ऑपरेटर उत्पाद विस्तार: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(4 intermediate revisions by 3 users not shown)
Line 34: Line 34:
क्वांटम क्षेत्र सिद्धांत में, ऑपरेटर उत्पाद विस्तार (ओपीई) स्थानीय क्षेत्रों के योग (संभवतः अनंत) के रूप में विभिन्न बिंदुओं पर दो [[क्षेत्र (भौतिकी)]] के उत्पाद के अभिसरण का त्रिज्या है।
क्वांटम क्षेत्र सिद्धांत में, ऑपरेटर उत्पाद विस्तार (ओपीई) स्थानीय क्षेत्रों के योग (संभवतः अनंत) के रूप में विभिन्न बिंदुओं पर दो [[क्षेत्र (भौतिकी)]] के उत्पाद के अभिसरण का त्रिज्या है।


अधिक सटीक, यदि <math> y </math> बिंदु है, और <math> A </math> और <math> B </math> [[ऑपरेटर-मूल्यवान क्षेत्र]] हैं, तो [[खुला पड़ोस]] है <math> O </math> का <math> y </math> ऐसा कि सभी के लिए <math> x \in O\setminus  \{y\} </math>
अधिक त्रुटिहीन रूप से, यदि <math> y </math> एक बिंदु है, और <math> A </math> और <math> B </math> [[ऑपरेटर-मूल्यवान क्षेत्र]] हैं, तो <math> y </math> का एक [[खुला पड़ोस]] <math> O </math> है जैसे कि सभी के लिए <math> x \in O\setminus  \{y\} </math>
:<math>A(x)B(y)=\sum_{i}c_i(x-y) C_i(y)</math>
:<math>A(x)B(y)=\sum_{i}c_i(x-y) C_i(y)</math>
जहाँ योग परिमित रूप से या गणनीय रूप से कई पदों से अधिक है, C<sub>i</sub> ऑपरेटर-मूल्यवान क्षेत्र हैं, c<sub>i</sub> [[विश्लेषणात्मक कार्य]] खत्म हो गए हैं <math> O\setminus \{y\} </math> और योग अन्दर [[ऑपरेटर टोपोलॉजी]] में अभिसारी है <math> O\setminus \{y\} </math>.
जहाँ योग परिमित रूप से या गणनीय रूप से कई पदों से अधिक है, C<sub>i</sub> ऑपरेटर-मूल्यवान क्षेत्र हैं, c<sub>i</sub> <math> O\setminus \{y\} </math> पर [[विश्लेषणात्मक कार्य|विश्लेषणात्मक फलन]] हैं और योग <math> O\setminus \{y\} </math> के अन्दर [[ऑपरेटर टोपोलॉजी]] में अभिसारी है।


ओपीई का उपयोग अधिकांश अनुरूप क्षेत्र सिद्धांत में किया जाता है।
ओपीई का उपयोग अधिकांश अनुरूप क्षेत्र सिद्धांत में किया जाता है।
Line 48: Line 48:
==बाहरी संबंध==
==बाहरी संबंध==
* [http://www.scholarpedia.org/article/Operator_product_expansion The OPE at Scholarpedia]
* [http://www.scholarpedia.org/article/Operator_product_expansion The OPE at Scholarpedia]
[[Category: क्वांटम क्षेत्र सिद्धांत]] [[Category: स्वयंसिद्ध क्वांटम क्षेत्र सिद्धांत]] [[Category: अनुरूप क्षेत्र सिद्धांत]] [[Category: स्ट्रिंग सिद्धांत]]


[[Category: Machine Translated Page]]
[[Category:Created On 27/04/2023]]
[[Category:Created On 27/04/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with maths render errors]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:अनुरूप क्षेत्र सिद्धांत]]
[[Category:क्वांटम क्षेत्र सिद्धांत]]
[[Category:स्ट्रिंग सिद्धांत]]
[[Category:स्वयंसिद्ध क्वांटम क्षेत्र सिद्धांत]]

Latest revision as of 08:49, 8 May 2023

क्वांटम क्षेत्र सिद्धांत में, ऑपरेटर उत्पाद विस्तार (ओपीई) का उपयोग क्षेत्रों के उत्पाद को समान क्षेत्रों के योग के रूप में परिभाषित करने के लिए एक स्वयंसिद्ध के रूप में किया जाता है। स्वयंसिद्ध के रूप में, यह क्वांटम क्षेत्र सिद्धांत के लिए गैर-उत्तेजित दृष्टिकोण प्रदान करता है। उदाहरण शीर्ष ऑपरेटर बीजगणित है, जिसका उपयोग द्वि-आयामी अनुरूप क्षेत्र सिद्धांत | द्वि-आयामी अनुरूप क्षेत्र सिद्धांत बनाने के लिए किया गया है। क्या इस परिणाम को सामान्य रूप से क्यूएफटी तक बढ़ाया जा सकता है, इस प्रकार एक उत्तेजित करने वाले दृष्टिकोण की कई कठिनाइयों का समाधान एक खुला शोध प्रश्न बना हुआ है।

व्यावहारिक गणनाओं में, जैसे कि विभिन्न कोलाइडर प्रयोगों में प्रकीर्णन का आयाम के लिए आवश्यक, ऑपरेटर उत्पाद विस्तार का उपयोग क्यूसीडी योग नियमों में दोनों उत्तेजित और गैर उत्तेजित (संघनित) गणनाओं के परिणामों को संयोजित करने के लिए किया जाता है।

2डी यूक्लिडियन क्वांटम क्षेत्र सिद्धांत

2डी यूक्लिडियन क्षेत्र सिद्धांत में, ऑपरेटर उत्पाद विस्तार एक लॉरेंट श्रृंखला विस्तार है जो दो ऑपरेटरों से जुड़ा है। लॉरेंट श्रृंखला टेलर श्रृंखला का सामान्यीकरण है जिसमें विस्तार चर (ओं) के व्युत्क्रम की कई शक्तियाँ टेलर श्रृंखला में परिमित क्रम (ओं) के पोल (ओं) को श्रृंखला में जोड़ा जाता है।

ह्यूरिस्टिक रूप से, क्वांटम क्षेत्र सिद्धांत में ऑपरेटर (गणित) द्वारा प्रस्तुत भौतिक अवलोकनों के परिणाम में रुचि है। यदि कोई दो बिन्दुओं और पर दो भौतिक प्रेक्षण करने का परिणाम जानना चाहता है, कोई भी इन ऑपरेटरों को बढ़ते हुए समय में क्रमित किया जा सकता है।

यदि नक्शा अनुरूप विधि से समन्वय करता है, तो वह अधिकांश रेडियल क्रमित में रुचि रखता है। यह समय क्रमित का एनालॉग है जहां बढ़ते समय को जटिल तल पर कुछ बढ़ते सीमा में माप किया गया है। सृजन संचालकों के सामान्य क्रम में भी रुचि है।

रेडियल-क्रमित किए गए ओपीई को सामान्य-क्रमित किए गए ओपीई ऋणात्मक गैर-सामान्य-क्रमित किए गए शब्दों के रूप में लिखा जा सकता है। गैर-सामान्य-क्रमित शर्तों को अधिकांश कम्यूटेटर के रूप में लिखा जा सकता है, और इनमें उपयोगी सरलीकृत पहचान होती है। रेडियल क्रमितिंग विस्तार के अभिसरण की आपूर्ति करता है।

परिणाम कुछ शब्दों के संदर्भ में दो ऑपरेटरों के उत्पाद का अभिसरण विस्तार है, जिसमें जटिल तल (लॉरेंट शर्तों) में ध्रुव हैं और जो परिमित हैं। यह परिणाम केवल बिंदु के चारों ओर विस्तार के रूप में दो अलग-अलग बिंदुओं पर दो ऑपरेटरों के विस्तार का प्रतिनिधित्व करता है, जहां ध्रुव प्रतिनिधित्व करते हैं जहां दो अलग-अलग बिंदु समान बिंदु होते हैं।

.

इससे संबंधित यह है कि जटिल तल पर एक संकारक (गणित) सामान्यतः और के फलन के रूप में लिखा जाता है। इन्हें क्रमशः होलोमॉर्फिक फलन और एंटीहोलोमॉर्फिक फलन भागों के रूप में संदर्भित किया जाता है, क्योंकि वे विलक्षणता (परिमित संख्या) को छोड़कर निरंतर और भिन्न होते हैं। वास्तव में उन्हें मेरोमोर्फिक कहना चाहिए, किन्तु होलोमोर्फिक फलन सामान्य बोलचाल है। सामान्यतः, ऑपरेटर उत्पाद विस्तार होलोमोर्फिक और एंटी-होलोमोर्फिक भागों में अलग नहीं हो सकता है, विशेषकर यदि विस्तार में शब्द हैं। चूंकि, ओपीई के डेरिवेटिव अधिकांश विस्तार को होलोमोर्फिक और एंटी-होलोमोर्फिक विस्तार में अलग कर सकते हैं। यह अभिव्यक्ति भी एक ओपीई है और सामान्यतः अधिक उपयोगी है।

ऑपरेटर उत्पाद बीजगणित

सामान्य स्थिति में, किसी को क्षेत्र (या ऑपरेटर्स) का एक सेट दिया जाता है जिसे कुछ बीजगणित से अधिक मूल्यवान माना जाता है। उदाहरण के लिए, स्थायीकरण x, को कुछ लाई बीजगणित को प्रकीर्णन के लिए लिया जा सकता है। ऑपरेटर उत्पाद के मैनिफ़ोल्ड पर रहने के लिए x को स्वतंत्र सेट करना तब फलनों की वलय में कुछ तत्व है। सामान्यतः, इस तरह के वलयों में सार्थक कथन देने के लिए पर्याप्त संरचना नहीं होती है; इस प्रकार, प्रणाली को शक्तिशाली करने के लिए अतिरिक्त स्वयंसिद्धों पर विचार किया जाता है।

ऑपरेटर उत्पाद बीजगणित रूप का साहचर्य बीजगणित है

संरचना स्थिर है कुछ सदिश बंडल के अनुभागों के अतिरिक्त एकल-मूल्यवान फलन होना आवश्यक है। इसके अतिरिक्त, क्षेत्र को फलन के वलय को फैलाना आवश्यक है। व्यावहारिक गणनाओं में, सामान्यतः यह आवश्यक होता है कि राशियाँ अभिसरण के कुछ सीमा के अन्दर विश्लेषणात्मक हों; सामान्यतः के अभिसरण की त्रिज्या के साथ है। इस प्रकार, फलनों के वलय को बहुपद फलनों के वलय के रूप में लिया जा सकता है।

उपरोक्त को आवश्यकता के रूप में देखा जा सकता है जो फलनों की वलय पर लगाया जाता है; इस आवश्यकता को अनुरूप क्षेत्र सिद्धांत के क्षेत्र में प्रायुक्त करना अनुरूप बूटस्ट्रैप के रूप में जाना जाता है।

ऑपरेटर उत्पाद बीजगणित का उदाहरण शीर्ष ऑपरेटर बीजगणित है। वर्तमान में यह आशा की जाती है कि ऑपरेटर उत्पाद बीजगणित का उपयोग सभी क्वांटम क्षेत्र सिद्धांत को स्वयंसिद्ध करने के लिए किया जा सकता है; उन्होंने अनुरूप क्षेत्र सिद्धांतों के लिए सफलतापूर्वक ऐसा किया है, और क्या उन्हें गैर-उत्तेजित करने वाले क्यूएफटी के आधार के रूप में उपयोग किया जा सकता है, यह खुला शोध क्षेत्र है।

ऑपरेटर उत्पाद विस्तार

क्वांटम क्षेत्र सिद्धांत में, ऑपरेटर उत्पाद विस्तार (ओपीई) स्थानीय क्षेत्रों के योग (संभवतः अनंत) के रूप में विभिन्न बिंदुओं पर दो क्षेत्र (भौतिकी) के उत्पाद के अभिसरण का त्रिज्या है।

अधिक त्रुटिहीन रूप से, यदि एक बिंदु है, और और ऑपरेटर-मूल्यवान क्षेत्र हैं, तो का एक खुला पड़ोस है जैसे कि सभी के लिए

जहाँ योग परिमित रूप से या गणनीय रूप से कई पदों से अधिक है, Ci ऑपरेटर-मूल्यवान क्षेत्र हैं, ci पर विश्लेषणात्मक फलन हैं और योग के अन्दर ऑपरेटर टोपोलॉजी में अभिसारी है।

ओपीई का उपयोग अधिकांश अनुरूप क्षेत्र सिद्धांत में किया जाता है।

अंकन अधिकांश यह बताने के लिए प्रयोग किया जाता है कि अंतर G(x,y)-F(x,y) बिंदु x=y पर विश्लेषणात्मक रहता है। यह तुल्यता संबंध है।

यह भी देखें

  • शीर्ष ऑपरेटर बीजगणित
  • क्यूसीडी योग नियम

बाहरी संबंध