विद्युत संवेदनशीलता: Difference between revisions
m (added Category:Vigyan Ready using HotCat) |
No edit summary |
||
(One intermediate revision by one other user not shown) | |||
Line 112: | Line 112: | ||
{{Reflist}} | {{Reflist}} | ||
[[Category: | [[Category:Articles with hatnote templates targeting a nonexistent page]] | ||
[[Category:CS1 maint]] | |||
[[Category: | |||
[[Category:Created On 05/04/2023]] | [[Category:Created On 05/04/2023]] | ||
[[Category:Vigyan Ready]] | [[Category:Lua-based templates]] | ||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:पदार्थ में विद्युत और चुंबकीय क्षेत्र]] | |||
[[Category:भौतिक मात्रा]] |
Latest revision as of 21:30, 3 May 2023
विद्युत (विद्युत चुंबकत्व) में, विद्युत संवेदनशीलता (; लैटिन: ससेप्टिबिलिस रिसेप्टिव) एक आयाम रहित आनुपातिकता स्थिरांक है जो एक प्रयुक्त विद्युत क्षेत्र के उत्तर में एक डाइलेक्ट्रिक हुआ पदार्थ के ध्रुवीकरण (इलेक्ट्रोस्टैटिक्स) की डिग्री को इंगित करता है। विद्युत की संवेदनशीलता जितनी अधिक होगी, क्षेत्र के उत्तर में ध्रुवीकरण करने की पदार्थ की क्षमता उतनी ही अधिक होगी, और इस प्रकार पदार्थ (और स्टोर ऊर्जा) के अंदर कुल विद्युत क्षेत्र को कम कर देगा। यह इस तरह है कि विद्युत संवेदनशीलता पदार्थ की विद्युत पारगम्यता को प्रभावित करती है और इस प्रकार उस माध्यम में संधारित्र के समाई से लेकर प्रकाश की गति तक कई अन्य घटनाओं को प्रभावित करती है।[1][2]
रैखिक डाइलेक्ट्रिक्स के लिए परिभाषा
यदि एक डाइलेक्ट्रिक हुआ पदार्थ एक रैखिक डाइलेक्ट्रिक हुआ है, तो विद्युत संवेदनशीलता को आनुपातिकता के स्थिरांक (जो एक मैट्रिक्स हो सकता है) के रूप में परिभाषित किया जाता है, जो विद्युत क्षेत्र E को प्रेरित डाइलेक्ट्रिक हुआ ध्रुवीकरण (इलेक्ट्रोस्टैटिक्स) P से संबंधित करता है जैसे कि[3][4]
जहाँ
- ध्रुवीकरण घनत्व है;
- वैक्यूम परमिटिटिविटी (विद्युत स्थिरांक) है;
- विद्युत संवेदनशीलता है;
- विद्युत क्षेत्र है।
उन पदार्थ में जहां संवेदनशीलता एनिस्ट्रोपिक (दिशा के आधार पर भिन्न) होती है, संवेदनशीलता को एक मैट्रिक्स के रूप में दर्शाया जाता है जिसे संवेदनशीलता टेंसर के रूप में जाना जाता है। कई रेखीय डाइलेक्ट्रिक्स आइसोट्रोपिक हैं, किंतु फिर भी यह संभव है कि एक पदार्थ के लिए व्यवहार प्रदर्शित किया जाए जो रैखिक और अनिसोट्रोपिक दोनों हो, या पदार्थ के लिए गैर-रैखिक किंतु आइसोट्रोपिक हो। कई क्रिस्टल में अनिसोट्रोपिक किंतु रैखिक संवेदनशीलता समान है।[3]
संवेदनशीलता इसके सापेक्ष पारगम्यता (डाइलेक्ट्रिक हुआ स्थिरांक) से संबंधित है
तो एक निर्वात के स्थिति में,
आणविक ध्रुवीकरण
एक समान पैरामीटर एक व्यक्तिगत अणु के प्रेरित द्विध्रुव क्षण p के परिमाण को स्थानीय विद्युत क्षेत्र ई से संबंधित करने के लिए उपस्थित है जो द्विध्रुव को प्रेरित करता है। यह पैरामीटर आणविक ध्रुवीकरण (α) है और स्थानीय विद्युत क्षेत्र Elocal से उत्पन्न द्विध्रुवीय क्षण इसके द्वारा दिया जाता है:
परिभाषा में अस्पष्टता
उपरोक्त परिभाषा में आणविक ध्रुवीकरण की परिभाषा लेखक पर निर्भर करती है
और एसआई इकाइयों में हैं और आणविक ध्रुवीकरण में मात्रा (m3) का आयाम है। एक अन्य परिभाषा[5] एसआई इकाइयों को रखना और को में एकीकृत करना होगा।
सीजीएस इकाइयों का उपयोग पहली परिभाषा के अनुसार को परिमाण का आयाम देता है, किंतु एक मान के साथ जो कम है।
गैर रेखीय संवेदनशीलता
कई पदार्थ में विद्युत क्षेत्र के उच्च मान पर ध्रुवीकरण क्षमता संतृप्त होने लगती है। इस संतृप्ति को एक गैर-रैखिक संवेदनशीलता द्वारा प्रतिरूपित किया जा सकता है। ये संवेदनशीलता गैर-रैखिक प्रकाशिकी में महत्वपूर्ण हैं और दूसरी-हार्मोनिक पीढ़ी (जैसे कि हरे रंग के लेजर सूचक में अवरक्त प्रकाश को दृश्य प्रकाश में परिवर्तित करने के लिए उपयोग किया जाता है) जैसे प्रभावों की ओर ले जाती हैं।
एसआई इकाइयों में गैर-रैखिक संवेदनशीलता की मानक परिभाषा विद्युत क्षेत्र में ध्रुवीकरण की प्रतिक्रिया के टेलर विस्तार के माध्यम से है:[6]
पहली संवेदनशीलता अवधि, , ऊपर वर्णित रैखिक संवेदनशीलता के अनुरूप है। जबकि यह पहला शब्द आयाम रहित है, बाद की गैर-रैखिक संवेदनशीलता की इकाइयां (m/V)n−1 हैं
गैर-रैखिक संवेदनशीलता को अनिसोट्रोपिक पदार्थ के लिए सामान्यीकृत किया जा सकता है जिसमें संवेदनशीलता हर दिशा में एक समान नहीं होती है। इन पदार्थ में, प्रत्येक संवेदनशीलता एक n + 1)-डिग्री टेन्सर बन जाती है।
फैलाव और करणीयता
फ़ाइल: प्रकाश आवृत्ति के एक समारोह के रूप में डाइलेक्ट्रिक हुआ स्थिरांक। पीडीएफ|अंगूठा|दायां|alt=।।आवृत्ति के एक समारोह के रूप में डाइलेक्ट्रिक हुआ स्थिरांक का प्लॉट कई प्रतिध्वनि और पठार दिखा रहा है, जो उन प्रक्रियाओं को इंगित करता है जो एक अवधि के समय पैमाने पर प्रतिक्रिया करते हैं (भौतिक विज्ञान)। यह दर्शाता है कि इसकी फूरियर रूपांतरण के संदर्भ में संवेदनशीलता की सोच उपयोगी है।
सामान्यतः एक पदार्थ प्रयुक्त क्षेत्र के उत्तर में तत्काल ध्रुवीकरण नहीं कर सकती है, और इसलिए समय के कार्य के रूप में अधिक सामान्य सूत्रीकरण है
एक रैखिक प्रणाली में निरंतर फूरियर रूपांतरण लेना और इस संबंध को आवृत्ति के कार्य के रूप में लिखना अधिक सुविधाजनक है। दृढ़ संकल्प प्रमेय के कारण, अविभाज्य एक उत्पाद बन जाता है,
इसके अतिरिक्त , यह तथ्य कि ध्रुवीकरण केवल पिछले समय के विद्युत क्षेत्र पर निर्भर कर सकता है (अर्थात के लिए ), कार्य-कारण का परिणाम, क्रेमर्स-क्रोनिग संबंध प्रयुक्त करता है। क्रेमर्स-क्रोनिग संवेदनशीलता पर प्रतिबंध लगाता है .
यह भी देखें
- भौतिकी में टेन्सर सिद्धांत का अनुप्रयोग
- चुंबकीय सुग्राह्यता
- मैक्सवेल के समीकरण
- क्लॉसियस-मोसोटी संबंध
- रैखिक प्रतिक्रिया समारोह
- हरा-कुबो संबंध
संदर्भ
- ↑ "Electric susceptibility". Encyclopædia Britannica.
- ↑ Cardarelli, François (2000–2008). Materials Handbook: A Concise Desktop Reference (2nd ed.). London: Springer-Verlag. pp. 524 (Section 8.1.16). doi:10.1007/978-1-84628-669-8. ISBN 978-1-84628-668-1.
- ↑ 3.0 3.1 3.2 Griffiths, David J (2017). इलेक्ट्रोडायनामिक्स का परिचय (4 ed.). Cambridge University Press. pp. 181–190.
- ↑ Freeman, Richard; King, James; Lafyatis, Gregory (2019). "Essentials of Electricity and Magnetism". विद्युत चुम्बकीय विकिरण. Oxford University Press. doi:10.1093/oso/9780198726500.003.0001. ISBN 978-0-19-872650-0.
- ↑ 5.0 5.1 केमेस्ट्री और फ़ीजिक्स के लिए सीआरसी हैंडबुक (PDF) (84 ed.). CRC. pp. 10–163. Archived from the original (PDF) on 2016-10-06. Retrieved 2016-08-19.
- ↑ Butcher, Paul N.; Cotter, David (1990). नॉनलाइनियर ऑप्टिक्स के तत्व. Cambridge University Press. doi:10.1017/CBO9781139167994. ISBN 9781139167994.
- ↑ Freeman, Richard; King, James; Lafyatis, Gregory (2019), "Essentials of Electricity and Magnetism", Electromagnetic Radiation, Oxford: Oxford University Press, doi:10.1093/oso/9780198726500.001.0001/oso-9780198726500-chapter-1#oso-9780198726500-chapter-1-displaymaths-20 (inactive 31 December 2022), ISBN 978-0-19-872650-0, retrieved 2022-02-18
{{citation}}
: CS1 maint: DOI inactive as of December 2022 (link)