सर्वोत्कृष्टता (भौतिकी): Difference between revisions
No edit summary |
No edit summary |
||
(5 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
भौतिकी में, '''सर्वोत्कृष्टता''' गुप्त ऊर्जा का एक [[परिकल्पना|परिकल्पनात्मक]] रूप है, अधिक थावत् रूप से एक [[अदिश क्षेत्र]], जिसे ब्रह्मांड के त्वरित विस्तार के अवलोकन के स्पष्टीकरण के रूप में माना जाता है। इस परिदृश्य का पहला उदाहरण [[भारत रात्रा|भरत विष्णु रात्रा]] और [[जिम पीबल्स]] (1988) और [[क्रिस्टोफ वेटेरिच]] (1988) द्वारा प्रस्तावित किया गया था।<ref>{{Cite journal |last=Wetterich |first=C. |date=1988-06-13 |title=ब्रह्मांड विज्ञान और तनुकरण समरूपता का भाग्य|url=https://dx.doi.org/10.1016/0550-3213%2888%2990193-9 |journal=Nuclear Physics B |language=en |volume=302 |issue=4 |pages=668–696 |doi=10.1016/0550-3213(88)90193-9 |arxiv=1711.03844 |bibcode=1988NuPhB.302..668W |s2cid=118970077 |issn=0550-3213}}</ref><ref>{{Cite journal |last=Doran |first=Michael |date=2001-10-01 |others=et al. |title=सर्वोत्कृष्टता और लौकिक माइक्रोवेव पृष्ठभूमि चोटियों का पृथक्करण|url=https://iopscience.iop.org/article/10.1086/322253/fulltext/53251.text.html |journal=The Astrophysical Journal |language=en |volume=559 |issue=2 |pages=501–506 |doi= 10.1086/322253|arxiv=astro-ph/0012139 |bibcode=2001ApJ...559..501D |s2cid=119454400 |via=Iopscience}}</ref> इस अवधारणा का विस्तार अधिक सामान्य प्रकार के समय-भिन्न अदीप्त ऊर्जा में किया गया था, और सर्वप्रथम 1998 में रॉबर्ट आर कैलडवेल, राहुल दवे और [[पॉल स्टीनहार्ट]] द्वारा एक पत्र में सारतत्व शब्द प्रस्तुत किया गया था।<ref name=CDS>{{cite journal | last1 = Caldwell | first1 = R.R. | last2 = Dave | first2 = R.| last3 = Steinhardt | first3 = P.J. | year = 1998 | title = राज्य के सामान्य समीकरण के साथ एक ऊर्जा घटक की ब्रह्माण्ड संबंधी छाप| journal = Phys. Rev. Lett. | volume = 80 | issue = 8 | pages = 1582–1585 | doi = 10.1103/PhysRevLett.80.1582 |arxiv = astro-ph/9708069 |bibcode = 1998PhRvL..80.1582C | s2cid = 597168 }}</ref> कुछ भौतिकविदों द्वारा इसे पाँचवीं शक्ति के रूप में प्रस्तावित किया गया है।<ref>{{cite journal | last = Carroll | first = S.M. | year = 1998 | title = Quintessence and the Rest of the World: Suppressing Long-Range Interactions | journal = Phys. Rev. Lett. | volume = 81 | issue = 15 | pages = 3067–3070 | doi = 10.1103/PhysRevLett.81.3067 |arxiv = astro-ph/9806099 |bibcode = 1998PhRvL..81.3067C | s2cid = 14539052 }}</ref><ref>{{cite web|url = http://www.thphys.uni-heidelberg.de/~wetterich/DEBarcelona0706.pdf |title = सर्वोत्कृष्टता - मौलिक पैमाने की भिन्नता से पांचवां बल|first = C. |last = Wetterich|publisher = Heidelberg University}}</ref><ref>{{cite journal|url = http://cds.cern.ch/record/515241/files/0108217.pdf|title = Changing α With Time: Implications For Fifth-Force-Type Experiments And Quintessence|first1= Gia|last1= Dvali |first2=Matias|last2= Zaldarriaga |journal = Physical Review Letters|year = 2002|volume = 88|issue = 9|pages = 091303|doi = 10.1103/PhysRevLett.88.091303|pmid = 11863992|arxiv = hep-ph/0108217|bibcode = 2002PhRvL..88i1303D|s2cid = 32730355}}</ref><ref>Cicoli, Michele; Pedro, Francisco G.; Tasinato, Gianmassimo (23 July 2012). [https://arxiv.org/abs/1203.6655 "Natural Quintessence in String Theory"] – via arXiv.org.</ref> सर्वोत्कृष्टता अदीप्त ऊर्जा की ब्रह्माण्ड संबंधी स्थिर व्याख्या से इस मायने में भिन्न है कि यह गतिशील है; अर्थात्, यह समय के साथ बदलता है, [[ब्रह्माण्ड संबंधी स्थिरांक]] के विपरीत, जो परिभाषा के अनुसार नहीं बदलता है। अपनी गतिज और स्थितिज ऊर्जा के अनुपात के आधार पर सर्वोत्कृष्टता या तो आकर्षक या प्रतिकारक हो सकती है। इस अभिधारणा के साथ काम करने वालों का मानना है कि लगभग दस अरब साल पहले, [[महा विस्फोट]] के लगभग 3.5 अरब साल बाद, सार तत्व प्रतिकारक बन गया।<ref>{{cite web |url = http://www.astronomytoday.com/cosmology/quintessence.html |title = Quintessence, accelerating the Universe? |first = Christopher |last = Wanjek|website = Astronomy Today}}</ref> | |||
भौतिकी में, सर्वोत्कृष्टता गुप्त ऊर्जा का एक [[परिकल्पना|परिकल्पनात्मक]] रूप है, अधिक थावत् रूप से एक [[अदिश क्षेत्र]], जिसे ब्रह्मांड के त्वरित विस्तार के अवलोकन के स्पष्टीकरण के रूप में माना जाता है। इस परिदृश्य का पहला उदाहरण [[भारत रात्रा|भरत विष्णु रात्रा]] और [[जिम पीबल्स]] (1988) और [[क्रिस्टोफ वेटेरिच]] (1988) द्वारा प्रस्तावित किया गया था।<ref>{{Cite journal |last=Wetterich |first=C. |date=1988-06-13 |title=ब्रह्मांड विज्ञान और तनुकरण समरूपता का भाग्य|url=https://dx.doi.org/10.1016/0550-3213%2888%2990193-9 |journal=Nuclear Physics B |language=en |volume=302 |issue=4 |pages=668–696 |doi=10.1016/0550-3213(88)90193-9 |arxiv=1711.03844 |bibcode=1988NuPhB.302..668W |s2cid=118970077 |issn=0550-3213}}</ref><ref>{{Cite journal |last=Doran |first=Michael |date=2001-10-01 |others=et al. |title=सर्वोत्कृष्टता और लौकिक माइक्रोवेव पृष्ठभूमि चोटियों का पृथक्करण|url=https://iopscience.iop.org/article/10.1086/322253/fulltext/53251.text.html |journal=The Astrophysical Journal |language=en |volume=559 |issue=2 |pages=501–506 |doi= 10.1086/322253|arxiv=astro-ph/0012139 |bibcode=2001ApJ...559..501D |s2cid=119454400 |via=Iopscience}}</ref> इस अवधारणा का विस्तार अधिक सामान्य प्रकार के समय-भिन्न | |||
शोधकर्ताओं के एक समूह ने 2021 में तर्क दिया कि [[हबल तनाव|हबल नियम]] की टिप्पणियों का अर्थ यह हो सकता है कि गैर-[[युग्मन स्थिरांक]] वाले केवल सर्वोत्कृष्ट प्रतिरूप व्यवहार्य हैं।<ref name="FLRW breakdown">{{cite journal |last1=Krishnan |first1=Chethan |last2=Mohayaee |first2=Roya |last3=Colgáin |first3=Eoin Ó |last4=Sheikh-Jabbari |first4=M. M. |last5=Yin |first5=Lu |title=Does Hubble Tension Signal a Breakdown in FLRW Cosmology? |journal=Classical and Quantum Gravity |date=16 September 2021 |volume=38 |issue=18 |pages=184001 |doi=10.1088/1361-6382/ac1a81 |arxiv=2105.09790 |bibcode=2021CQGra..38r4001K |s2cid=234790314 |issn=0264-9381}}</ref> | शोधकर्ताओं के एक समूह ने 2021 में तर्क दिया कि [[हबल तनाव|हबल नियम]] की टिप्पणियों का अर्थ यह हो सकता है कि गैर-[[युग्मन स्थिरांक]] वाले केवल सर्वोत्कृष्ट प्रतिरूप व्यवहार्य हैं।<ref name="FLRW breakdown">{{cite journal |last1=Krishnan |first1=Chethan |last2=Mohayaee |first2=Roya |last3=Colgáin |first3=Eoin Ó |last4=Sheikh-Jabbari |first4=M. M. |last5=Yin |first5=Lu |title=Does Hubble Tension Signal a Breakdown in FLRW Cosmology? |journal=Classical and Quantum Gravity |date=16 September 2021 |volume=38 |issue=18 |pages=184001 |doi=10.1088/1361-6382/ac1a81 |arxiv=2105.09790 |bibcode=2021CQGra..38r4001K |s2cid=234790314 |issn=0264-9381}}</ref> | ||
Line 9: | Line 6: | ||
== शब्दावली == | == शब्दावली == | ||
नाम क्विंटा | यह नाम क्विंटा एसेंशिया (पांचवां तत्व) से आया है। तथाकथित लैटिन में मध्य युग से प्रारम्भ होने वाला, यह (पहला) तत्व [[अरस्तू]] द्वारा ग्रीस में अन्य चार प्राचीन शास्त्रीय तत्वों में जोड़ा गया था क्योंकि उन्होंने सोचा था कि यह दिव्य दुनिया का सार था। अरस्तू को एक शुद्ध, उत्तम और मूल तत्व माना जाता है। बाद के विद्वानों ने इस तत्व की पहचान एथर (शास्त्रीय तत्व) से की गई। इसी तरह, आधुनिक सर्वोत्कृष्टता ब्रह्मांड के समग्र द्रव्यमान-ऊर्जा सामग्री में पांचवां ज्ञात गतिशील, समय-निर्भर और स्थानिक रूप से अमानवीय योगदान होगा। | ||
निस्सन्देह, अन्य चार घटक ग्रीस में शास्त्रीय तत्व नहीं हैं, बल्कि [[बैरोनिक पदार्थ]], [[न्युट्रीनो]], [[ गहरे द्रव्य | गहरे द्रव्य]], [और] [[विद्युत चुम्बकीय विकिरण]] हैं। हालांकि न्यूट्रिनो को कभी-कभी विकिरण माना जाता है, इस संदर्भ में विकिरण शब्द का उपयोग केवल द्रव्यमान रहित [[फोटॉनों]] के संदर्भ में किया जाता है। ब्रह्मांड की स्थानिक वक्रता (जिसका पता नहीं चला है) को बाहर रखा गया है क्योंकि यह गैर-गतिशील और सजातीय है; ब्रह्माण्ड संबंधी स्थिरांक को इस अर्थ में पाँचवाँ घटक नहीं माना जाएगा, क्योंकि यह गैर-गतिशील, सजातीय और समय-स्वतंत्र है।<ref name=CDS /> | |||
== अदिश क्षेत्र == | == अदिश क्षेत्र == | ||
सर्वोत्कृष्टता (Q) अवस्था के समीकरण (ब्रह्माण्ड विज्ञान) के साथ एक अदिश क्षेत्र है जहाँ w<sub>''q''</sub>, दबाव | सर्वोत्कृष्टता (Q) अवस्था के समीकरण (ब्रह्माण्ड विज्ञान) के साथ एक अदिश क्षेत्र है जहाँ w<sub>''q''</sub>, दबाव p<sub>''q''</sub> का अनुपात और घनत्व <math>\rho</math><sub>''q''</sub>, स्थितिज ऊर्जा <math>V(Q)</math> और एक गतिज शब्द द्वारा निम्न दिया जाता है : | ||
:<math>w_q=\frac{p_q}{\rho_q}=\frac{\frac{1}{2}\dot{Q}^2-V(Q)}{\frac{1}{2}\dot{Q}^2+V(Q)}</math> | :<math>w_q=\frac{p_q}{\rho_q}=\frac{\frac{1}{2}\dot{Q}^2-V(Q)}{\frac{1}{2}\dot{Q}^2+V(Q)}</math> | ||
इसलिए, सर्वोत्कृष्ट गतिशील है, और | इसलिए, सर्वोत्कृष्ट गतिशील है, और सामान्यतः एक घनत्व और w<sub>''q''</sub> मापदण्ड है जो समय के साथ बदलता रहता है। इसके विपरीत, एक ब्रह्माण्ड संबंधी स्थिरांक स्थिर होता है, जिसमें एक निश्चित [[ऊर्जा घनत्व]] और w<sub>''q''</sub> = −1 होता है। | ||
== | == अनुपथक व्यवहार == | ||
सर्वोत्कृष्टता के कई | सर्वोत्कृष्टता के कई प्रतिरूपों में एक अनुपथक व्यवहार होता है, जो रात्रा और पीबल्स (1988) और पॉल स्टीनहार्ट एट अल (1999) के अनुसार ब्रह्माण्ड संबंधी स्थिरांक समस्या को आंशिक रूप से हल करता है। <ref name="Zlatev">{{cite journal | ||
| last1=Zlatev |first1=I. | | last1=Zlatev |first1=I. | ||
|last2=Wang |first2=L. | |last2=Wang |first2=L. | ||
Line 33: | Line 30: | ||
|bibcode=1999PhRvL..82..896Z | |bibcode=1999PhRvL..82..896Z | ||
|arxiv = astro-ph/9807002 |s2cid=119073006 | |arxiv = astro-ph/9807002 |s2cid=119073006 | ||
}}</ref> इन | }}</ref> इन प्रतिरूपों में, सारक क्षेत्र में एक घनत्व होता है जो विकिरण घनत्व का बारीकी से पथानुसरण करता है (लेकिन उससे कम होता है) जब तक कि पदार्थ-विकिरण समानता की समयरेखा नहीं हो जाती है, जो सारतत्व को अदीप्त ऊर्जा के समान विशेषताओं को प्रारम्भ करने के लिए प्रेरित करता है, अंततः ब्रह्मांड पर हावी होता है। यह स्वाभाविक रूप से अदीप्त ऊर्जा के मंद [[ ऊर्जा पैमाने |ऊर्जा मापक्रम]] को सम्मुच्चय करता है।<ref name="Steinhardt1999">{{cite journal | ||
| last3=Zlatev |first3=I. | | last3=Zlatev |first3=I. | ||
|last2=Wang |first2=L. | |last2=Wang |first2=L. | ||
Line 46: | Line 43: | ||
|bibcode=1999PhRvD..59l3504S | |bibcode=1999PhRvD..59l3504S | ||
|arxiv = astro-ph/9812313 |s2cid=40714104 | |arxiv = astro-ph/9812313 |s2cid=40714104 | ||
}}</ref> ब्रह्माण्ड संबंधी | }}</ref> ब्रह्माण्ड संबंधी आंकड़ों के साथ अनुपथक समाधानों द्वारा दिए गए ब्रह्मांड के स्थान के अनुमानित आव्यूह विस्तार की तुलना करते समय, अनुपथक समाधानों की एक मुख्य विशेषता यह है कि स्तिथि (ब्रह्माण्ड विज्ञान) के अपने समीकरण के व्यवहार का सही ढंग से वर्णन करने के लिए चार मापदंडों की आवश्यकता होती है,<ref name="Linden2008">{{cite journal | ||
| last1=Linden |first1=Sebastian | | last1=Linden |first1=Sebastian | ||
|last2=Virey |first2=Jean-Marc | |last2=Virey |first2=Jean-Marc | ||
Line 71: | Line 68: | ||
|bibcode=2010A&A...514A..20F | |bibcode=2010A&A...514A..20F | ||
|arxiv = 0909.1703 |s2cid=17386518 | |arxiv = 0909.1703 |s2cid=17386518 | ||
}}</ref> जबकि यह दिखाया गया है कि अधिकतम दो- | }}</ref> जबकि यह दिखाया गया है कि अधिकतम दो-मापदण्ड प्रतिरूप को मध्यावधि भविष्य के आंकड़ों (क्षितिज 2015-2020) द्वारा इष्टतम रूप से विवश किया जा सकता है।<ref name="LindererHuterer2005">{{cite journal | ||
| last1=Linder |first1=Eric V. | | last1=Linder |first1=Eric V. | ||
|last2=Huterer |first2=Dragan | |last2=Huterer |first2=Dragan | ||
Line 87: | Line 84: | ||
== विशिष्ट प्रतिरूप == | == विशिष्ट प्रतिरूप == | ||
सर्वोत्कृष्टता | सर्वोत्कृष्टता की कुछ विशेष स्तिथि [[प्रेत ऊर्जा|आभासी ऊर्जा]] हैं, जिसमें w<sub>''q''</sub> < −1,<ref name="Caldwell2002">{{cite journal | ||
| last1=Caldwell |first1=R. R. | | last1=Caldwell |first1=R. R. | ||
| title=A phantom menace? Cosmological consequences of a dark energy component with super-negative equation of state | | title=A phantom menace? Cosmological consequences of a dark energy component with super-negative equation of state | ||
Line 98: | Line 95: | ||
|bibcode=2002PhLB..545...23C | |bibcode=2002PhLB..545...23C | ||
|arxiv = astro-ph/9908168 |s2cid=9820570 | |arxiv = astro-ph/9908168 |s2cid=9820570 | ||
}}</ref> और | }}</ref> और k-तत्व (गतिज तत्व के लिए संक्षिप्त), जिसमें [[गतिज ऊर्जा]] का एक गैर-मानक रूप है। यदि इस प्रकार की ऊर्जा उपस्थित होती, तो यह <ref name="Antoniou2016">{{cite journal | ||
| last1=Antoniou |first1=Ioannis |last2=Perivolaropoulos |first2=Leandros | | last1=Antoniou |first1=Ioannis |last2=Perivolaropoulos |first2=Leandros | ||
| title= Geodesics of McVittie Spacetime with a Phantom Cosmological Background | | title= Geodesics of McVittie Spacetime with a Phantom Cosmological Background | ||
Line 108: | Line 105: | ||
| doi= 10.1103/PhysRevD.93.123520 | | doi= 10.1103/PhysRevD.93.123520 | ||
| arxiv =1603.02569 | bibcode= 2016PhRvD..93l3520A | | arxiv =1603.02569 | bibcode= 2016PhRvD..93l3520A | ||
|s2cid=18017360 }}</ref> | |s2cid=18017360 }}</ref> अदीप्त ऊर्जा के बढ़ते ऊर्जा घनत्व के कारण ब्रह्मांड में एक बड़ी दरार उत्पन्न कर देती, जिसके कारण ब्रह्मांड का विस्तार घातीय दर से अधिक तेजी से बढ़ जाता है। | ||
=== स्वलिखित अदीप्त ऊर्जा === | |||
स्वलिखित अदीप्त ऊर्जा प्रतिरूप, ब्र्ह्माण्ड विज्ञान संबंधी नियतांक प्रतिरूप की तुलना में, एक उच्च [[अध: पतन (गणित)]] का संकेत देते हैं।<ref>{{Cite journal|arxiv=1502.01156 |year=2015|title=कॉस्मोलॉजिकल कॉन्स्टेंट के साथ होलोग्राफिक डार्क एनर्जी|journal=Journal of Cosmology and Astroparticle Physics|volume=2015|issue=8|pages=012|last1=Hu|first1=Yazhou|last2=Li|first2=Miao|last3=Li|first3=Nan|last4=Zhang|first4=Zhenhui|doi=10.1088/1475-7516/2015/08/012|bibcode=2015JCAP...08..012H|s2cid=118732915}}</ref> यह सुझाव दिया गया है कि अदीप्त ऊर्जा [[ अंतरिक्ष समय |अंतरिक्ष समय]] के [[क्वांटम उतार-चढ़ाव|परिमाण उतार-चढ़ाव]] से उत्पन्न हो सकती है, और ब्रह्मांड के घटना क्षितिज द्वारा सीमित है।<ref>{{cite journal|url=http://philsci-archive.pitt.edu/10036/|doi=10.3390/galaxies1030180|title=होलोग्राफिक डार्क एनर्जी की व्याख्या|journal=Galaxies|volume=1|issue=3|pages=180–191|author=Shan Gao|year=2013|bibcode = 2013Galax...1..180G |doi-access=free}}</ref> | |||
सर्वोत्कृष्ट अदीप्त ऊर्जा के अध्ययन में पाया गया कि यह स्वलिखित ऊष्मीकरण के आधार पर स्पेसटाइम अनुरूपण में गुरुत्वाकर्षण पतन पर हावी है। इन परिणामों से पता चलता है कि पंचक का स्तिथि मापदण्ड जितना छोटा होता है, प्लाविक को उष्मित करना उतना ही कठिन होता है।<ref>{{cite journal|doi=10.1103/PhysRevD.91.046005|title=स्पेसटाइम में होलोग्राफिक थर्मलाइजेशन और गुरुत्वाकर्षण का पतन सर्वोत्कृष्ट डार्क एनर्जी का प्रभुत्व है|journal=Physical Review D |volume=91 |issue=4 |pages=046005 |year=2015|arxiv = 1408.6632 |bibcode = 2015PhRvD..91d6005Z |last1=Zeng |first1=Xiao-Xiong |last2=Chen |first2=De-You |last3=Li |first3=Li-Fang |s2cid=119107827 }}</ref> | |||
== क्विंटम परिदृश्य == | == क्विंटम परिदृश्य == | ||
2004 में, जब वैज्ञानिकों ने ब्रह्माण्ड संबंधी | 2004 में, जब वैज्ञानिकों ने ब्रह्माण्ड संबंधी आंकड़ों के साथ अदीप्त ऊर्जा के विकास को उपयुक्त किया, तो उन्होंने पाया कि स्तिथि के समीकरण ने संभवतः ब्रह्माण्ड संबंधी स्थिर सीमा ({{mvar|w}} = -1) को ऊपर से नीचे की ओर पार कर लिया था। एक सिद्ध [[नो-गो प्रमेय]] इस स्थिति को इंगित करता है, जिसे [[क्विंटम परिदृश्य]] कहा जाता है, आदर्श गैसों या अदिश क्षेत्रों से जुड़े अदीप्त ऊर्जा प्रतिरूप के लिए कम से कम दो स्वतंत्रता की कोटि की आवश्यकता होती है।<ref name="Hu2005">{{cite journal |last=Hu |first=Wayne |title=Crossing the phantom divide: Dark energy internal degrees of freedom |journal=[[Physical Review D]] |year=2005 |volume=71 |issue=4 |pages=047301 |doi=10.1103/PhysRevD.71.047301 |bibcode=2005PhRvD..71d7301H |arxiv=astro-ph/0410680|s2cid=8791054 }}</ref> | ||
Line 128: | Line 126: | ||
==अग्रिम पठन== | ==अग्रिम पठन== | ||
* {{cite journal |last= | * {{cite journal |last=क्रिस्टोफ |first=Wetterich |date=1987-09-24 |title=ब्रह्मांड विज्ञान और तनुकरण समरूपता का भाग्य |journal=परमाणु भौतिकी बी |volume=302 |issue=4 |pages=668–696 |doi=10.1016/0550-3213(88)90193-9 |arxiv=1711.03844|bibcode=1988NuPhB.302..668W |s2cid=118970077 }} | ||
* {{Cite journal |author= | * {{Cite journal |author=ऑस्ट्राइकर जेपी |author2=स्टीनहार्ट पी |title=सर्वोत्कृष्ट ब्रह्मांड |journal=अमेरिकी वैज्ञानिक |volume=284 |number=1 |date=जनवरी 2001 |pages=46–53 |doi=10.1038/scientificamerican0101-46|pmid=11132422 |bibcode=2001SciAm.284a..46O }} | ||
* {{cite book|author= | * {{cite book|author=लॉरेंस एम. क्रॉस|author-link=लॉरेंस एम. क्रॉस|title=सर्वोत्कृष्टता: ब्रह्मांड में लापता द्रव्यमान की खोज|publisher=[[मूलभूत पुस्तकें]]|year=2000|isbn=978-0465037414|title-link=सर्वोत्कृष्टता: ब्रह्मांड में लापता द्रव्यमान की खोज}} | ||
{{Authority control}} | {{Authority control}} | ||
[[Category: | [[Category:All articles needing expert attention]] | ||
[[Category:Articles needing expert attention from April 2009]] | |||
[[Category:Articles with hatnote templates targeting a nonexistent page]] | |||
[[Category:Articles with invalid date parameter in template]] | |||
[[Category:CS1 English-language sources (en)]] | |||
[[Category:CS1 errors]] | |||
[[Category:Collapse templates]] | |||
[[Category:Created On 18/04/2023]] | [[Category:Created On 18/04/2023]] | ||
[[Category:Lua-based templates]] | |||
[[Category:Machine Translated Page]] | |||
[[Category:Navigational boxes| ]] | |||
[[Category:Navigational boxes without horizontal lists]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Sidebars with styles needing conversion]] | |||
[[Category:Template documentation pages|Documentation/doc]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates generating microformats]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that are not mobile friendly]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:Wikipedia articles needing clarification from August 2016]] | |||
[[Category:Wikipedia metatemplates]] | |||
[[Category:काली ऊर्जा]] |
Latest revision as of 16:39, 6 November 2023
भौतिकी में, सर्वोत्कृष्टता गुप्त ऊर्जा का एक परिकल्पनात्मक रूप है, अधिक थावत् रूप से एक अदिश क्षेत्र, जिसे ब्रह्मांड के त्वरित विस्तार के अवलोकन के स्पष्टीकरण के रूप में माना जाता है। इस परिदृश्य का पहला उदाहरण भरत विष्णु रात्रा और जिम पीबल्स (1988) और क्रिस्टोफ वेटेरिच (1988) द्वारा प्रस्तावित किया गया था।[1][2] इस अवधारणा का विस्तार अधिक सामान्य प्रकार के समय-भिन्न अदीप्त ऊर्जा में किया गया था, और सर्वप्रथम 1998 में रॉबर्ट आर कैलडवेल, राहुल दवे और पॉल स्टीनहार्ट द्वारा एक पत्र में सारतत्व शब्द प्रस्तुत किया गया था।[3] कुछ भौतिकविदों द्वारा इसे पाँचवीं शक्ति के रूप में प्रस्तावित किया गया है।[4][5][6][7] सर्वोत्कृष्टता अदीप्त ऊर्जा की ब्रह्माण्ड संबंधी स्थिर व्याख्या से इस मायने में भिन्न है कि यह गतिशील है; अर्थात्, यह समय के साथ बदलता है, ब्रह्माण्ड संबंधी स्थिरांक के विपरीत, जो परिभाषा के अनुसार नहीं बदलता है। अपनी गतिज और स्थितिज ऊर्जा के अनुपात के आधार पर सर्वोत्कृष्टता या तो आकर्षक या प्रतिकारक हो सकती है। इस अभिधारणा के साथ काम करने वालों का मानना है कि लगभग दस अरब साल पहले, महा विस्फोट के लगभग 3.5 अरब साल बाद, सार तत्व प्रतिकारक बन गया।[8]
शोधकर्ताओं के एक समूह ने 2021 में तर्क दिया कि हबल नियम की टिप्पणियों का अर्थ यह हो सकता है कि गैर-युग्मन स्थिरांक वाले केवल सर्वोत्कृष्ट प्रतिरूप व्यवहार्य हैं।[9]
शब्दावली
यह नाम क्विंटा एसेंशिया (पांचवां तत्व) से आया है। तथाकथित लैटिन में मध्य युग से प्रारम्भ होने वाला, यह (पहला) तत्व अरस्तू द्वारा ग्रीस में अन्य चार प्राचीन शास्त्रीय तत्वों में जोड़ा गया था क्योंकि उन्होंने सोचा था कि यह दिव्य दुनिया का सार था। अरस्तू को एक शुद्ध, उत्तम और मूल तत्व माना जाता है। बाद के विद्वानों ने इस तत्व की पहचान एथर (शास्त्रीय तत्व) से की गई। इसी तरह, आधुनिक सर्वोत्कृष्टता ब्रह्मांड के समग्र द्रव्यमान-ऊर्जा सामग्री में पांचवां ज्ञात गतिशील, समय-निर्भर और स्थानिक रूप से अमानवीय योगदान होगा।
निस्सन्देह, अन्य चार घटक ग्रीस में शास्त्रीय तत्व नहीं हैं, बल्कि बैरोनिक पदार्थ, न्युट्रीनो, गहरे द्रव्य, [और] विद्युत चुम्बकीय विकिरण हैं। हालांकि न्यूट्रिनो को कभी-कभी विकिरण माना जाता है, इस संदर्भ में विकिरण शब्द का उपयोग केवल द्रव्यमान रहित फोटॉनों के संदर्भ में किया जाता है। ब्रह्मांड की स्थानिक वक्रता (जिसका पता नहीं चला है) को बाहर रखा गया है क्योंकि यह गैर-गतिशील और सजातीय है; ब्रह्माण्ड संबंधी स्थिरांक को इस अर्थ में पाँचवाँ घटक नहीं माना जाएगा, क्योंकि यह गैर-गतिशील, सजातीय और समय-स्वतंत्र है।[3]
अदिश क्षेत्र
सर्वोत्कृष्टता (Q) अवस्था के समीकरण (ब्रह्माण्ड विज्ञान) के साथ एक अदिश क्षेत्र है जहाँ wq, दबाव pq का अनुपात और घनत्व q, स्थितिज ऊर्जा और एक गतिज शब्द द्वारा निम्न दिया जाता है :
इसलिए, सर्वोत्कृष्ट गतिशील है, और सामान्यतः एक घनत्व और wq मापदण्ड है जो समय के साथ बदलता रहता है। इसके विपरीत, एक ब्रह्माण्ड संबंधी स्थिरांक स्थिर होता है, जिसमें एक निश्चित ऊर्जा घनत्व और wq = −1 होता है।
अनुपथक व्यवहार
सर्वोत्कृष्टता के कई प्रतिरूपों में एक अनुपथक व्यवहार होता है, जो रात्रा और पीबल्स (1988) और पॉल स्टीनहार्ट एट अल (1999) के अनुसार ब्रह्माण्ड संबंधी स्थिरांक समस्या को आंशिक रूप से हल करता है। [10] इन प्रतिरूपों में, सारक क्षेत्र में एक घनत्व होता है जो विकिरण घनत्व का बारीकी से पथानुसरण करता है (लेकिन उससे कम होता है) जब तक कि पदार्थ-विकिरण समानता की समयरेखा नहीं हो जाती है, जो सारतत्व को अदीप्त ऊर्जा के समान विशेषताओं को प्रारम्भ करने के लिए प्रेरित करता है, अंततः ब्रह्मांड पर हावी होता है। यह स्वाभाविक रूप से अदीप्त ऊर्जा के मंद ऊर्जा मापक्रम को सम्मुच्चय करता है।[11] ब्रह्माण्ड संबंधी आंकड़ों के साथ अनुपथक समाधानों द्वारा दिए गए ब्रह्मांड के स्थान के अनुमानित आव्यूह विस्तार की तुलना करते समय, अनुपथक समाधानों की एक मुख्य विशेषता यह है कि स्तिथि (ब्रह्माण्ड विज्ञान) के अपने समीकरण के व्यवहार का सही ढंग से वर्णन करने के लिए चार मापदंडों की आवश्यकता होती है,[12][13] जबकि यह दिखाया गया है कि अधिकतम दो-मापदण्ड प्रतिरूप को मध्यावधि भविष्य के आंकड़ों (क्षितिज 2015-2020) द्वारा इष्टतम रूप से विवश किया जा सकता है।[14]
विशिष्ट प्रतिरूप
सर्वोत्कृष्टता की कुछ विशेष स्तिथि आभासी ऊर्जा हैं, जिसमें wq < −1,[15] और k-तत्व (गतिज तत्व के लिए संक्षिप्त), जिसमें गतिज ऊर्जा का एक गैर-मानक रूप है। यदि इस प्रकार की ऊर्जा उपस्थित होती, तो यह [16] अदीप्त ऊर्जा के बढ़ते ऊर्जा घनत्व के कारण ब्रह्मांड में एक बड़ी दरार उत्पन्न कर देती, जिसके कारण ब्रह्मांड का विस्तार घातीय दर से अधिक तेजी से बढ़ जाता है।
स्वलिखित अदीप्त ऊर्जा
स्वलिखित अदीप्त ऊर्जा प्रतिरूप, ब्र्ह्माण्ड विज्ञान संबंधी नियतांक प्रतिरूप की तुलना में, एक उच्च अध: पतन (गणित) का संकेत देते हैं।[17] यह सुझाव दिया गया है कि अदीप्त ऊर्जा अंतरिक्ष समय के परिमाण उतार-चढ़ाव से उत्पन्न हो सकती है, और ब्रह्मांड के घटना क्षितिज द्वारा सीमित है।[18]
सर्वोत्कृष्ट अदीप्त ऊर्जा के अध्ययन में पाया गया कि यह स्वलिखित ऊष्मीकरण के आधार पर स्पेसटाइम अनुरूपण में गुरुत्वाकर्षण पतन पर हावी है। इन परिणामों से पता चलता है कि पंचक का स्तिथि मापदण्ड जितना छोटा होता है, प्लाविक को उष्मित करना उतना ही कठिन होता है।[19]
क्विंटम परिदृश्य
2004 में, जब वैज्ञानिकों ने ब्रह्माण्ड संबंधी आंकड़ों के साथ अदीप्त ऊर्जा के विकास को उपयुक्त किया, तो उन्होंने पाया कि स्तिथि के समीकरण ने संभवतः ब्रह्माण्ड संबंधी स्थिर सीमा (w = -1) को ऊपर से नीचे की ओर पार कर लिया था। एक सिद्ध नो-गो प्रमेय इस स्थिति को इंगित करता है, जिसे क्विंटम परिदृश्य कहा जाता है, आदर्श गैसों या अदिश क्षेत्रों से जुड़े अदीप्त ऊर्जा प्रतिरूप के लिए कम से कम दो स्वतंत्रता की कोटि की आवश्यकता होती है।[20]
यह भी देखें
संदर्भ
- ↑ Wetterich, C. (1988-06-13). "ब्रह्मांड विज्ञान और तनुकरण समरूपता का भाग्य". Nuclear Physics B (in English). 302 (4): 668–696. arXiv:1711.03844. Bibcode:1988NuPhB.302..668W. doi:10.1016/0550-3213(88)90193-9. ISSN 0550-3213. S2CID 118970077.
- ↑ Doran, Michael (2001-10-01). et al. "सर्वोत्कृष्टता और लौकिक माइक्रोवेव पृष्ठभूमि चोटियों का पृथक्करण". The Astrophysical Journal (in English). 559 (2): 501–506. arXiv:astro-ph/0012139. Bibcode:2001ApJ...559..501D. doi:10.1086/322253. S2CID 119454400 – via Iopscience.
- ↑ 3.0 3.1 Caldwell, R.R.; Dave, R.; Steinhardt, P.J. (1998). "राज्य के सामान्य समीकरण के साथ एक ऊर्जा घटक की ब्रह्माण्ड संबंधी छाप". Phys. Rev. Lett. 80 (8): 1582–1585. arXiv:astro-ph/9708069. Bibcode:1998PhRvL..80.1582C. doi:10.1103/PhysRevLett.80.1582. S2CID 597168.
- ↑ Carroll, S.M. (1998). "Quintessence and the Rest of the World: Suppressing Long-Range Interactions". Phys. Rev. Lett. 81 (15): 3067–3070. arXiv:astro-ph/9806099. Bibcode:1998PhRvL..81.3067C. doi:10.1103/PhysRevLett.81.3067. S2CID 14539052.
- ↑ Wetterich, C. "सर्वोत्कृष्टता - मौलिक पैमाने की भिन्नता से पांचवां बल" (PDF). Heidelberg University.
- ↑ Dvali, Gia; Zaldarriaga, Matias (2002). "Changing α With Time: Implications For Fifth-Force-Type Experiments And Quintessence" (PDF). Physical Review Letters. 88 (9): 091303. arXiv:hep-ph/0108217. Bibcode:2002PhRvL..88i1303D. doi:10.1103/PhysRevLett.88.091303. PMID 11863992. S2CID 32730355.
- ↑ Cicoli, Michele; Pedro, Francisco G.; Tasinato, Gianmassimo (23 July 2012). "Natural Quintessence in String Theory" – via arXiv.org.
- ↑ Wanjek, Christopher. "Quintessence, accelerating the Universe?". Astronomy Today.
- ↑ Krishnan, Chethan; Mohayaee, Roya; Colgáin, Eoin Ó; Sheikh-Jabbari, M. M.; Yin, Lu (16 September 2021). "Does Hubble Tension Signal a Breakdown in FLRW Cosmology?". Classical and Quantum Gravity. 38 (18): 184001. arXiv:2105.09790. Bibcode:2021CQGra..38r4001K. doi:10.1088/1361-6382/ac1a81. ISSN 0264-9381. S2CID 234790314.
- ↑ Zlatev, I.; Wang, L.; Steinhardt, P. (1999). "Quintessence, Cosmic Coincidence, and the Cosmological Constant". Physical Review Letters. 82 (5): 896–899. arXiv:astro-ph/9807002. Bibcode:1999PhRvL..82..896Z. doi:10.1103/PhysRevLett.82.896. S2CID 119073006.
- ↑ Steinhardt, P.; Wang, L.; Zlatev, I. (1999). "Cosmological tracking solutions". Physical Review D. 59 (12): 123504. arXiv:astro-ph/9812313. Bibcode:1999PhRvD..59l3504S. doi:10.1103/PhysRevD.59.123504. S2CID 40714104.
- ↑ Linden, Sebastian; Virey, Jean-Marc (2008). "Test of the Chevallier-Polarski-Linder parametrization for rapid dark energy equation of state transitions". Physical Review D. 78 (2): 023526. arXiv:0804.0389. Bibcode:2008PhRvD..78b3526L. doi:10.1103/PhysRevD.78.023526. S2CID 118288188.
- ↑ Ferramacho, L.; Blanchard, A.; Zolnierowsky, Y.; Riazuelo, A. (2010). "Constraints on dark energy evolution". Astronomy & Astrophysics. 514: A20. arXiv:0909.1703. Bibcode:2010A&A...514A..20F. doi:10.1051/0004-6361/200913271. S2CID 17386518.
- ↑ Linder, Eric V.; Huterer, Dragan (2005). "How many cosmological parameters". Physical Review D. 72 (4): 043509. arXiv:astro-ph/0505330. Bibcode:2005PhRvD..72d3509L. doi:10.1103/PhysRevD.72.043509. S2CID 14722329.
- ↑ Caldwell, R. R. (2002). "A phantom menace? Cosmological consequences of a dark energy component with super-negative equation of state". Physics Letters B. 545 (1–2): 23–29. arXiv:astro-ph/9908168. Bibcode:2002PhLB..545...23C. doi:10.1016/S0370-2693(02)02589-3. S2CID 9820570.
- ↑ Antoniou, Ioannis; Perivolaropoulos, Leandros (2016). "Geodesics of McVittie Spacetime with a Phantom Cosmological Background". Phys. Rev. D. 93 (12): 123520. arXiv:1603.02569. Bibcode:2016PhRvD..93l3520A. doi:10.1103/PhysRevD.93.123520. S2CID 18017360.
- ↑ Hu, Yazhou; Li, Miao; Li, Nan; Zhang, Zhenhui (2015). "कॉस्मोलॉजिकल कॉन्स्टेंट के साथ होलोग्राफिक डार्क एनर्जी". Journal of Cosmology and Astroparticle Physics. 2015 (8): 012. arXiv:1502.01156. Bibcode:2015JCAP...08..012H. doi:10.1088/1475-7516/2015/08/012. S2CID 118732915.
- ↑ Shan Gao (2013). "होलोग्राफिक डार्क एनर्जी की व्याख्या". Galaxies. 1 (3): 180–191. Bibcode:2013Galax...1..180G. doi:10.3390/galaxies1030180.
- ↑ Zeng, Xiao-Xiong; Chen, De-You; Li, Li-Fang (2015). "स्पेसटाइम में होलोग्राफिक थर्मलाइजेशन और गुरुत्वाकर्षण का पतन सर्वोत्कृष्ट डार्क एनर्जी का प्रभुत्व है". Physical Review D. 91 (4): 046005. arXiv:1408.6632. Bibcode:2015PhRvD..91d6005Z. doi:10.1103/PhysRevD.91.046005. S2CID 119107827.
- ↑ Hu, Wayne (2005). "Crossing the phantom divide: Dark energy internal degrees of freedom". Physical Review D. 71 (4): 047301. arXiv:astro-ph/0410680. Bibcode:2005PhRvD..71d7301H. doi:10.1103/PhysRevD.71.047301. S2CID 8791054.
अग्रिम पठन
- क्रिस्टोफ, Wetterich (1987-09-24). "ब्रह्मांड विज्ञान और तनुकरण समरूपता का भाग्य". परमाणु भौतिकी बी. 302 (4): 668–696. arXiv:1711.03844. Bibcode:1988NuPhB.302..668W. doi:10.1016/0550-3213(88)90193-9. S2CID 118970077.
- ऑस्ट्राइकर जेपी; स्टीनहार्ट पी (जनवरी 2001). "सर्वोत्कृष्ट ब्रह्मांड". अमेरिकी वैज्ञानिक. 284 (1): 46–53. Bibcode:2001SciAm.284a..46O. doi:10.1038/scientificamerican0101-46. PMID 11132422.
{{cite journal}}
: Check date values in:|date=
(help) - लॉरेंस एम. क्रॉस (2000). सर्वोत्कृष्टता: ब्रह्मांड में लापता द्रव्यमान की खोज. मूलभूत पुस्तकें. ISBN 978-0465037414.