प्रीइमेज अटैक: Difference between revisions
(Created page with "{{short description|Attack model against cryptographic hash functions}} क्रिप्टोग्राफी में, क्रिप्टोग्राफ़ि...") |
No edit summary |
||
(7 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
{{short description|Attack model against cryptographic hash functions}} | {{short description|Attack model against cryptographic hash functions}} | ||
[[क्रिप्टोग्राफी]] में, क्रिप्टोग्राफ़िक हैश फ़ंक्शंस पर | [[क्रिप्टोग्राफी]] में, क्रिप्टोग्राफ़िक हैश फ़ंक्शंस पर प्रीइमेज अटैक सुचना कंप्यूटर विज्ञान में ढूंढने की कोशिश करता है जिसमें विशिष्ट हैश मान होता है। [[क्रिप्टोग्राफ़िक हैश फ़ंक्शन]] को अपनी प्रीइमेज इनवर्स इमेज (संभावित इनपुट का समूह) पर आक्षेप का विरोध करना चाहिए। | ||
आक्षेप के संदर्भ में, दो प्रकार के प्रीइमेज प्रतिरोध होते हैं: | |||
* ''प्रीइमेज | * ''प्रीइमेज प्रतिरोध'': अनिवार्य रूप से सभी पूर्व-निर्दिष्ट आउटपुट के लिए, यह कम्प्यूटेशनल रूप से किसी भी इनपुट को ढूंढने के लिए असमर्थ है जो उस आउटपुट को हैश करता है; अर्थात दिया हुआ {{math|{{var|y}}}}, ऐसा {{math|{{var|x}}}} ज्ञात करना कठिन है कि {{math|1={{var|h}}({{var|x}}) = {{var|y}}}} हो।<ref name="crypto-hash-def">{{cite journal | ||
| last1= Rogaway | | last1= Rogaway | ||
| first1= P. | | first1= P. | ||
Line 20: | Line 20: | ||
| url= https://web.cs.ucdavis.edu/~rogaway/papers/relates.pdf | | url= https://web.cs.ucdavis.edu/~rogaway/papers/relates.pdf | ||
| access-date=17 November 2012}}</ref> | | access-date=17 November 2012}}</ref> | ||
* दूसरा-प्रीइमेज प्रतिरोध: | * दूसरा-प्रीइमेज प्रतिरोध: निर्दिष्ट इनपुट के लिए, यह एक अन्य इनपुट ढूंढने के लिए कम्प्यूटेशनल रूप से असमर्थ है जो समान आउटपुट उत्पन्न करता है; अर्थात दिया हुआ {{math|{{var|x}}}}, दूसरा इनपुट {{math|{{var|x}}′ ≠ {{var|x}}}} ज्ञात करना कठिन है कि {{math|1={{var|h}}({{var|x}}) = {{var|h}}({{var|x}}′)}} हो।<ref name="crypto-hash-def" /> | ||
इनकी तुलना | इनकी तुलना [[टक्कर प्रतिरोध|संघट्ट प्रतिरोध]] से की जा सकती है, जिसमें कम्प्यूटेशनल रूप से किसी भी दो अलग-अलग इनपुट को ढूंढना संभव नहीं है {{math|{{var|x}}}}, {{math|{{var|x}}′}} उसी आउटपुट के लिए हैश; अर्थात्, {{math|1={{var|h}}({{var|x}}) = {{var|h}}({{var|x}}′)}} है। <ref name="crypto-hash-def" /> | ||
संघट्ट प्रतिरोध का तात्पर्य दूसरे-प्रीइमेज प्रतिरोध से है, लेकिन प्रीइमेज प्रतिरोध की कोई निश्चितता नहीं है।<ref name="crypto-hash-def" />इसके विपरीत, दूसरे-प्रीइमेज आक्षेप का तात्पर्य टकराव के आक्षेप से है (निम्न रूप से, चूंकि, इसके अतिरिक्त {{math|{{var|x}}′}}, {{math|{{var|x}}}} प्रारंभ से ही ज्ञात है)। | |||
== एप्लाइड प्रीइमेज अटैक == | == एप्लाइड प्रीइमेज अटैक == | ||
परिभाषा के अनुसार, | परिभाषा के अनुसार, आदर्शपूर्ण हैश फ़ंक्शन ऐसा है कि पहले या दूसरे प्रीइमेज की गणना करने का सबसे तेज़ तरीका ब्रूट (पाशविक)-बल आक्षेप के माध्यम से होता है। {{math|{{var|n}}}}-बिट हैश के लिए, इस हमले में समय की जटिलता {{math|1=2{{sup|{{var|n}}}}}} है, जिसे एक विशिष्ट आउटपुट आकार के लिए {{math|{{var|n}}}} = 128 बिट्स बहुत अत्यधिक माना जाता है यदि ऐसी जटिलता सबसे अच्छी है जिसे विरोधी द्वारा प्राप्त किया जा सकता है, तो हैश फ़ंक्शन को प्रीइमेज-प्रतिरोधी माना जाता है। चूँकि, सामान्य परिणाम यह है कि क्वांटम कंप्यूटर <math>\sqrt{2^{n}} = 2^{\frac{n}{2}}</math> को संरचित प्रीइमेज अटैक करते हैं, और इस प्रकार टकराव का आक्षेप जिसका अर्थ दूसरा प्रीइमेज भी है<ref>{{cite web | ||
| url=https://cr.yp.to/hash/quantumsha3-20101112.pdf | | url=https://cr.yp.to/hash/quantumsha3-20101112.pdf | ||
| title=Quantum attacks against Blue Midnight Wish, ECHO, Fugue, Grøstl, Hamsi, JH, Keccak, Shabal, SHAvite-3, SIMD, and Skein | | title=Quantum attacks against Blue Midnight Wish, ECHO, Fugue, Grøstl, Hamsi, JH, Keccak, Shabal, SHAvite-3, SIMD, and Skein | ||
Line 33: | Line 33: | ||
| work=[[University of Illinois at Chicago]] | | work=[[University of Illinois at Chicago]] | ||
| date=2010-11-12 | | date=2010-11-12 | ||
| access-date=2020-03-29}}</ref> | | access-date=2020-03-29}}</ref> | ||
[[क्रिप्ट विश्लेषण]] द्वारा कुछ हैश फ़ंक्शंस तेज़ प्रीइमेज | [[क्रिप्ट विश्लेषण]] द्वारा कुछ हैश फ़ंक्शंस तेज़ प्रीइमेज आक्षेपों को पाया जा सकता है, और उस फ़ंक्शन के लिए विशिष्ट हैं। कुछ महत्वपूर्ण प्रीइमेज आक्षेप पहले ही ढूंढें जा चुके हैं, परन्तु वे अभी वास्तविक नहीं हैं। यदि एक वास्तविक प्रीइमेज आक्षेपों का पता चलता है, तो यह कई इंटरनेट प्रोटोकॉलों को अत्यधिक प्रभावित करेगा। इस कथन में, वास्तविक का अर्थ है कि इसे एक हमलावर द्वारा उचित मात्रा में संसाधनों के साथ निष्पादित किया जा सकता है। उदाहरण के लिए, प्रीइमेजिंग आक्षेप जिसमें खरबों डॉलर खर्च होते हैं और वांछित हैश मान या सुचना को प्रीइमेज करने में दशकों लग जाते हैं, वास्तविक नहीं है; जिसकी कीमत कुछ हज़ार डॉलर है और जिसमें कुछ सप्ताह लगते हैं, बहुत वास्तविक हो सकता है। | ||
सभी ज्ञात | सभी ज्ञात वास्तविक आक्षेप<ref>{{cite web | ||
| url=https://casecurity.org/2014/01/30/why-we-need-to-move-to-sha-2/ | | url=https://casecurity.org/2014/01/30/why-we-need-to-move-to-sha-2/ | ||
| title=Why We Need to Move to SHA-2 | | title=Why We Need to Move to SHA-2 | ||
Line 48: | Line 48: | ||
| url=https://security.googleblog.com/2017/02/announcing-first-sha1-collision.html | | url=https://security.googleblog.com/2017/02/announcing-first-sha1-collision.html | ||
| title=Google Online Security Blog: Announcing the first SHA1 collision | | title=Google Online Security Blog: Announcing the first SHA1 collision | ||
| access-date=2017-02-23}}</ref> [[MD5]] और [[SHA-1]] पर | | access-date=2017-02-23}}</ref> [[MD5]] और [[SHA-1]] पर संघट्ट के आक्षेप हैं। सामान्य तौर पर, संघट्ट आक्षेप को पूर्व-इमेज आक्षेप की तुलना में माउंट करना आसान होता है, क्योंकि यह किसी भी समूह मान द्वारा प्रतिबंधित नहीं है (किसी भी दो मूल्यों को टकराने के लिए उपयोग किया जा सकता है)। प्रीइमेज अटैक के विपरीत ब्रूट-फोर्स कोलिसन अटैक की समय जटिलता केवल <math>2^{\frac{n}{2}}</math> है | | ||
===प्रतिबंधित प्रीइमेज स्पेस अटैक=== | ===प्रतिबंधित प्रीइमेज स्पेस अटैक=== | ||
आदर्शपूर्ण हैश फ़ंक्शन पर पहले प्रीइमेज अटैक की कम्प्यूटेशनल अक्षमता मानती है कि संभावित हैश इनपुट का समूह ब्रूट फोर्स खोज के लिए बहुत बड़ा है। चूँकि यदि किसी दिए गए हैश मान को इनपुट के समूह से उत्पन्न किया गया है जो अपेक्षाकृत छोटा है या किसी तरह से संभावना द्वारा आदेश दिया गया है, तो ब्रूट फोर्स खोज प्रभावी हो सकती है। वास्तविक इनपुट समूह के आकार और हैश फ़ंक्शन की गणना की गति या मूल्य पर निर्भर करती है। | |||
प्रमाणीकरण के लिए [[पासवर्ड]] सत्यापन डेटा संग्रहीत करने के लिए हैश का उपयोग एक सामान्य उदाहरण है। उपयोगकर्ता पासवर्ड के सादे पाठ को संग्रहीत करने के | प्रमाणीकरण के लिए [[पासवर्ड]] सत्यापन डेटा संग्रहीत करने के लिए हैश का उपयोग एक सामान्य उदाहरण है। उपयोगकर्ता पासवर्ड के सादे पाठ को संग्रहीत करने के के बदले में, अभिगम नियंत्रण प्रणाली पासवर्ड के हैश को संग्रहीत करती है। जब कोई उपयोगकर्ता एक्सेस (अभिगम) का अनुरोध करता है, तो उनके द्वारा सबमिट किया गया पासवर्ड हैश किया जाता है और संग्रहीत मान से तुलना की जाती है। यदि संग्रहीत सत्यापन डेटा चोरी हो जाता है, तो चोर के पास केवल हैश मान होगा, पासवर्ड नहीं होगा। चूँकि अधिकांश उपयोगकर्ता पूर्वानुमानित तरीकों से पासवर्ड चुनते हैं और कई पासवर्ड इतने छोटे होते हैं कि सभी संभावित संयोजनों का परीक्षण किया जा सकता है यदि तेज़ हैश का उपयोग किया जाता है, भले ही हैश को प्रीइमेज अटैक के विरुद्ध सुरक्षित माना गया हो।<ref>{{cite web | ||
| url=https://arstechnica.com/information-technology/2012/12/25-gpu-cluster-cracks-every-standard-windows-password-in-6-hours/ | | url=https://arstechnica.com/information-technology/2012/12/25-gpu-cluster-cracks-every-standard-windows-password-in-6-hours/ | ||
| title=25-GPU cluster cracks every standard Windows password in <6 hours | | title=25-GPU cluster cracks every standard Windows password in <6 hours | ||
Line 60: | Line 60: | ||
| last=Goodin | | last=Goodin | ||
| publisher=[[Ars Technica]] | | publisher=[[Ars Technica]] | ||
| access-date=2020-11-23}}</ref> | | access-date=2020-11-23}}</ref> [[पासवर्ड क्रैकिंग]] देखें, खोज को धीमा करने के लिए कुंजी व्युत्पत्ति कार्यों नामक विशेष हैश बनाए गए हैं। | ||
== यह भी देखें == | == यह भी देखें == | ||
* [[जन्मदिन पर हमला]] | * [[जन्मदिन पर हमला|जन्मदिन अटैक]] | ||
* क्रिप्टोग्राफिक हैश फ़ंक्शन | * क्रिप्टोग्राफिक हैश फ़ंक्शन | ||
* [[हैश फ़ंक्शन सुरक्षा सारांश]] | * [[हैश फ़ंक्शन सुरक्षा सारांश]] | ||
* [[इंद्रधनुष तालिका]] | * रेनबो [[इंद्रधनुष तालिका|तालिका]] | ||
* [[ यादृच्छिक ओरेकल ]] | * [[ यादृच्छिक ओरेकल ]] | ||
* {{IETF RFC|4270}}: इंटरनेट प्रोटोकॉल में क्रिप्टोग्राफ़िक हैश पर | * {{IETF RFC|4270}}: इंटरनेट प्रोटोकॉल में क्रिप्टोग्राफ़िक हैश पर अटैक | ||
== संदर्भ == | == संदर्भ == | ||
<references /> | <references /> | ||
{{ | {{DEFAULTSORT:Preimage Attack}} | ||
[[Category:CS1 maint]] | |||
[[Category:Created On 28/02/2023|Preimage Attack]] | |||
[[Category:Lua-based templates|Preimage Attack]] | |||
[[Category:Machine Translated Page|Preimage Attack]] | |||
[[Category: | [[Category:Pages with script errors|Preimage Attack]] | ||
[[Category: | [[Category:Templates Vigyan Ready|Preimage Attack]] | ||
[[Category:Templates that add a tracking category|Preimage Attack]] | |||
[[Category:Templates that generate short descriptions|Preimage Attack]] | |||
[[Category:Templates using TemplateData|Preimage Attack]] | |||
[[Category:क्रिप्टोग्राफिक हमले|Preimage Attack]] |
Latest revision as of 08:45, 8 May 2023
क्रिप्टोग्राफी में, क्रिप्टोग्राफ़िक हैश फ़ंक्शंस पर प्रीइमेज अटैक सुचना कंप्यूटर विज्ञान में ढूंढने की कोशिश करता है जिसमें विशिष्ट हैश मान होता है। क्रिप्टोग्राफ़िक हैश फ़ंक्शन को अपनी प्रीइमेज इनवर्स इमेज (संभावित इनपुट का समूह) पर आक्षेप का विरोध करना चाहिए।
आक्षेप के संदर्भ में, दो प्रकार के प्रीइमेज प्रतिरोध होते हैं:
- प्रीइमेज प्रतिरोध: अनिवार्य रूप से सभी पूर्व-निर्दिष्ट आउटपुट के लिए, यह कम्प्यूटेशनल रूप से किसी भी इनपुट को ढूंढने के लिए असमर्थ है जो उस आउटपुट को हैश करता है; अर्थात दिया हुआ y, ऐसा x ज्ञात करना कठिन है कि h(x) = y हो।[1]
- दूसरा-प्रीइमेज प्रतिरोध: निर्दिष्ट इनपुट के लिए, यह एक अन्य इनपुट ढूंढने के लिए कम्प्यूटेशनल रूप से असमर्थ है जो समान आउटपुट उत्पन्न करता है; अर्थात दिया हुआ x, दूसरा इनपुट x′ ≠ x ज्ञात करना कठिन है कि h(x) = h(x′) हो।[1]
इनकी तुलना संघट्ट प्रतिरोध से की जा सकती है, जिसमें कम्प्यूटेशनल रूप से किसी भी दो अलग-अलग इनपुट को ढूंढना संभव नहीं है x, x′ उसी आउटपुट के लिए हैश; अर्थात्, h(x) = h(x′) है। [1]
संघट्ट प्रतिरोध का तात्पर्य दूसरे-प्रीइमेज प्रतिरोध से है, लेकिन प्रीइमेज प्रतिरोध की कोई निश्चितता नहीं है।[1]इसके विपरीत, दूसरे-प्रीइमेज आक्षेप का तात्पर्य टकराव के आक्षेप से है (निम्न रूप से, चूंकि, इसके अतिरिक्त x′, x प्रारंभ से ही ज्ञात है)।
एप्लाइड प्रीइमेज अटैक
परिभाषा के अनुसार, आदर्शपूर्ण हैश फ़ंक्शन ऐसा है कि पहले या दूसरे प्रीइमेज की गणना करने का सबसे तेज़ तरीका ब्रूट (पाशविक)-बल आक्षेप के माध्यम से होता है। n-बिट हैश के लिए, इस हमले में समय की जटिलता 2n है, जिसे एक विशिष्ट आउटपुट आकार के लिए n = 128 बिट्स बहुत अत्यधिक माना जाता है यदि ऐसी जटिलता सबसे अच्छी है जिसे विरोधी द्वारा प्राप्त किया जा सकता है, तो हैश फ़ंक्शन को प्रीइमेज-प्रतिरोधी माना जाता है। चूँकि, सामान्य परिणाम यह है कि क्वांटम कंप्यूटर को संरचित प्रीइमेज अटैक करते हैं, और इस प्रकार टकराव का आक्षेप जिसका अर्थ दूसरा प्रीइमेज भी है[2]
क्रिप्ट विश्लेषण द्वारा कुछ हैश फ़ंक्शंस तेज़ प्रीइमेज आक्षेपों को पाया जा सकता है, और उस फ़ंक्शन के लिए विशिष्ट हैं। कुछ महत्वपूर्ण प्रीइमेज आक्षेप पहले ही ढूंढें जा चुके हैं, परन्तु वे अभी वास्तविक नहीं हैं। यदि एक वास्तविक प्रीइमेज आक्षेपों का पता चलता है, तो यह कई इंटरनेट प्रोटोकॉलों को अत्यधिक प्रभावित करेगा। इस कथन में, वास्तविक का अर्थ है कि इसे एक हमलावर द्वारा उचित मात्रा में संसाधनों के साथ निष्पादित किया जा सकता है। उदाहरण के लिए, प्रीइमेजिंग आक्षेप जिसमें खरबों डॉलर खर्च होते हैं और वांछित हैश मान या सुचना को प्रीइमेज करने में दशकों लग जाते हैं, वास्तविक नहीं है; जिसकी कीमत कुछ हज़ार डॉलर है और जिसमें कुछ सप्ताह लगते हैं, बहुत वास्तविक हो सकता है।
सभी ज्ञात वास्तविक आक्षेप[3][4][5] MD5 और SHA-1 पर संघट्ट के आक्षेप हैं। सामान्य तौर पर, संघट्ट आक्षेप को पूर्व-इमेज आक्षेप की तुलना में माउंट करना आसान होता है, क्योंकि यह किसी भी समूह मान द्वारा प्रतिबंधित नहीं है (किसी भी दो मूल्यों को टकराने के लिए उपयोग किया जा सकता है)। प्रीइमेज अटैक के विपरीत ब्रूट-फोर्स कोलिसन अटैक की समय जटिलता केवल है |
प्रतिबंधित प्रीइमेज स्पेस अटैक
आदर्शपूर्ण हैश फ़ंक्शन पर पहले प्रीइमेज अटैक की कम्प्यूटेशनल अक्षमता मानती है कि संभावित हैश इनपुट का समूह ब्रूट फोर्स खोज के लिए बहुत बड़ा है। चूँकि यदि किसी दिए गए हैश मान को इनपुट के समूह से उत्पन्न किया गया है जो अपेक्षाकृत छोटा है या किसी तरह से संभावना द्वारा आदेश दिया गया है, तो ब्रूट फोर्स खोज प्रभावी हो सकती है। वास्तविक इनपुट समूह के आकार और हैश फ़ंक्शन की गणना की गति या मूल्य पर निर्भर करती है।
प्रमाणीकरण के लिए पासवर्ड सत्यापन डेटा संग्रहीत करने के लिए हैश का उपयोग एक सामान्य उदाहरण है। उपयोगकर्ता पासवर्ड के सादे पाठ को संग्रहीत करने के के बदले में, अभिगम नियंत्रण प्रणाली पासवर्ड के हैश को संग्रहीत करती है। जब कोई उपयोगकर्ता एक्सेस (अभिगम) का अनुरोध करता है, तो उनके द्वारा सबमिट किया गया पासवर्ड हैश किया जाता है और संग्रहीत मान से तुलना की जाती है। यदि संग्रहीत सत्यापन डेटा चोरी हो जाता है, तो चोर के पास केवल हैश मान होगा, पासवर्ड नहीं होगा। चूँकि अधिकांश उपयोगकर्ता पूर्वानुमानित तरीकों से पासवर्ड चुनते हैं और कई पासवर्ड इतने छोटे होते हैं कि सभी संभावित संयोजनों का परीक्षण किया जा सकता है यदि तेज़ हैश का उपयोग किया जाता है, भले ही हैश को प्रीइमेज अटैक के विरुद्ध सुरक्षित माना गया हो।[6] पासवर्ड क्रैकिंग देखें, खोज को धीमा करने के लिए कुंजी व्युत्पत्ति कार्यों नामक विशेष हैश बनाए गए हैं।
यह भी देखें
- जन्मदिन अटैक
- क्रिप्टोग्राफिक हैश फ़ंक्शन
- हैश फ़ंक्शन सुरक्षा सारांश
- रेनबो तालिका
- यादृच्छिक ओरेकल
- RFC 4270: इंटरनेट प्रोटोकॉल में क्रिप्टोग्राफ़िक हैश पर अटैक
संदर्भ
- ↑ 1.0 1.1 1.2 1.3 Rogaway, P.; Shrimpton, T. (2004). "Cryptographic Hash-Function Basics: Definitions, Implications, and Separations for Preimage Resistance, Second-Preimage Resistance, and Collision Resistance" (PDF). Fast Software Encryption. Lecture Notes in Computer Science. Springer-Verlag. 3017: 371–388. doi:10.1007/978-3-540-25937-4_24. ISBN 978-3-540-22171-5. Retrieved 17 November 2012.
- ↑ Daniel J. Bernstein (2010-11-12). "Quantum attacks against Blue Midnight Wish, ECHO, Fugue, Grøstl, Hamsi, JH, Keccak, Shabal, SHAvite-3, SIMD, and Skein" (PDF). University of Illinois at Chicago. Retrieved 2020-03-29.
- ↑ Bruce Morton, Clayton Smith (2014-01-30). "Why We Need to Move to SHA-2". Certificate Authority Security Council.
{{cite web}}
: CS1 maint: uses authors parameter (link) - ↑ "MD5 and Perspectives". 2009-01-01.
- ↑ "Google Online Security Blog: Announcing the first SHA1 collision". Retrieved 2017-02-23.
- ↑ Goodin, Dan (2012-12-10). "25-GPU cluster cracks every standard Windows password in <6 hours". Ars Technica. Retrieved 2020-11-23.