स्पिन-सांख्यिकी प्रमेय: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
Line 2: Line 2:
{{Statistical mechanics|cTopic=[[Particle statistics|Particle Statistics]]}}
{{Statistical mechanics|cTopic=[[Particle statistics|Particle Statistics]]}}


[[क्वांटम यांत्रिकी]] में, स्पिन-सांख्यिकी प्रमेय [[कण]] केआंतरिक [[स्पिन (भौतिकी)]] से संबंधित है (कोणीय संवेग कक्षीय गति के कारण नहीं) कण आँकड़ों का अनुसरण करते है। अल्प प्लैंक स्थिरांक ''ħ'' की इकाइयों में,  [[3 आयाम|3 आयामों]] में गति करने वाले सभी कण जो [[पूर्णांक]] स्पिन या अर्ध-पूर्णांक स्पिन होते हैं।<ref>{{Cite book|title = क्वांटम यांत्रिकी के सिद्धांत|url = https://books.google.com/books?id=XehUpGiM6FIC|publisher = Clarendon Press|date = 1981-01-01|isbn = 9780198520115|language = en|first = Paul Adrien Maurice|last = Dirac|page = 149}}</ref><ref>{{Cite book|title = क्वांटम यांत्रिकी के सामान्य सिद्धांत|url = https://books.google.com/books?id=A84NAQAAIAAJ|publisher = Springer-Verlag|date = 1980-01-01|isbn = 9783540098423|language = en|first = Wolfgang|last = Pauli}}</ref>
[[क्वांटम यांत्रिकी]] में, '''स्पिन-सांख्यिकी प्रमेय''' [[कण]] केआंतरिक [[स्पिन (भौतिकी)]] से संबंधित है (कोणीय संवेग कक्षीय गति के कारण नहीं) कण आँकड़ों का अनुसरण करते है। अल्प प्लैंक स्थिरांक ''ħ'' की इकाइयों में,  [[3 आयाम|3 आयामों]] में गति करने वाले सभी कण जो [[पूर्णांक]] स्पिन या अर्ध-पूर्णांक स्पिन होते हैं।<ref>{{Cite book|title = क्वांटम यांत्रिकी के सिद्धांत|url = https://books.google.com/books?id=XehUpGiM6FIC|publisher = Clarendon Press|date = 1981-01-01|isbn = 9780198520115|language = en|first = Paul Adrien Maurice|last = Dirac|page = 149}}</ref><ref>{{Cite book|title = क्वांटम यांत्रिकी के सामान्य सिद्धांत|url = https://books.google.com/books?id=A84NAQAAIAAJ|publisher = Springer-Verlag|date = 1980-01-01|isbn = 9783540098423|language = en|first = Wolfgang|last = Pauli}}</ref>




Line 27: Line 27:
\iint \psi(x,y) \phi(x)\phi(y)\,dx\,dy
\iint \psi(x,y) \phi(x)\phi(y)\,dx\,dy
</math>
</math>
(साथ <math>\phi</math> ऑपरेटर और <math>\psi(x,y)</math> संख्यात्मक फ़ंक्शन) तरंग क्रिया के साथ दो-कण स्थिति बनाता है <math>\psi(x,y)</math>, और क्षेत्रों के रूपान्तरण गुणों के आधार पर, एंटीसिमेट्रिक अंश या सममित अंश आशय का रखते हैं।
(साथ <math>\phi</math> ऑपरेटर और <math>\psi(x,y)</math> संख्यात्मक फलन) तरंग क्रिया के साथ दो-कण स्थिति बनाता है <math>\psi(x,y)</math>, और क्षेत्रों के रूपान्तरण गुणों के आधार पर, एंटीसिमेट्रिक अंश या सममित अंश आशय का रखते हैं।


चलिए मान लेते हैं <math>x \ne y</math> और दो ऑपरेटर एक ही समय में होते हैं; सामान्यतः, उनके पास [[ spacelike | स्पेसलाइक]] का पृथक्करण हो सकता है, जैसा कि इसके बाद बताया गया है।
चलिए मान लेते हैं <math>x \ne y</math> और दो ऑपरेटर एक ही समय में होते हैं; सामान्यतः, उनके पास [[ spacelike | स्पेसलाइक]] का पृथक्करण हो सकता है, जैसा कि इसके बाद बताया गया है।
Line 115: Line 115:
रोटेशन प्लेन में समय सम्मिलित है, और यूक्लिडियन सिद्धांत में समय से जुड़े विमान में रोटेशन मिन्कोव्स्की सिद्धांत में [[सीपीटी समरूपता]] परिवर्तन को परिभाषित करता है। यदि सिद्धांत को पथ अभिन्न द्वारा वर्णित किया गया है, तो सीपीटी परिवर्तन राज्यों को उनके संयुग्मों में ले जाता है, जिससे सहसंबंध कार्य  है।
रोटेशन प्लेन में समय सम्मिलित है, और यूक्लिडियन सिद्धांत में समय से जुड़े विमान में रोटेशन मिन्कोव्स्की सिद्धांत में [[सीपीटी समरूपता]] परिवर्तन को परिभाषित करता है। यदि सिद्धांत को पथ अभिन्न द्वारा वर्णित किया गया है, तो सीपीटी परिवर्तन राज्यों को उनके संयुग्मों में ले जाता है, जिससे सहसंबंध कार्य  है।
<math display="block"> \langle 0 | R\phi(x) \phi(-x)|0\rangle </math>
<math display="block"> \langle 0 | R\phi(x) \phi(-x)|0\rangle </math>
धारणा 5 द्वारा x = 0 पर सकारात्मक निश्चित होना चाहिए, कण राज्यों में सकारात्मक मानदंड हैं। परिमित द्रव्यमान की धारणा का अर्थ है कि यह सहसंबंध समारोह x स्पेसेलिक के लिए गैर-शून्य है। लोरेंत्ज़ इनवेरिएंस अब क्षेत्र को अंतिम अनुभाग के तर्क के विधि से सहसंबंध फ़ंक्शन के अंदर घुमाने की अनुमति देता है:
धारणा 5 द्वारा x = 0 पर सकारात्मक निश्चित होना चाहिए, कण राज्यों में सकारात्मक मानदंड हैं। परिमित द्रव्यमान की धारणा का अर्थ है कि यह सहसंबंध समारोह x स्पेसेलिक के लिए गैर-शून्य है। लोरेंत्ज़ इनवेरिएंस अब क्षेत्र को अंतिम अनुभाग के तर्क के विधि से सहसंबंध फलन के अंदर घुमाने की अनुमति देता है:
<math display="block"> \langle 0 | RR\phi(x) R\phi(-x) |0\rangle = \pm \langle 0| \phi(-x) R\phi(x)|0\rangle </math>
<math display="block"> \langle 0 | RR\phi(x) R\phi(-x) |0\rangle = \pm \langle 0| \phi(-x) R\phi(x)|0\rangle </math>
जहां साइन पूर्व की भांति स्पिन पर निर्भर करता है। सहसंबंध फ़ंक्शन का सीपीटी व्युत्क्रम, या यूक्लिडियन घूर्णी व्युत्क्रम यह प्रतीत देता है कि यह G(x) के बराबर है। इसलिए
जहां साइन पूर्व की भांति स्पिन पर निर्भर करता है। सहसंबंध फलन का सीपीटी व्युत्क्रम, या यूक्लिडियन घूर्णी व्युत्क्रम यह प्रतीत देता है कि यह G(x) के बराबर है। इसलिए
<math display="block"> \langle 0 | ( R\phi(x)\phi(y) - \phi(y)R\phi(x) )|0\rangle = 0 </math>
<math display="block"> \langle 0 | ( R\phi(x)\phi(y) - \phi(y)R\phi(x) )|0\rangle = 0 </math>
पूर्णांक-स्पिन क्षेत्र के लिए और
पूर्णांक-स्पिन क्षेत्र के लिए और

Latest revision as of 13:20, 30 October 2023

क्वांटम यांत्रिकी में, स्पिन-सांख्यिकी प्रमेय कण केआंतरिक स्पिन (भौतिकी) से संबंधित है (कोणीय संवेग कक्षीय गति के कारण नहीं) कण आँकड़ों का अनुसरण करते है। अल्प प्लैंक स्थिरांक ħ की इकाइयों में, 3 आयामों में गति करने वाले सभी कण जो पूर्णांक स्पिन या अर्ध-पूर्णांक स्पिन होते हैं।[1][2]


पृष्ठभूमि

क्वांटम राज्य और अप्रभेद्य कण

क्वांटम प्रणाली में, भौतिक अवस्था राज्य सदिश द्वारा वर्णित है। राज्य वैक्टर की जोड़ी शारीरिक रूप से समतुल्य होती है यदि वे समग्र चरण कारक से भिन्न होते हैं, अन्य इंटरैक्शन को अप्रत्यक्ष करते हैं। इस प्रकार के अप्रभेद्य कणों की जोड़ी की एकमात्र अवस्था होती है। इसका मतलब यह है कि यदि कणों की स्थिति का आदान-प्रदान किया जाता है (अर्थात, वे क्रमचय से गुजरते हैं), तो यहआधुनिक भौतिक अवस्था की पहचान नहीं करता है, अन्यथा मूल भौतिक अवस्था में है। वास्तव में कोई यह नहीं बता सकता कि कौन सा कण किस स्थिति में है।

जबकि कणों की स्थिति के आदान-प्रदान के अधीन भौतिक स्थिति नहीं बदलती है, विनिमय के परिणामस्वरूप राज्य वेक्टर के लिए संकेत बदलना संभव है। चूँकि यह चिन्ह परिवर्तन एकमात्र समग्र चरण है, यह भौतिक स्थिति को प्रभावित नहीं करता है।

स्पिन-सांख्यिकी संबंध को प्रमाणित करने में आवश्यक घटक सापेक्षता है, कि भौतिक नियम [[लोरेंत्ज़ परिवर्तन]] के अंतर्गत नहीं बदलते हैं। फील्ड ऑपरेटर परिभाषा के अनुसार, उनके द्वारा बनाए गए कण के स्पिन के अनुसार लोरेंत्ज़ परिवर्तनों के अंतर्गत रूपांतरित होते हैं।

इसके अतिरिक्त, धारणा (सूक्ष्मविषमता के रूप में जाना जाता है) कि अंतरिक्ष-समान-पृथक क्षेत्र या तो कम्यूट या एंटीकॉम्यूट एकमात्र समय दिशा के साथ सापेक्ष सिद्धांतों के लिए बनाया जा सकता है। अन्यथा, स्पेसलाइक होने की धारणा अर्थहीन है। चूँकि, प्रमाण में स्पेसटाइम के यूक्लिडियन संस्करण को देखना सम्मिलित है, जिसमें समय की दिशा को स्थानिक के रूप में माना जाता है, जैसा कि अब समझाया जाएगा।

लोरेंत्ज़ परिवर्तनों में 3-आयामी घुमाव और लोरेंत्ज़ बूस्ट सम्मिलित हैं। वेग के साथ संदर्भ के फ्रेम में स्थानांतरित होता है और गणितीय रूप से समय में घूर्णन की भांति होता है। क्वांटम फील्ड सिद्धांत के सहसंबंध कार्यों की विश्लेषणात्मक निरंतरता से, समय समन्वय काल्पनिक संख्या बन सकता है, और घूर्णन बन जाता है। नए अंतरिक्ष-समय में स्थानिक दिशाएं होती हैं और इसे यूक्लिडियन कहा जाता है।

विनिमय समरूपता या क्रमपरिवर्तन समरूपता

बोसॉन ऐसे कण होते हैं जिनकी तरंग क्रिया ऐसे विनिमय या क्रम परिवर्तन के अंतर्गत सममित होती है, इसलिए यदि हम कणों की परिवर्तन करते हैं, तो तरंग क्रिया नहीं बदलती है। फर्मियन ऐसे कण होते हैं जिनका वेवफंक्शन एंटीसिमेट्रिक होता है, इसलिए इस प्रकार के स्वैप के अंतर्गत वेवफंक्शन को माइनस साइन मिलता है, जिसका अर्थ है स्थिति पर अधिकार करना दो समान फर्मों का आयाम शून्य होना चाहिए। यह पाउली अपवर्जन सिद्धांत का है दो समान फ़र्मियन एक ही अवस्था में नहीं रह सकते। यह नियम बोसोन के लिए प्रारम्भ नहीं होता है।

क्वांटम क्षेत्र सिद्धांत में, राज्य या तरंग समारोह का वर्णन क्षेत्र संचालक द्वारा किया जाता है जो वैक्यूम नामक कुछ आधार अवस्था पर कार्य करते हैं। ऑपरेटरों के लिए तरंग क्रिया बनाने के सममित या एंटीसिमेट्रिक घटक को प्रोजेक्ट करने के लिए, उनके पास उपयुक्त रूपान्तरण नियम होना चाहिए। परिचालक

(साथ ऑपरेटर और संख्यात्मक फलन) तरंग क्रिया के साथ दो-कण स्थिति बनाता है , और क्षेत्रों के रूपान्तरण गुणों के आधार पर, एंटीसिमेट्रिक अंश या सममित अंश आशय का रखते हैं।

चलिए मान लेते हैं और दो ऑपरेटर एक ही समय में होते हैं; सामान्यतः, उनके पास स्पेसलाइक का पृथक्करण हो सकता है, जैसा कि इसके बाद बताया गया है।

यदि क्षेत्र यात्रा करते हैं, जिसका अर्थ है कि निम्नलिखित धारण करता है:

सममित भाग योगदान देता है, जिसमें , और क्षेत्र बोसोनिक कणों का निर्माण करेगा।

दूसरी ओर, यदि क्षेत्र विरोधी यात्रा, इसका मतलब है में वह गुण है

एंटीसिमेट्रिक भाग योगदान देता है, किन्तु , और कण फर्मीओनिक होंगे।

स्वाभाविक रूप से, न तो स्पिन से कोई आदान-प्रदान है, जो कणों के घूर्णन गुणों को निर्धारित करता है, विनिमय गुणों को नहीं है।

स्पिन-सांख्यिकी संबंध

स्पिन-सांख्यिकी संबंध पहली बार 1939 में मार्कस फ़िएरज़ द्वारा प्रस्तुत किया गया था[3] और वोल्फगैंग पाउली द्वारा अधिक व्यवस्थित विधि से पुनर्व्युत्पन्न किया गया था।[4] फ़िएर्ज़ और पाउली ने सभी मुक्त क्षेत्र सिद्धांतों की गणना करके अपने परिणाम का तर्क दिया, आवश्यकता के अधीन कि स्थानीय रूप से आने-जाने के लिए द्विघात रूप हों[clarification needed] सकारात्मक-निश्चित ऊर्जा घनत्व सहित वेधशालाएँ। 1950 में जूलियन श्विंगर द्वारा अधिक वैचारिक तर्क प्रदान किया गया था। रिचर्ड फेनमैन ने बाहरी क्षमता के रूप में बिखरने के लिए ता की मांग करके प्रदर्शन दिया, जो विविध है,[5] जो क्षेत्र की भाषा में अनुवादित होने पर द्विघात संकारक पर प्रतिबंध है जो संभावित को जोड़ता है।[6]


प्रमेय कथन

प्रमेय कहता है कि:

  • समान पूर्णांक-स्पिन कणों की प्रणाली के तरंग कार्य का समान मूल्य होता है जब किन्हीं दो कणों की स्थिति बदली जाती है। विनिमय के अंतर्गत सममित तरंग कार्यों वाले कणों को बोसोन कहा जाता है।
  • दो कणों की अदला-बदली करने पर समान अर्ध-पूर्णांक-स्पिन कणों की प्रणाली का तरंग कार्य संकेत बदलता है। विनिमय के अंतर्गत एंटीसिमेट्रिक वेव फ़ंक्शंस वाले कण फ़र्मियन कहलाते हैं।

दूसरे शब्दों में, स्पिन-सांख्यिकी प्रमेय में कहा गया है कि पूर्णांक-स्पिन कण बोसोन हैं, जबकि अर्ध-पूर्णांक-स्पिन कण फ़र्मियन हैं।

सामान्य चर्चा

सुझाव देने वाला फर्जी तर्क

दो-क्षेत्र ऑपरेटर उत्पाद पर विचार करें

जहाँ R वह मैट्रिक्स है जो क्षेत्र के स्पिन ध्रुवीकरण को 180 डिग्री घुमाता है जब कोई किसी विशेष अक्ष के चारों ओर 180 डिग्री का घुमाव करता है। को इस अंकन में नहीं दिखाया गया है। में कई घटक हैं, और मैट्रिक्स R उन्हें एक दूसरे के साथ मिलाता है।

गैर-सापेक्षतावादी सिद्धांत में, इस उत्पाद की व्याख्या पदों पर दो कणों के विनाश के रूप में की जा सकती है और द्वारा घुमाए गए ध्रुवीकरणों के साथ एक दूसरे के सापेक्ष है। अब इस कॉन्फ़िगरेशन को घुमाएँ उत्पत्ति के निकट हो। इस रोटेशन के अधीन, दो बिंदु और स्विच स्थान, और दो क्षेत्र ध्रुवीकरण अतिरिक्त रूप से घुमाए जाते हैं . तो हम प्राप्त करते हैं

जो पूर्णांक स्पिन के लिए बराबर है

और अर्द्ध पूर्णांक के लिए स्पिन के बराबर है

(स्पिन (भौतिकी) § घुमाव पर सिद्ध) किया। दोनों ऑपरेटर अभी भी दो कणों का विनाश करता है और . इसलिए हम प्रमाणित करते हैं कि कण राज्यों के संबंध में:

तो अर्द्ध-पूर्णांक स्थिति में संकेत की मूल्य पर, वैक्यूम में दो उचित रूप से ध्रुवीकृत ऑपरेटर सम्मिलन के क्रम का आदान-प्रदान रोटेशन द्वारा किया जा सकता है।

यह तर्क अपने आप में स्पिन-सांख्यिकी संबंध जैसा कुछ भी प्रमाणित नहीं करता है। यह देखने के लिए कि क्यों, मुक्त श्रोडिंगर समीकरण द्वारा वर्णित गैर-सापेक्ष स्पिन-0 क्षेत्र पर विचार करें। ऐसा क्षेत्र एंटीकम्यूटिंग या कम्यूटिंग हो सकता है। यह देखने के लिए कि यह कहाँ व्यर्थ रहता है, विचार करें कि गैर-सापेक्ष स्पिन-0 क्षेत्र में कोई ध्रुवीकरण नहीं है, जिसमें उपरोक्त उत्पाद हो:

गैर-सापेक्षवादी सिद्धांत में, यह उत्पाद दो कणों को नष्ट कर देता है और , और किसी भी राज्य में शून्य अपेक्षा मूल्य है। गैर-शून्य मैट्रिक्स तत्व होने के लिए, यह ऑपरेटर उत्पाद बाईं ओर की समानता में दाईं ओर दो और कणों वाले राज्यों के मध्य होना चाहिए:

घूर्णन करते हुए, हम जो सीखते हैं वह यह है कि 2-कण अवस्था को घुमाना ऑपरेटर ऑर्डर बदलने के समान संकेत देता है। इससे कोई अतिरिक्त जानकारी नहीं मिलती, इसलिए यह तर्क कुछ भी सिद्ध नहीं करता।

बोगस तर्क विफल क्यों होता है

स्पिन-सांख्यिकी प्रमेय को सिद्ध करने के लिए, सापेक्षता का उपयोग करना आवश्यक है, जैसा कि गैर-सापेक्षतावादी स्पिनलेस फ़र्मियन और गैर-सापेक्षतावादी स्पिनिंग बोसॉन की संगति से स्पष्ट है। स्पिन-सांख्यिकी प्रमेय के प्रमाण के साहित्य में ऐसे अधिकार हैं जिन्हें सापेक्षता की आवश्यकता नहीं है,[7][8] लेकिन वे प्रमेय के प्रमाण नहीं हैं, जैसा कि प्रतिउदाहरण दिखाते हैं, बल्कि वे तर्क हैं कि स्पिन-सांख्यिकी क्यों है, जबकि गलत-सांख्यिकी अप्राकृतिक है।[clarification needed] सापेक्षता में, संबंध आवश्यक है।

सापेक्षता में, कोई भी स्थानीय क्षेत्र नहीं है जो शुद्ध निर्माण संचालक या विनाश संचालक हैं। प्रत्येक स्थानीय क्षेत्र कण बनाता है और संबंधित एंटीपार्टिकल को नष्ट कर देता है। इसका तात्पर्य यह है कि सापेक्षता में, मुक्त वास्तविक स्पिन-0 क्षेत्र के उत्पाद में गैर-शून्य वैक्यूम अपेक्षा मूल्य होता है, क्योंकि ऐसे कणों को बनाने के अतिरिक्त जो नष्ट नहीं होते हैं और जो बाद में नहीं बनाए जाते हैं, इसमें भाग भी सम्मिलित होता है जो बनाता है और आभासी कणों का विनाश कर देता है जिसका अस्तित्व अंतःक्रियात्मक गणनाओं में प्रवेश करता है - लेकिन कभी भी बिखरने वाले मैट्रिक्स सूचकांकों या स्पर्शोन्मुख अवस्थाओं के रूप में नहीं हैं।

इसे देखने के लिए अनुमानी तर्क का उपयोग किया जा सकता है के बराबर है , जो हमें बताता है कि फील्ड्स एंटी-कम्यूटिंग नहीं हो सकते हैं।

प्रमाण

यूक्लिडियन एक्सटी विमान में π रोटेशन अंतिम खंड के क्षेत्र उत्पाद के वैक्यूम सहारा मूल्यों को घुमाने के लिए उपयोग किया जा सकता है। समय रोटेशन अंतिम खंड के तर्क को स्पिन-सांख्यिकी प्रमेय में परिवर्तन कर देता है।

प्रमाण के लिए निम्नलिखित मान्यताओं की आवश्यकता होती है:

  1. सिद्धांत में लोरेंत्ज़-इनवेरिएंट लैग्रैंगियन है।
  2. निर्वात लोरेंट्ज़-इनवेरिएंट है।
  3. कण स्थानीय उत्तेजना है। सूक्ष्म रूप से, यह स्ट्रिंग या डोमेन वॉल से जुड़ा नहीं है।
  4. कण प्रचार कर रहा है, जिसका अर्थ है कि इसका परिमित है, अनंत नहीं, द्रव्यमान है।
  5. कण वास्तविक उत्तेजना है, जिसका अर्थ है कि इस कण वाले राज्यों में सकारात्मक-निश्चित मानदंड है।

अधिकांश भाग के लिए ये धारणाएँ आवश्यक हैं, जैसा कि निम्नलिखित उदाहरण दिखाते हैं:

  1. स्पिनलेस एंटीकम्यूटिंग क्षेत्र से पता चलता है कि स्पिनलेस फ़र्मियन गैर-सापेक्ष रूप से सुसंगत हैं। इसी प्रकार, स्पिनर कम्यूटिंग क्षेत्र के सिद्धांत से पता चलता है कि स्पिनिंग बोसोन भी हैं।
  2. यह धारणा निर्बल हो सकती है।
  3. 2+1 आयामों में, चेर्न-सीमन्स सिद्धांत के स्रोतों में आकर्षक स्पिन हो सकते हैं, इस तथ्य के तथापि त्रि-आयामी रोटेशन समूह में एकमात्र पूर्णांक और अर्द्ध -पूर्णांक स्पिन प्रतिनिधित्व होते हैं।
  4. अल्ट्रालोकल क्षेत्र में इसके स्पिन से स्वतंत्र रूप से आँकड़े हो सकते हैं। यह लोरेंत्ज़ के आक्रमण से संबंधित है, क्योंकि असीम रूप से विशाल कण सदैव गैर-सापेक्षवादी होता है, और स्पिन गतिकी से भिन्न हो जाता है। चूँकि रंगीन क्वार्क क्यूसीडी स्ट्रिंग से जुड़े होते हैं और अनंत द्रव्यमान होते हैं, क्वार्क के लिए स्पिन-सांख्यिकी संबंध को कम दूरी की सीमा में सिद्ध किया जा सकता है।
  5. गेज भूत स्पिनलेस फ़र्मियन हैं, किंतु उनमें नकारात्मक मानदंड की अवस्थाएँ सम्मिलित हैं।

मान्यताओं 1 और 2 का अर्थ है कि सिद्धांत पथ अभिन्न द्वारा वर्णित है, और धारणा 3 का अर्थ है कि स्थानीय क्षेत्र है जो कण बनाता है।

रोटेशन प्लेन में समय सम्मिलित है, और यूक्लिडियन सिद्धांत में समय से जुड़े विमान में रोटेशन मिन्कोव्स्की सिद्धांत में सीपीटी समरूपता परिवर्तन को परिभाषित करता है। यदि सिद्धांत को पथ अभिन्न द्वारा वर्णित किया गया है, तो सीपीटी परिवर्तन राज्यों को उनके संयुग्मों में ले जाता है, जिससे सहसंबंध कार्य है।

धारणा 5 द्वारा x = 0 पर सकारात्मक निश्चित होना चाहिए, कण राज्यों में सकारात्मक मानदंड हैं। परिमित द्रव्यमान की धारणा का अर्थ है कि यह सहसंबंध समारोह x स्पेसेलिक के लिए गैर-शून्य है। लोरेंत्ज़ इनवेरिएंस अब क्षेत्र को अंतिम अनुभाग के तर्क के विधि से सहसंबंध फलन के अंदर घुमाने की अनुमति देता है:
जहां साइन पूर्व की भांति स्पिन पर निर्भर करता है। सहसंबंध फलन का सीपीटी व्युत्क्रम, या यूक्लिडियन घूर्णी व्युत्क्रम यह प्रतीत देता है कि यह G(x) के बराबर है। इसलिए
पूर्णांक-स्पिन क्षेत्र के लिए और
अर्द्ध-पूर्णांक-स्पिन क्षेत्रों के लिए।

चूंकि ऑपरेटर स्पेसलाइक से भिन्न होते हैं, भिन्न क्रम एकमात्र उन राज्यों को बना सकता है जो चरण से भिन्न होते हैं। तर्क स्पिन के अनुसार -1 या 1 होने के चरण को उचित करता है। चूंकि स्थानीय अनियमित से स्वतंत्र रूप से अंतरिक्ष की भांति भिन्न-भिन्न ध्रुवीकरणों को घुमाने के लिए संभव है, इसलिए चरण उचित रूप से चुने गए क्षेत्र निर्देशांक में ध्रुवीकरण पर निर्भर नहीं होना चाहिए।

यह तर्क जूलियन श्विंगर के कारण है।[9]

स्पिन-सांख्यिकी प्रमेय के लिए प्रारंभिक स्पष्टीकरण इस तथ्य के तथापि नहीं दिया जा सकता है कि प्रमेय सरल है। फिजिक्स पर फेनमैन लेक्चर्स में, रिचर्ड फेनमैन ने कहा कि इसका मतलब यह है कि हमें इसमें सम्मिलित मूलभूत सिद्धांत की पूरी समझ नहीं है। आगे पढ़ने के लिए नीचे देखें।

प्रमेय का परीक्षण करने के लिए, ड्रेक[10] पाउली अपवर्जन सिद्धांत का उल्लंघन करने वाले है परमाणु के राज्यों के लिए बहुत त्रुटिहीन गणना की; उन्हें पैरानिक स्टेट्स कहा जाता है। बाद में,[11] ड्रेक द्वारा गणना की गई पैरानिक स्थिति 1s2s 1S0 परमाणु बीम स्पेक्ट्रोमीटर का उपयोग करने के लिए उदेखा गया था। खोज 5×106 की ऊपरी सीमा के साथ असफल रही है।

परिणाम

फर्मियोनिक क्षेत्र

स्पिन-सांख्यिकी प्रमेय का अर्थ है कि अर्ध-पूर्णांक-स्पिन कण पाउली बहिष्करण सिद्धांत में आश्रित हैं, जबकि पूर्णांक-स्पिन कण नहीं हैं। किसी भी समय एकमात्र फ़र्मियन दी गई क्वांटम स्थिति पर अधिकार कर सकता है, जबकि बोसोन की संख्या जो क्वांटम राज्य पर अधिकार कर सकती है, प्रतिबंधित नहीं है। प्रोटॉन, न्यूट्रॉन और इलेक्ट्रॉन जैसे पदार्थ के मूल निर्माण खंड फ़र्मियन हैं। फोटॉन जैसे कण, जो पदार्थ के कणों के मध्य बलों की मध्यस्थता करते हैं, बोसोन हैं।

फ़र्मी-डिराक वितरण फ़र्मियन का वर्णन करते हुए चित्ताकर्षक गुणों की ओर ले जाता है। चूँकि एकमात्र फ़र्मियन किसी दिए गए क्वांटम राज्य पर अधिकार कर सकता है, स्पिन-1/2 फ़र्मियन के लिए सबसे कम एकल-कण ऊर्जा स्तर में अधिकतम दो कण होते हैं, जिसमें कणों के स्पिन विपरीत रूप से संरेखित होते हैं। इस प्रकार, पूर्ण शून्य पर भी, इस स्थिति में दो से अधिक फ़र्मियन की प्रणाली में अभी भी महत्वपूर्ण मात्रा में ऊर्जा है। परिणामस्वरूप, इस प्रकार की फर्मीओनिक प्रणाली बाहरी प्रभाव डालती है। गैर-शून्य तापमान पर भी ऐसा प्रभाव उपस्थित हो सकता है। गुरुत्वाकर्षण के कारण कुछ बड़े सितारों को ढहने से बचाने के लिए यह अध: पतन दबाव उत्तरदायी है। श्वेत बौना, न्यूट्रॉन स्टार और ब्लैक होल देखें।

बोसोनिक क्षेत्र

दो प्रकार के आँकड़ों से उत्पन्न होने वाली कुछ रुचिकर घटनाएँ हैं। बोस-आइंस्टीन वितरण जो बोसोन का वर्णन करता है, बोस-आइंस्टीन संघनन की ओर जाता है | निश्चित तापमान के नीचे, बोसोनिक प्रणाली के अधिकांश कण भूमि अवस्था (न्यूनतम ऊर्जा की स्थिति) पर अधिकार कर लेंगे। अतिप्रवाहिता जैसे असामान्य गुणों का परिणाम हो सकता है।

भूत क्षेत्र

भूत (भौतिकी) स्पिन-सांख्यिकी संबंध का पालन नहीं करते हैं। प्रमेय में अवगुण को दूर करने की विधि पर क्लेन परिवर्तन देखें।

लोरेंत्ज़ समूह के प्रतिनिधित्व सिद्धांत से संबंध

लोरेंत्ज़ समूह के निकट परिमित आयाम का कोई गैर-तुच्छ एकात्मक प्रतिनिधित्व नहीं है। इस प्रकार हिल्बर्ट अंतरिक्ष का निर्माण करना असंभव लगता है जिसमें सभी राज्यों में परिमित, अपरिचित-शून्य स्पिन और सकारात्मक, लोरेंत्ज़-इनवेरिएंट मानदंड हैं। पार्टिकल स्पिन-सांख्यिकी के आधार पर इस समस्या को पृथक व्यवहार से दूर किया जाता है।

पूर्णांक स्पिन की स्थिति के लिए नकारात्मक मानक राज्य (अभौतिक ध्रुवीकरण के रूप में जाना जाता है) को शून्य पर सेट किया जाता है, जो गेज समरूपता का उपयोग आवश्यक बनाता है।

अर्ध-पूर्णांक स्पिन की स्थिति के लिए तर्क को फ़र्मोनिक सांख्यिकी होने से रोका जा सकता है।[12]


सीमाएं: 2 आयामों में कोई भी

1982 में, भौतिक विज्ञानी फ्रैंक विल्जेक ने संभावित आंशिक-स्पिन कणों की संभावनाओं पर अनुसंधान पत्र प्रकाशित किया, जिसे उन्होंने "कोई भी" स्पिन लेने की उनकी क्षमता के आधार पर किसी भी व्यक्ति का नाम दिया।[13] उन्होंने लिखा है कि वे सैद्धांतिक रूप से निम्न-आयामी प्रणालियों में उत्पन्न होने की भविष्यवाणी की गई थी जहां गति तीन से कम स्थानिक आयामों तक सीमित है। विल्जेक ने अपने स्पिन आँकड़ों का वर्णन सामान्य बोसोन और फ़र्मियन केसेस के मध्य लगातार प्रक्षेपित करने के रूप में वर्णित किया।[13]1985 से 2013 तक प्रायोगिक रूप से किसी के अस्तित्व के साक्ष्य प्रस्तुत किए गए हैं,[14][15] चूँकि यह निश्चित रूप से स्थापित नहीं माना जाता है कि सभी प्रस्तावित प्रकार के कोई भी उपस्थित हैं। कोई भी पदार्थ की चोटी समरूपता और सामयिक अवस्थाओं से संबंधित हैं।

यह भी देखें

संदर्भ

  1. Dirac, Paul Adrien Maurice (1981-01-01). क्वांटम यांत्रिकी के सिद्धांत (in English). Clarendon Press. p. 149. ISBN 9780198520115.
  2. Pauli, Wolfgang (1980-01-01). क्वांटम यांत्रिकी के सामान्य सिद्धांत (in English). Springer-Verlag. ISBN 9783540098423.
  3. Markus Fierz (1939). "Über die relativistische Theorie kräftefreier Teilchen mit beliebigem Spin". Helvetica Physica Acta. 12 (1): 3–37. Bibcode:1939AcHPh..12....3F. doi:10.5169/seals-110930.
  4. Wolfgang Pauli (15 October 1940). "स्पिन और सांख्यिकी के बीच संबंध" (PDF). Physical Review. 58 (8): 716–722. Bibcode:1940PhRv...58..716P. doi:10.1103/PhysRev.58.716.
  5. Richard Feynman (1961). क्वांटम इलेक्ट्रोडायनामिक्स. Basic Books. ISBN 978-0-201-36075-2.
  6. Wolfgang Pauli (1950). "स्पिन और सांख्यिकी के बीच संबंध पर". Progress of Theoretical Physics. 5 (4): 526–543. Bibcode:1950PThPh...5..526P. doi:10.1143/ptp/5.4.526.
  7. Jabs, Arthur (5 April 2002). "क्वांटम यांत्रिकी में स्पिन और सांख्यिकी को जोड़ना". Foundations of Physics. 40 (7): 776–792. arXiv:0810.2399. Bibcode:2010FoPh...40..776J. doi:10.1007/s10701-009-9351-4. S2CID 122488238.
  8. Horowitz, Joshua (14 April 2009). "पथ समाकलन से भिन्नात्मक क्वांटम सांख्यिकी तक" (PDF). {{cite journal}}: Cite journal requires |journal= (help)
  9. Julian Schwinger (June 15, 1951). "खेतों की क्वांटम थ्योरी I". Physical Review. 82 (6): 914–917. Bibcode:1951PhRv...82..914S. doi:10.1103/PhysRev.82.914. S2CID 121971249.. The only difference between the argument in this paper and the argument presented here is that the operator "R" in Schwinger's paper is a pure time reversal, instead of a CPT operation, but this is the same for CP invariant free field theories which were all that Schwinger considered.
  10. Drake, G.W.F. (1989). ""पैरोनिक" हीलियम के लिए अनुमानित ऊर्जा परिवर्तन". Phys. Rev. A. 39 (2): 897–899. Bibcode:1989PhRvA..39..897D. doi:10.1103/PhysRevA.39.897. PMID 9901315. S2CID 35775478.
  11. Deilamian, K.; et al. (1995). "हीलियम की उत्तेजित अवस्था में समरूपता के छोटे उल्लंघनों की खोज करें". Phys. Rev. Lett. 74 (24): 4787–4790. Bibcode:1995PhRvL..74.4787D. doi:10.1103/PhysRevLett.74.4787. PMID 10058599.
  12. Peskin, Michael E.; Schroeder, Daniel V. (1995). क्वांटम फील्ड थ्योरी का परिचय. Addison-Wesley. ISBN 0-201-50397-2.
  13. 13.0 13.1 Wilczek, Frank (4 October 1982). "Quantum Mechanics of Fractional-Spin Particles" (PDF). Physical Review Letters. 49 (14): 957–959. Bibcode:1982PhRvL..49..957W. doi:10.1103/PhysRevLett.49.957.
  14. Camino, Fernando E.; Zhou, Wei; Goldman, Vladimir J. (17 August 2005). "Realization of a Laughlin quasiparticle interferometer: Observation of fractional statistics" (PDF). Physical Review B. 72 (7): 075342. arXiv:cond-mat/0502406. Bibcode:2005PhRvB..72g5342C. doi:10.1103/PhysRevB.72.075342. S2CID 52245802. Archived from the original (PDF) on 19 June 2015., see fig. 2.B
  15. R. L. Willett; C. Nayak; L. N. Pfeiffer; K. W. West (12 January 2013). "Magnetic field-tuned Aharonov–Bohm oscillations and evidence for non-Abelian anyons at ν = 5/2". Physical Review Letters. 111 (18): 186401. arXiv:1301.2639. Bibcode:2013PhRvL.111r6401W. doi:10.1103/PhysRevLett.111.186401. PMID 24237543. S2CID 22780228.


अग्रिम पठन


बाहरी संबंध