
 
वेवलेंथ द्वारा स्पेक्ट्रल फ्लक्स, जिसका मात्रक है {{nobreak|W/[[metre|m]]}}:
<math display="block">\Phi_\mathrm{e}.</math>
तरंग दैर्ध्य द्वारा वर्णक्रमीय फ्लक्स {{nobreak|W/[[metre|m]]}} जिसका मात्रक है :
<math display=block>\Phi_{\mathrm{e},\lambda} = {d\Phi_\mathrm{e} \over d\lambda},</math>
<math display=block>\Phi_{\mathrm{e},\lambda} = {d\Phi_\mathrm{e} \over d\lambda},</math>
कहाँ <math>d\Phi_\mathrm{e}</math> एक छोटे तरंग दैर्ध्य अंतराल में विकिरण का उज्ज्वल प्रवाह है <math>[\lambda - {d\lambda \over 2}, \lambda + {d\lambda \over 2}]</math>.
कहाँ <math>d\Phi_\mathrm{e}</math> एक छोटे तरंग दैर्ध्य अंतराल में विकिरण का उज्ज्वल प्रवाह है <math>[\lambda - {d\lambda \over 2}, \lambda + {d\lambda \over 2}]</math>.


वेवलेंथ हॉरिजॉन्टल एक्सिस वाले प्लॉट के नीचे का एरिया टोटल रेडिएंट फ्लक्स के बराबर होता है।
तरंग दैर्ध्य क्षैतिज अक्ष वाले प्लॉट के नीचे का कुल दीप्तिमान क्षेत्र फ्लक्स के सामान होता है।
 
आवृत्ति द्वारा वर्णक्रमीय फ्लक्स,{{nobreak|W/[[hertz|Hz]]}} जिसका मात्रक है :


आवृत्ति द्वारा स्पेक्ट्रल फ्लक्स, जिसका मात्रक है {{nobreak|W/[[hertz|Hz]]}}:
<math display="block">\Phi_{\mathrm{e},\nu} = {d\Phi_\mathrm{e} \over d\nu},</math>
<math display=block>\Phi_{\mathrm{e},\nu} = {d\Phi_\mathrm{e} \over d\nu},</math>
कहाँ <math>d\Phi_\mathrm{e}</math> एक छोटे आवृत्ति अंतराल में विकिरण का उज्ज्वल प्रवाह है <math>[\nu - {d\nu \over 2}, \nu + {d\nu \over 2}]</math>.
कहाँ <math>d\Phi_\mathrm{e}</math> एक छोटे आवृत्ति अंतराल में विकिरण का उज्ज्वल प्रवाह है <math>[\nu - {d\nu \over 2}, \nu + {d\nu \over 2}]</math>.


आवृत्ति क्षैतिज अक्ष के साथ एक भूखंड के नीचे का क्षेत्र कुल उज्ज्वल प्रवाह के बराबर होता है।
आवृत्ति क्षैतिज अक्ष के साथ एक भूखंड के नीचे का क्षेत्र कुल उज्ज्वल प्रवाह के सामान होता है।
 
तरंग दैर्ध्य {{mvar|λ}} और आवृत्ति {{mvar|ν}} द्वारा वर्णक्रमीय मात्रा एक दूसरे से संबंधित हैं, क्योंकि दो चरों का गुणनफल [[प्रकाश की गति]] है (<math>\lambda \cdot \nu = c</math>):


तरंग दैर्ध्य द्वारा वर्णक्रमीय मात्रा {{mvar|λ}} और आवृत्ति {{mvar|ν}} एक दूसरे से संबंधित हैं, क्योंकि दो चरों का गुणनफल [[प्रकाश की गति]] है (<math>\lambda \cdot \nu = c</math>):
:<math>\Phi_{\mathrm{e},\lambda} = {c \over \lambda^2} \Phi_{\mathrm{e},\nu},</math> या <math>\Phi_{\mathrm{e},\nu} = {c \over \nu^2} \Phi_{\mathrm{e},\lambda},</math> या <math>\lambda \Phi_{\mathrm{e},\lambda} = \nu \Phi_{\mathrm{e},\nu}.</math>
:<math>\Phi_{\mathrm{e},\lambda} = {c \over \lambda^2} \Phi_{\mathrm{e},\nu},</math> या <math>\Phi_{\mathrm{e},\nu} = {c \over \nu^2} \Phi_{\mathrm{e},\lambda},</math> या <math>\lambda \Phi_{\mathrm{e},\lambda} = \nu \Phi_{\mathrm{e},\nu}.</math>
वर्णक्रमीय मात्रा के एकीकरण द्वारा अभिन्न मात्रा प्राप्त की जा सकती है:
वर्णक्रमीय मात्रा के एकीकरण द्वारा अभिन्न मात्रा प्राप्त की जा सकती है:
Line 41: Line 43:
\int_0^\infty \lambda \Phi_{\mathrm{e},\lambda}\, d \ln \lambda =
\int_0^\infty \lambda \Phi_{\mathrm{e},\lambda}\, d \ln \lambda =
\int_0^\infty \nu \Phi_{\mathrm{e},\nu}\, d \ln \nu.</math>
\int_0^\infty \nu \Phi_{\mathrm{e},\nu}\, d \ln \nu.</math>
== यह भी देखें ==
== यह भी देखें ==
* चिंतनशीलता
* चिंतनशीलता
* [[माइक्रोवेव रेडियोमीटर]]
* [[माइक्रोवेव रेडियोमीटर|माइक्रो तंरग विकिरणमापी]]
* आयनीकरण विकिरण#माप
* आयनीकरण विकिरण माप
* [[रेडियोमेट्रिक अंशांकन]]
* [[रेडियोमेट्रिक अंशांकन|विकिरणमापी अंशांकन]]
* [[रेडियोमेट्रिक संकल्प]]
* [[रेडियोमेट्रिक संकल्प|विकिरणमापी संकल्प]]


==संदर्भ==
==संदर्भ==
Line 57: Line 57:
*[https://web.archive.org/web/20130313095139/http://fp.optics.arizona.edu/Palmer/rpfaq/rpfaq.htm Radiometry and photometry FAQ] Professor Jim Palmer's Radiometry FAQ page (The University of Arizona College of Optical Sciences).
*[https://web.archive.org/web/20130313095139/http://fp.optics.arizona.edu/Palmer/rpfaq/rpfaq.htm Radiometry and photometry FAQ] Professor Jim Palmer's Radiometry FAQ page (The University of Arizona College of Optical Sciences).


{{Authority control}}
[[Category: रेडियोमेट्री| रेडियोमेट्री]] [[Category: माप]] [[Category: ऑप्टिकल मेट्रोलॉजी]] [[Category: दूरसंचार इंजीनियरिंग]] [[Category: अवलोकन संबंधी खगोल विज्ञान]] [[Category: विद्युत चुम्बकीय विकिरण]]
[[Category: Machine Translated Page]]
[[Category:Created On 27/03/2023]]
[[Category:Created On 27/03/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with maths render errors]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:अवलोकन संबंधी खगोल विज्ञान]]
[[Category:ऑप्टिकल मेट्रोलॉजी]]
[[Category:दूरसंचार इंजीनियरिंग]]
[[Category:माप]]
[[Category:रेडियोमेट्री| रेडियोमेट्री]]
[[Category:विद्युत चुम्बकीय विकिरण]]

Latest revision as of 18:00, 3 May 2023

फोटोमेट्रिक और विकिरणमापी मात्राओं की तुलना

विकिरणमिति दृश्य प्रकाश सहित विद्युत चुम्बकीय विकिरण को मापने के लिए विधियों का समुच्चय है। प्रकाशिकी में विकिरणमापी विधि अंतरिक्ष में विकिरण की शक्ति (भौतिकी) के वितरण की विशेषता है, जो कि प्रकाशमिति (प्रकाशिकी) विधियों के विपरीत है, जो मानव आँख के साथ प्रकाश की बातचीत की विशेषता है। विकिरणमिति और प्रकाशमिति के बीच मूलभूत अंतर यह है कि विकिरणमिति संपूर्ण प्रकाशीय विकिरण वर्णक्रम देती है, जबकि प्रकाशमिति दृश्यमान वर्णक्रम तक सीमित होती है। विकिरणमिति परिमाण प्रकाशिकी विधियों जैसे फोटॉन की गणना से अलग है।

विकिरण प्रवाह को मापने के द्वारा वस्तुओं और गैसों के तापमान को निर्धारित करने के लिए विकिरणमापी का उपयोग पायरोमेट्री कहलाता है। हैंडहेल्ड पाइरोमीटर उपकरणों का अधिकांशतः अवरक्त थर्मामीटर के रूप में विपणन किया जाता है।

विकिरणमिति खगोल विज्ञान, विशेष रूप से रेडियो खगोल विज्ञान में महत्वपूर्ण है, और पृथ्वी की सुदूर संवेदन में महत्वपूर्ण भूमिका निभाती है। प्रकाशिकी में विकिरणमिति के रूप में वर्गीकृत माप विधियों को कुछ खगोलीय अनुप्रयोगों में प्रकाशमिति (खगोल विज्ञान) | प्रकाशमिति कहा जाता है, जो प्रकाशिकी शब्द के उपयोग के विपरीत है।

स्पेक्ट्रो विकिरणमिति तरंग दैर्ध्य के संकीर्ण बैंड में पूर्ण विकिरणमापी मात्रा का माप है। [1]

विकिरणमापी मात्राएँ

Quantity Unit Dimension Notes
Name Symbol[nb 1] Name Symbol Symbol
Radiant energy Qe[nb 2] joule J ML2T−2 Energy of electromagnetic radiation.
Radiant energy density we joule per cubic metre J/m3 ML−1T−2 Radiant energy per unit volume.
Radiant flux Φe[nb 2] watt W = J/s ML2T−3 Radiant energy emitted, reflected, transmitted or received, per unit time. This is sometimes also called "radiant power", and called luminosity in Astronomy.
Spectral flux Φe,ν[nb 3] watt per hertz W/Hz ML2T−2 Radiant flux per unit frequency or wavelength. The latter is commonly measured in W⋅nm−1.
Φe,λ[nb 4] watt per metre W/m MLT−3
Radiant intensity Ie,Ω[nb 5] watt per steradian W/sr ML2T−3 Radiant flux emitted, reflected, transmitted or received, per unit solid angle. This is a directional quantity.
Spectral intensity Ie,Ω,ν[nb 3] watt per steradian per hertz W⋅sr−1⋅Hz−1 ML2T−2 Radiant intensity per unit frequency or wavelength. The latter is commonly measured in W⋅sr−1⋅nm−1. This is a directional quantity.
Ie,Ω,λ[nb 4] watt per steradian per metre W⋅sr−1⋅m−1 MLT−3
Radiance Le,Ω[nb 5] watt per steradian per square metre W⋅sr−1⋅m−2 MT−3 Radiant flux emitted, reflected, transmitted or received by a surface, per unit solid angle per unit projected area. This is a directional quantity. This is sometimes also confusingly called "intensity".
Spectral radiance
Specific intensity
Le,Ω,ν[nb 3] watt per steradian per square metre per hertz W⋅sr−1⋅m−2⋅Hz−1 MT−2 Radiance of a surface per unit frequency or wavelength. The latter is commonly measured in W⋅sr−1⋅m−2⋅nm−1. This is a directional quantity. This is sometimes also confusingly called "spectral intensity".
Le,Ω,λ[nb 4] watt per steradian per square metre, per metre W⋅sr−1⋅m−3 ML−1T−3
Irradiance
Flux density
Ee[nb 2] watt per square metre W/m2 MT−3 Radiant flux received by a surface per unit area. This is sometimes also confusingly called "intensity".
Spectral irradiance
Spectral flux density
Ee,ν[nb 3] watt per square metre per hertz W⋅m−2⋅Hz−1 MT−2 Irradiance of a surface per unit frequency or wavelength. This is sometimes also confusingly called "spectral intensity". Non-SI units of spectral flux density include jansky (1 Jy = 10−26 W⋅m−2⋅Hz−1) and solar flux unit (1 sfu = 10−22 W⋅m−2⋅Hz−1 = 104 Jy).
Ee,λ[nb 4] watt per square metre, per metre W/m3 ML−1T−3
Radiosity Je[nb 2] watt per square metre W/m2 MT−3 Radiant flux leaving (emitted, reflected and transmitted by) a surface per unit area. This is sometimes also confusingly called "intensity".
Spectral radiosity Je,ν[nb 3] watt per square metre per hertz W⋅m−2⋅Hz−1 MT−2 Radiosity of a surface per unit frequency or wavelength. The latter is commonly measured in W⋅m−2⋅nm−1. This is sometimes also confusingly called "spectral intensity".
Je,λ[nb 4] watt per square metre, per metre W/m3 ML−1T−3
Radiant exitance Me[nb 2] watt per square metre W/m2 MT−3 Radiant flux emitted by a surface per unit area. This is the emitted component of radiosity. "Radiant emittance" is an old term for this quantity. This is sometimes also confusingly called "intensity".
Spectral exitance Me,ν[nb 3] watt per square metre per hertz W⋅m−2⋅Hz−1 MT−2 Radiant exitance of a surface per unit frequency or wavelength. The latter is commonly measured in W⋅m−2⋅nm−1. "Spectral emittance" is an old term for this quantity. This is sometimes also confusingly called "spectral intensity".
Me,λ[nb 4] watt per square metre, per metre W/m3 ML−1T−3
Radiant exposure He joule per square metre J/m2 MT−2 Radiant energy received by a surface per unit area, or equivalently irradiance of a surface integrated over time of irradiation. This is sometimes also called "radiant fluence".
Spectral exposure He,ν[nb 3] joule per square metre per hertz J⋅m−2⋅Hz−1 MT−1 Radiant exposure of a surface per unit frequency or wavelength. The latter is commonly measured in J⋅m−2⋅nm−1. This is sometimes also called "spectral fluence".
He,λ[nb 4] joule per square metre, per metre J/m3 ML−1T−2
See also: SI · Radiometry · Photometry
  1. Standards organizations recommend that radiometric quantities should be denoted with suffix "e" (for "energetic") to avoid confusion with photometric or photon quantities.
  2. 2.0 2.1 2.2 2.3 2.4 Alternative symbols sometimes seen: W or E for radiant energy, P or F for radiant flux, I for irradiance, W for radiant exitance.
  3. 3.0 3.1 3.2 3.3 3.4 3.5 3.6 Spectral quantities given per unit frequency are denoted with suffix "ν" (Greek letter nu, not to be confused with a letter "v", indicating a photometric quantity.)
  4. 4.0 4.1 4.2 4.3 4.4 4.5 4.6 Spectral quantities given per unit wavelength are denoted with suffix "λ".
  5. 5.0 5.1 Directional quantities are denoted with suffix "Ω".
Quantity SI units Notes
Name Sym.
Hemispherical emissivity ε Radiant exitance of a surface, divided by that of a black body at the same temperature as that surface.
Spectral hemispherical emissivity εν
 or
ελ
Spectral exitance of a surface, divided by that of a black body at the same temperature as that surface.
Directional emissivity εΩ Radiance emitted by a surface, divided by that emitted by a black body at the same temperature as that surface.
Spectral directional emissivity εΩ,ν
 or
εΩ,λ
Spectral radiance emitted by a surface, divided by that of a black body at the same temperature as that surface.
Hemispherical absorptance A Radiant flux absorbed by a surface, divided by that received by that surface. This should not be confused with "absorbance".
Spectral hemispherical absorptance Aν
 or
Aλ
Spectral flux absorbed by a surface, divided by that received by that surface. This should not be confused with "spectral absorbance".
Directional absorptance AΩ Radiance absorbed by a surface, divided by the radiance incident onto that surface. This should not be confused with "absorbance".
Spectral directional absorptance AΩ,ν
 or
AΩ,λ
Spectral radiance absorbed by a surface, divided by the spectral radiance incident onto that surface. This should not be confused with "spectral absorbance".
Hemispherical reflectance R Radiant flux reflected by a surface, divided by that received by that surface.
Spectral hemispherical reflectance Rν
 or
Rλ
Spectral flux reflected by a surface, divided by that received by that surface.
Directional reflectance RΩ Radiance reflected by a surface, divided by that received by that surface.
Spectral directional reflectance RΩ,ν
 or
RΩ,λ
Spectral radiance reflected by a surface, divided by that received by that surface.
Hemispherical transmittance T Radiant flux transmitted by a surface, divided by that received by that surface.
Spectral hemispherical transmittance Tν
 or
Tλ
Spectral flux transmitted by a surface, divided by that received by that surface.
Directional transmittance TΩ Radiance transmitted by a surface, divided by that received by that surface.
Spectral directional transmittance TΩ,ν
 or
TΩ,λ
Spectral radiance transmitted by a surface, divided by that received by that surface.
Hemispherical attenuation coefficient μ m−1 Radiant flux absorbed and scattered by a volume per unit length, divided by that received by that volume.
Spectral hemispherical attenuation coefficient μν
 or
μλ
m−1 Spectral radiant flux absorbed and scattered by a volume per unit length, divided by that received by that volume.
Directional attenuation coefficient μΩ m−1 Radiance absorbed and scattered by a volume per unit length, divided by that received by that volume.
Spectral directional attenuation coefficient μΩ,ν
 or
μΩ,λ
m−1 Spectral radiance absorbed and scattered by a volume per unit length, divided by that received by that volume.

अविभाज्य और वर्णक्रमीय विकिरणमापी मात्रा

अभिन्न मात्राएँ (जैसे विकिरण प्रवाह) सभी तरंग दैर्ध्य या आवृत्ति के विकिरण के कुल प्रभाव का वर्णन करती हैं, जबकि विद्युत चुम्बकीय वर्णक्रम मात्राएँ (जैसे वर्णक्रमीय शक्ति) एकल तरंग दैर्ध्य λ या आवृत्ति ν के विकिरण के प्रभाव का वर्णन करती हैं।. प्रत्येक अभिन्न मात्रा के लिए संबंधित वर्णक्रमीय मात्राएँ होती हैं, उदाहरण के लिए दीप्तिमान प्रवाह Φe वर्णक्रमीय शक्ति Φe,λ और Φe,ν से मेल खाती है

एक अभिन्न मात्रा के वर्णक्रमीय समकक्ष को प्राप्त करने के लिए एक सीमा (गणित) की आवश्यकता होती है। यह इस विचार से आता है कि स्पष्ट रूप से अनुरोधित तरंग दैर्ध्य फोटॉन के अस्तित्व की संभावना शून्य है। आइए उदाहरण के रूप में दीप्तिमान प्रवाह का उपयोग करते हुए उनके बीच संबंध दिखाएं:

अविभाज्य फ्लक्स, जिसका मात्रक वाट है:

तरंग दैर्ध्य द्वारा वर्णक्रमीय फ्लक्स W/m जिसका मात्रक है :
कहाँ एक छोटे तरंग दैर्ध्य अंतराल में विकिरण का उज्ज्वल प्रवाह है .

तरंग दैर्ध्य क्षैतिज अक्ष वाले प्लॉट के नीचे का कुल दीप्तिमान क्षेत्र फ्लक्स के सामान होता है।

आवृत्ति द्वारा वर्णक्रमीय फ्लक्स,W/Hz जिसका मात्रक है :

कहाँ एक छोटे आवृत्ति अंतराल में विकिरण का उज्ज्वल प्रवाह है .

आवृत्ति क्षैतिज अक्ष के साथ एक भूखंड के नीचे का क्षेत्र कुल उज्ज्वल प्रवाह के सामान होता है।

तरंग दैर्ध्य λ और आवृत्ति ν द्वारा वर्णक्रमीय मात्रा एक दूसरे से संबंधित हैं, क्योंकि दो चरों का गुणनफल प्रकाश की गति है ():

या या

वर्णक्रमीय मात्रा के एकीकरण द्वारा अभिन्न मात्रा प्राप्त की जा सकती है:

यह भी देखें

संदर्भ

  1. Leslie D. Stroebel & Richard D. Zakia (1993). फोटोग्राफी का फोकल एनसाइक्लोपीडिया (3rd ed.). Focal Press. p. 115. ISBN 0-240-51417-3. spectroradiometry फोटोग्राफी का फोकल एनसाइक्लोपीडिया.


बाहरी संबंध