स्पेसटाइम टोपोलॉजी: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
Line 1: Line 1:
{{Spacetime|cTopic=Mathematics}}
'''स्पेसटाइम [[टोपोलॉजी]]''', स्पेसटाइम की टोपोलॉजिकल संरचना है, जिसका मुख्य रूप से सामान्य सापेक्षता में अध्ययन  किया जाता है। यह भौतिक सिद्धांत गुरुत्वाकर्षण को चार आयामी लोरेंट्ज़ियन मैनिफोल्ड (स्पेसटाइम) की वक्रता के रूप में मॉडल करता है और इस प्रकार टोपोलॉजी की अवधारणाएं समष्टि और स्पेसटाइम के वैश्विक दृष्टिकोण का विश्लेषण करने में महत्वपूर्ण हो जाती हैं। स्पेसटाइम टोपोलॉजी का अध्ययन भौतिक ब्रह्माण्ड विज्ञान में विशेष रूप से महत्वपूर्ण है।
[[ अंतरिक्ष समय | स्पेसटाइम]] [[टोपोलॉजी]], स्पेसटाइम की [[टोपोलॉजिकल स्पेस|टोपोलॉजिकल संरचना]] है, जिसका मुख्य रूप से [[सामान्य सापेक्षता]] में अध्ययन  किया जाता है। यह [[भौतिक सिद्धांत]] गुरुत्वाकर्षण को [[चार आयामी]] लोरेंट्ज़ियन मैनिफोल्ड (स्पेसटाइम) की [[वक्रता]] के रूप में मॉडल करता है और इस प्रकार टोपोलॉजी की अवधारणाएं स्थानीय और स्पेसटाइम के वैश्विक दृष्टिकोण का विश्लेषण करने में महत्वपूर्ण हो जाती हैं। स्पेसटाइम टोपोलॉजी का अध्ययन भौतिक ब्रह्माण्ड विज्ञान में विशेष रूप से महत्वपूर्ण है।


== टोपोलॉजी के प्रकार ==
== टोपोलॉजी के प्रकार ==
Line 6: Line 5:
स्पेसटाइम ''M'' के लिए दो मुख्य प्रकार की टोपोलॉजी हैं।
स्पेसटाइम ''M'' के लिए दो मुख्य प्रकार की टोपोलॉजी हैं।


=== [[कई गुना|मैनिफोल्ड]] टोपोलॉजी ===
=== मैनिफोल्ड टोपोलॉजी ===


किसी भी मैनिफोल्ड के साथ होता है, स्पेसटाइम में प्राकृतिक मैनिफोल्ड टोपोलॉजी होती है। यहां स्पष्ट समुच्चयों की छवि <math>\mathbb{R}^4</math> हैं।
किसी भी मैनिफोल्ड के साथ होता है, स्पेसटाइम में प्राकृतिक मैनिफोल्ड टोपोलॉजी होती है। यहां स्पष्ट समुच्चयों की छवि <math>\mathbb{R}^4</math> हैं।
Line 15: Line 14:


यह उत्तम [[टोपोलॉजी की तुलना|टोपोलॉजी]] है जो समान टोपोलॉजी को प्रेरित करती है <math>M</math> टाइमलाइक कर्व्स पर करता है।<ref>*{{cite journal|last1=Zeeman|first1=E.C.|title=The topology of Minkowski space|journal=[[Topology (journal)|Topology]]|date= 1967|volume=6|issue=2|pages=161–170|doi=10.1016/0040-9383(67)90033-X|doi-access=free}}</ref>
यह उत्तम [[टोपोलॉजी की तुलना|टोपोलॉजी]] है जो समान टोपोलॉजी को प्रेरित करती है <math>M</math> टाइमलाइक कर्व्स पर करता है।<ref>*{{cite journal|last1=Zeeman|first1=E.C.|title=The topology of Minkowski space|journal=[[Topology (journal)|Topology]]|date= 1967|volume=6|issue=2|pages=161–170|doi=10.1016/0040-9383(67)90033-X|doi-access=free}}</ref>
==== गुण ====
==== गुण ====


मैनिफोल्ड टोपोलॉजी की तुलना में कठोरता से [[आधार (टोपोलॉजी)]] है, इसलिए यह [[हॉसडॉर्फ स्पेस|हॉसडॉर्फ]], [[वियोज्य (टोपोलॉजी)|वियोज्य]] है, किंतु स्थानीय रूप [[स्थानीय रूप से कॉम्पैक्ट स्थान]] नहीं है।
मैनिफोल्ड टोपोलॉजी की तुलना में कठोरता से [[आधार (टोपोलॉजी)]] है, इसलिए यह हॉसडॉर्फ, वियोज्य है, किंतु समष्टि रूप समष्टि रूप से कॉम्पैक्ट समष्टि नहीं है।


टोपोलॉजी का आधार प्रपत्र का समुच्चय है <math>Y^+(p,U) \cup Y^-(p,U) \cup p</math>  बिंदु के लिए  <math>p \in M</math> और उत्तल सामान्य निकट <math>U \subset M</math>.
टोपोलॉजी का आधार प्रपत्र का समुच्चय है <math>Y^+(p,U) \cup Y^-(p,U) \cup p</math>  बिंदु के लिए  <math>p \in M</math> और उत्तल सामान्य निकट <math>U \subset M</math>.
Line 34: Line 31:
यह टोपोलॉजी मैनिफोल्ड टोपोलॉजी के साथ मिलता है यदि मैनिफोल्ड दृढ़ता के कारण है किंतु यह सामान्य रूप से स्थूल है।<ref name="Penrose">{{Citation|last= Penrose |first= Roger|title=Techniques of Differential Topology in Relativity|year=1972|series=CBMS-NSF Regional Conference Series in Applied Mathematics|pages = 34}}</ref>
यह टोपोलॉजी मैनिफोल्ड टोपोलॉजी के साथ मिलता है यदि मैनिफोल्ड दृढ़ता के कारण है किंतु यह सामान्य रूप से स्थूल है।<ref name="Penrose">{{Citation|last= Penrose |first= Roger|title=Techniques of Differential Topology in Relativity|year=1972|series=CBMS-NSF Regional Conference Series in Applied Mathematics|pages = 34}}</ref>


ध्यान दें कि गणित में, आंशिक क्रम पर [[अलेक्जेंडर टोपोलॉजी]] को सामान्यतः सबसे स्थूल टोपोलॉजी के रूप में लिया जाता है जिसमें एकमात्र ऊपरी समुच्चय होते हैं  <math>Y^+(E)</math> को स्पष्ट  होना आवश्यक है। यह टोपोलॉजी [[पावेल अलेक्जेंड्रोव]] पर फिर से आ जाती है।
ध्यान दें कि गणित में, आंशिक क्रम पर [[अलेक्जेंडर टोपोलॉजी]] को सामान्यतः सबसे स्थूल टोपोलॉजी के रूप में लिया जाता है जिसमें एकमात्र ऊपरी समुच्चय होते हैं  <math>Y^+(E)</math> को स्पष्ट  होना आवश्यक है। यह टोपोलॉजी पावेल अलेक्जेंड्रोव पर फिर से आ जाती है।


वर्तमान दिनों में , स्पेसटाइम पर एलेक्जेंड्रोव टोपोलॉजी के लिए सही गणितीय शब्द अंतराल टोपोलॉजी होगा, किंतु जब क्रोनहाइमर और पेनरोज़ ने इस शब्द को प्रस्तुत किया तो नामकरण में यह अंतर उतना स्पष्ट नहीं था{{citation needed|date=September 2017}}, और भौतिकी में एलेक्जेंड्रोव टोपोलॉजी शब्द उपयोग में रहता है।
वर्तमान दिनों में , स्पेसटाइम पर एलेक्जेंड्रोव टोपोलॉजी के लिए सही गणितीय शब्द अंतराल टोपोलॉजी होगा, किंतु जब क्रोनहाइमर और पेनरोज़ ने इस शब्द को प्रस्तुत किया तो नामकरण में यह अंतर उतना स्पष्ट नहीं था, और भौतिकी में एलेक्जेंड्रोव टोपोलॉजी शब्द उपयोग में रहता है।


== प्लानर स्पेसटाइम ==
== प्लानर स्पेसटाइम ==
प्रकाश से जुड़ी घटनाओं में शून्य विच्छेद होता है। विमान में स्पेसटाइम का प्लेनम चार चतुर्भुजों में विभाजित है, जिनमें से प्रत्येक में  R<sup>2</sup> की टोपोलॉजी है<sup></उप>। विभाजन रेखाएँ (0,0) पर इनबाउंड और आउटबाउंड फोटॉनों के प्रक्षेपवक्र हैं। समतलीय-ब्रह्मांड विज्ञान टोपोलॉजिकल सांस्थितिक विभाजन भविष्य का F है, भूतकाल का P है, अंतरिक्ष बाएँ L, और स्थान दाएँ D है। R2 के साथ F का होमियोमॉर्फिज़्म [[विभाजित-जटिल संख्या|कॉम्प्लेक्स संख्याओं]] के ध्रुवीय अपघटन के बराबर है:
प्रकाश से जुड़ी घटनाओं में शून्य विच्छेद होता है। विमान में स्पेसटाइम का प्लेनम चार चतुर्भुजों में विभाजित है, जिनमें से प्रत्येक में  R<sup>2</sup> की टोपोलॉजी है
 
विभाजन रेखाएँ (0,0) पर इनबाउंड और आउटबाउंड फोटॉनों के प्रक्षेपवक्र हैं। समतलीय-ब्रह्मांड विज्ञान टोपोलॉजिकल सांस्थितिक विभाजन भविष्य का F है, भूतकाल का P है, अंतरिक्ष बाएँ L, और समष्टि दाएँ D है। R2 के साथ F का होमियोमॉर्फिज़्म सम्मिश्र संख्याओं के ध्रुवीय अपघटन के बराबर है:
:<math>z = e^a (\cosh b + j \sinh b) \to (a, b) = \exp(a + j b) </math>
:<math>z = e^a (\cosh b + j \sinh b) \to (a, b) = \exp(a + j b) </math>
:<math>z \to (a, b)</math> विभाजन-जटिल लघुगणक और [[होमियोमोर्फिज्म]] F → R<sup>2</sup>  है, ध्यान दें कि b, F में सापेक्ष गति के लिए [[ तेज़ी | रैपिडिटी]] पैरामीटर है।
:<math>z \to (a, b)</math> विभाजन-सम्मिश्र लघुगणक और होमियोमोर्फिज्म F → R<sup>2</sup>  है, ध्यान दें कि b, F में सापेक्ष गति के लिए रैपिडिटी पैरामीटर है।


F मैपिंग z → –z, z → jz, और z → – j z के अनुसार P, L, और D में से प्रत्येक के साथ आपत्ति में है, इसलिए प्रत्येक टोपोलॉजी प्राप्त करता है। संघ U = F ∪ P ∪ L ∪ D तो टोपोलॉजी लगभग विमान को आवरण करती है, (0,0) पर अशक्त शंकु को छोड़कर। समतल का अतिपरवलयिक घुमाव चतुर्भुजों को परस्पर से नहीं मिलाता है, वास्तव में, प्रत्येक इकाई अतिपरवलय समूह के अंतर्गत अपरिवर्तनीय समुच्चय है।
F मैपिंग z → –z, z → jz, और z → – j z के अनुसार P, L, और D में से प्रत्येक के साथ आपत्ति में है, इसलिए प्रत्येक टोपोलॉजी प्राप्त करता है। संघ U = F ∪ P ∪ L ∪ D तो टोपोलॉजी लगभग विमान को आवरण करती है, (0,0) पर अशक्त शंकु को छोड़कर है। समतल का अतिपरवलयिक घुमाव चतुर्भुजों को परस्पर से नहीं मिलाता है, वास्तव में, प्रत्येक इकाई अतिपरवलय समूह के अंतर्गत अपरिवर्तनीय समुच्चय है।


== यह भी देखें ==
== यह भी देखें ==
* 4- अनेक गुना
* 4- अनेक गुना
* [[क्लिफर्ड-क्लेन रूप]]
* क्लिफर्ड-क्लेन रूप
* [[बंद समयबद्ध वक्र]]
* संवृत समयबद्ध वक्र
* [[जटिल स्पेसटाइम]]
* सम्मिश्र स्पेसटाइम
* [[ज्यामिति]]
* [[ज्यामिति]]
* [[गुरुत्वाकर्षण विलक्षणता]]
* गुरुत्वाकर्षण विलक्षणता
* हंत्ज़स्चे%E2%80%93Wendt_manifold
* वर्महोल
* [[वर्महोल]]


== टिप्पणियाँ ==
== टिप्पणियाँ ==

Latest revision as of 14:53, 30 October 2023

स्पेसटाइम टोपोलॉजी, स्पेसटाइम की टोपोलॉजिकल संरचना है, जिसका मुख्य रूप से सामान्य सापेक्षता में अध्ययन किया जाता है। यह भौतिक सिद्धांत गुरुत्वाकर्षण को चार आयामी लोरेंट्ज़ियन मैनिफोल्ड (स्पेसटाइम) की वक्रता के रूप में मॉडल करता है और इस प्रकार टोपोलॉजी की अवधारणाएं समष्टि और स्पेसटाइम के वैश्विक दृष्टिकोण का विश्लेषण करने में महत्वपूर्ण हो जाती हैं। स्पेसटाइम टोपोलॉजी का अध्ययन भौतिक ब्रह्माण्ड विज्ञान में विशेष रूप से महत्वपूर्ण है।

टोपोलॉजी के प्रकार

स्पेसटाइम M के लिए दो मुख्य प्रकार की टोपोलॉजी हैं।

मैनिफोल्ड टोपोलॉजी

किसी भी मैनिफोल्ड के साथ होता है, स्पेसटाइम में प्राकृतिक मैनिफोल्ड टोपोलॉजी होती है। यहां स्पष्ट समुच्चयों की छवि हैं।

पथ या जीमण टोपोलॉजी

परिभाषा:[1] टोपोलॉजी जिसमें उपसमुच्चय खुला है यदि समान वक्र के लिए समुच्चय है कई गुना टोपोलॉजी में ऐसा है .

यह उत्तम टोपोलॉजी है जो समान टोपोलॉजी को प्रेरित करती है टाइमलाइक कर्व्स पर करता है।[2]

गुण

मैनिफोल्ड टोपोलॉजी की तुलना में कठोरता से आधार (टोपोलॉजी) है, इसलिए यह हॉसडॉर्फ, वियोज्य है, किंतु समष्टि रूप समष्टि रूप से कॉम्पैक्ट समष्टि नहीं है।

टोपोलॉजी का आधार प्रपत्र का समुच्चय है बिंदु के लिए और उत्तल सामान्य निकट .

( कालानुक्रमिक पूर्वकाल और भविष्य को दर्शाता है)।

अलेक्जेंडर टोपोलॉजी

स्पेसटाइम पर अलेक्जेंड्रोव टोपोलॉजी, सबसे स्थूल टोपोलॉजी है जैसे कि दोनों और सभी उपसमूहों स्पष्ट हैं हैं।

यहाँ टोपोलॉजी के लिए ओपन समुच्चय का आधार प्रपत्र के समुच्चय हैं बिंदुओं के लिए हैं।

यह टोपोलॉजी मैनिफोल्ड टोपोलॉजी के साथ मिलता है यदि मैनिफोल्ड दृढ़ता के कारण है किंतु यह सामान्य रूप से स्थूल है।[3]

ध्यान दें कि गणित में, आंशिक क्रम पर अलेक्जेंडर टोपोलॉजी को सामान्यतः सबसे स्थूल टोपोलॉजी के रूप में लिया जाता है जिसमें एकमात्र ऊपरी समुच्चय होते हैं को स्पष्ट होना आवश्यक है। यह टोपोलॉजी पावेल अलेक्जेंड्रोव पर फिर से आ जाती है।

वर्तमान दिनों में , स्पेसटाइम पर एलेक्जेंड्रोव टोपोलॉजी के लिए सही गणितीय शब्द अंतराल टोपोलॉजी होगा, किंतु जब क्रोनहाइमर और पेनरोज़ ने इस शब्द को प्रस्तुत किया तो नामकरण में यह अंतर उतना स्पष्ट नहीं था, और भौतिकी में एलेक्जेंड्रोव टोपोलॉजी शब्द उपयोग में रहता है।

प्लानर स्पेसटाइम

प्रकाश से जुड़ी घटनाओं में शून्य विच्छेद होता है। विमान में स्पेसटाइम का प्लेनम चार चतुर्भुजों में विभाजित है, जिनमें से प्रत्येक में R2 की टोपोलॉजी है

विभाजन रेखाएँ (0,0) पर इनबाउंड और आउटबाउंड फोटॉनों के प्रक्षेपवक्र हैं। समतलीय-ब्रह्मांड विज्ञान टोपोलॉजिकल सांस्थितिक विभाजन भविष्य का F है, भूतकाल का P है, अंतरिक्ष बाएँ L, और समष्टि दाएँ D है। R2 के साथ F का होमियोमॉर्फिज़्म सम्मिश्र संख्याओं के ध्रुवीय अपघटन के बराबर है:

विभाजन-सम्मिश्र लघुगणक और होमियोमोर्फिज्म F → R2 है, ध्यान दें कि b, F में सापेक्ष गति के लिए रैपिडिटी पैरामीटर है।

F मैपिंग z → –z, z → jz, और z → – j z के अनुसार P, L, और D में से प्रत्येक के साथ आपत्ति में है, इसलिए प्रत्येक टोपोलॉजी प्राप्त करता है। संघ U = F ∪ P ∪ L ∪ D तो टोपोलॉजी लगभग विमान को आवरण करती है, (0,0) पर अशक्त शंकु को छोड़कर है। समतल का अतिपरवलयिक घुमाव चतुर्भुजों को परस्पर से नहीं मिलाता है, वास्तव में, प्रत्येक इकाई अतिपरवलय समूह के अंतर्गत अपरिवर्तनीय समुच्चय है।

यह भी देखें

  • 4- अनेक गुना
  • क्लिफर्ड-क्लेन रूप
  • संवृत समयबद्ध वक्र
  • सम्मिश्र स्पेसटाइम
  • ज्यामिति
  • गुरुत्वाकर्षण विलक्षणता
  • वर्महोल

टिप्पणियाँ

  1. Luca Bombelli website Archived 2010-06-16 at the Wayback Machine
  2. *Zeeman, E.C. (1967). "The topology of Minkowski space". Topology. 6 (2): 161–170. doi:10.1016/0040-9383(67)90033-X.
  3. Penrose, Roger (1972), Techniques of Differential Topology in Relativity, CBMS-NSF Regional Conference Series in Applied Mathematics, p. 34


संदर्भ