रव जनरेटर: Difference between revisions
m (added Category:Vigyan Ready using HotCat) |
No edit summary |
||
(One intermediate revision by one other user not shown) | |||
Line 57: | Line 57: | ||
{{Noise}} | {{Noise}} | ||
[[Category:Articles with hatnote templates targeting a nonexistent page]] | |||
[[Category:Collapse templates]] | |||
[[Category: | |||
[[Category:Created On 06/04/2023]] | [[Category:Created On 06/04/2023]] | ||
[[Category:Vigyan Ready]] | [[Category:Lua-based templates]] | ||
[[Category:Machine Translated Page]] | |||
[[Category:Navigational boxes| ]] | |||
[[Category:Navigational boxes without horizontal lists]] | |||
[[Category:Pages with empty portal template]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Portal templates with redlinked portals]] | |||
[[Category:Sidebars with styles needing conversion]] | |||
[[Category:Template documentation pages|Documentation/doc]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates generating microformats]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that are not mobile friendly]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:Wikipedia articles needing clarification from June 2013]] | |||
[[Category:Wikipedia metatemplates]] | |||
[[Category:इलेक्ट्रॉनिक परीक्षण उपकरण]] | |||
[[Category:यादृच्छिक संख्या पीढ़ी]] | |||
[[Category:शोर (इलेक्ट्रॉनिक्स)]] |
Latest revision as of 08:56, 8 May 2023
रव जनरेटर एक परिपथ है जो विद्युत रव (एक प्रकार का यादृच्छिक संकेत) उत्पन्न करता है। रव जनरेटर का उपयोग रव आंकड़े, आवृत्ति प्रतिक्रिया और अन्य मापदंडों को मापने हेतु संकेतों का परीक्षण करने के लिए किया जाता है। यादृच्छिक संख्या उत्पन्न करने के लिए रव जनरेटर का भी उपयोग किया जाता है।[1]
सिद्धांत
रव उत्पन्न करने के लिए कई परिपथों का उपयोग किया जाता है, उदाहरण के लिए तापमान-नियंत्रित प्रतिरोधक, तापमान-सीमित निर्वात डायोड, जेनर डायोड और गैस विसर्जक ट्यूब[2]। स्रोत जिसे स्विच (बटन) के माध्यम से चालू और बंद (गेट) किया जा सकता है, कुछ परीक्षण विधियों के लिए लाभप्रद है।
रव जनरेटर सामान्य रूप से मौलिक रव प्रक्रिया जैसे ऊष्मीय रव या शॉट रव पर निर्भर करते हैं।
ऊष्मीय रव जनरेटर
ऊष्मीय रव मौलिक मानक हो सकता है। निश्चित तापमान पर प्रतिरोधक के साथ ऊष्मीय रव सम्बद्ध होता है। रव जनरेटर में अलग-अलग तापमान पर दो प्रतिरोध हो सकते हैं और दो प्रतिरोधों के मध्य परिवर्तित हो सकते हैं। परिणामी उत्पादन शक्ति कम होती है। (कमरे के तापमान पर 1 kΩ प्रतिरोधक और 10 kHz बैंडविड्थ के लिए आरएमएस रव वोल्टेज 400 nV है।[3])
शॉट रव जनरेटर
यदि इलेक्ट्रॉन अवरोध के पार प्रवाहित होते हैं तो उनके पास असतत आगमन का समय होता है। उन असतत आगमनों में शॉट रव प्रदर्शित होता है। शॉट रव जेनरेटर के उत्पादित रव स्तर डीसी संगत
धारा द्वारा सरलता से व्यवस्थित किया जा सकता है। सामान्य रूप से डायोड में अवरोध का उपयोग किया जाता है।[4]
विभिन्न रव जनरेटर परिपथ डीसी संगत धारा को व्यवस्थित करने के विभिन्न उपायों का प्रयोग करते हैं।
निर्वात डायोड
सामान्य रव स्रोत सीमित-ऊष्मीय (संतृप्त-उत्सर्जन) गर्म- कैथोड निर्वात-ट्यूब डायोड था। ये स्रोत अति उच्च आवृत्ति के माध्यम से कुछ किलोहर्ट्ज़ से सफेद रव जनरेटर के रूप में काम कर सकते थे और सामान्य निर्वात ट्यूब शीशे के खोल में उपलब्ध थे। झिलमिलाहट (सांकेतिक) (1/f) रव कम आवृत्तियों पर सीमित अनुप्रयोग तथा उच्च आवृत्तियों पर इलेक्ट्रॉन पारगमन समय सीमित अनुप्रयोग होते हैं। मूल प्रारूप गर्म फिलामेंट के साथ डायोड निर्वात ट्यूब था। कैथोड (फिलामेंट) का तापमान एनोड (प्लेट) धारा को व्यवस्थित करता है जो शॉट रव को निर्धारित करती है, रिचर्डसन समीकरण देखें। फिलामेंट द्वारा उत्सर्जित सभी इलेक्ट्रॉनों को इकट्ठा करने के लिए एनोड वोल्टेज बहुत अधिक होता है।[5][6] यदि प्लेट वोल्टेज बहुत कम होता तो फिलामेंट के पास स्थानीय आवेश होगा जो रव उत्पादन को प्रभावित करेगा। कैलिब्रेटेड जनरेटर में इसकी देखभाल की जानी चाहिए जिससे शॉट रव ट्यूब की प्लेट प्रतिरोध और अन्य परिपथ तत्वों के ऊष्मीय रव पर प्रभावी हो।
गैस- निर्वहन ट्यूब
लंबी, पतली, गर्म-कैथोड गैस से भरी ट्यूब फिलामेंट के लिए सामान्य संगीन माउंट और एनोड शीर्ष कैप के साथ लगे गैस- निर्वहन ग्लास ट्यूब का उपयोग सुपर उच्च आवृत्ति और वेवगाइड में विकर्ण सम्मिलन के लिए किया गया था।[7] वे नियोन जैसी शुद्ध अक्रिय गैस से भरे हुए थे क्योंकि पेनिंग मिश्रण ने आउटपुट को तापमान पर निर्भर बना दिया था। उनका ज्वलन वोल्टेज 200 V से कम था परन्तु 5-kV श्रेणी में एनोड वोल्टेज स्पाइक द्वारा प्रज्वलित करने से पहले उन्हें 2-वाट गर्म लैंप द्वारा प्रकाशिक प्राइमिंग (प्री-आयनाइज़िंग) की आवश्यकता थी।
कम आवृत्ति वाले रव बैंड के लिए नियॉन से भरे चमकते लैंप का उपयोग किया गया है। डेल्टा वितरण स्पाइक/ निडल पल्स के लिए परिपथ समान था।
अनुप्रस्थ चुंबकीय क्षेत्र में डायोड (कैथोड से बंधी ग्रिड) के रूप में संचालित होने पर लघु थाइरेट्रॉन को रव स्रोत के रूप में अतिरिक्त उपयोग मिला।[8]
अग्र-पक्षपाती अर्धचालक डायोड
ट्रांजिस्टर में संग्राहक धारा का उपयोग एक अन्य संभावना है।[clarification needed]
विपरीत-पक्षपाती अर्धचालक डायोड
ब्रेकडाउन में रिवर्स-बायस्ड डायोड का उपयोग शॉट रव स्रोतों के रूप में भी किया जा सकता है। वोल्टेज रेगुलेटर डायोड सामान्य हैं परन्तु दो अलग-अलग ब्रेकडाउन प्रक्रियायें हैं और उनकी अलग-अलग रव विशेषताएं हैं। यह प्रक्रिया जेनर प्रभाव और एवलांच विघटन हैं।[9]
जेनर डायोड
रिवर्स-बायस्ड डायोड और द्विध्रुवी जंक्शन ट्रांजिस्टर बेस-एमिटर जंक्शन जो लगभग 7 वोल्ट से नीचे टूटते हैं तथा मुख्य रूप से जेनर प्रभाव प्रदर्शित करते हैं जहाँ विघटन आंतरिक क्षेत्र उत्सर्जन के कारण होता है। जंक्शन पतले होते हैं और विद्युत क्षेत्र अधिक होता है। जेनर विघटित शॉट रव होते है। फ़्लिकर (1/f) नॉइज़ कॉर्नर 10 Hz से कम हो सकता है।[10]
जेनर डायोड द्वारा उत्पन्न रव साधारण शॉट रव है।
एवलांच डायोड
7 वोल्ट से अधिक के विघटित वोल्टेज के लिए अर्धचालक जंक्शन की चौड़ाई अधिक होती है और प्राथमिक विकार तंत्र एवलांच होता है। रव उत्पादन अधिक जटिल होता है।[10] अतिरिक्त रव (अर्थात साधारण शॉट रव से अधिक एवं और अधिक रव) एवलांच गुणन के कारण होते है।
उच्च शक्ति उत्पादन रव जनरेटर के लिए प्रवर्धन की आवश्यकता होती है। ब्रॉडबैंड रव जनरेटर के लिए उस प्रवर्धन को प्राप्त करना कठिन हो सकता है। एक विधि उसी बाधा के भीतर एवलांच गुणन का उपयोग करती है जो रव उत्पन्न करती है। एवलांच में एक वाहक अन्य परमाणुओं से टकराता है और मुक्त नए वाहकों को धक्का देता है। परिणामस्वरुप प्रत्येक वाहक जो बाधा को पार करना प्रारम्भ करता है उसके लिए कई वाहक समकालिक रूप से आते हैं। इसका परिणाम विस्तृत बैंडविड्थ उच्च शक्ति स्रोत होता है। विघटन में पारंपरिक डायोड का उपयोग किया जा सकता है।
एवलांच विघटन में बहुस्तरीय रव होता है। रव उत्पादित शक्ति तीव्रता से कई उत्पादित स्तरों के बीच परिवर्तित होती है। बहुस्तरीय रव कुछ सीमा तक झिलमिलाहट (संकेतन) (1/f) रव जैसा दिखता है। प्रभाव प्रक्रिया पर निर्भर है परन्तु इसे कम किया जा सकता है। कम बहुस्तरीय रव के लिए भी डायोड का चयन किया जा सकता है।[10]
एवलांच डायोड रव जनरेटर का व्यावसायिक उदाहरण अगिलेंट 346C है जो 10 मेगाहर्ट्ज से 26.5 गीगाहर्ट्ज तक कार्य करता है।[11]
यह भी देखें
संदर्भ
- ↑ "Sylvania 6D4 Quick Reference Data" (PDF). sensitive research (SR-IX). Retrieved 1 June 2022.
- ↑ Motchenbacher & Fitchen 1973, p. 289
- ↑ Google Calculator result for 1 kΩ room temperature 10 kHz bandwidth
- ↑ Ott 1976, pp. 208, 218
- ↑ Motchenbacher & Fitchen 1973, pp. 289–291
- ↑ "Philips: Standard noise sources K81A, K50A, K51A" (PDF). Retrieved 14 June 2013.
- ↑ Hewlett-Packard 1981 Catalog, page 437, "The 347A waveguide sources are argon gas discharge tubes carefully mounted in waveguide sections for frequencies from 3.95 to 18 GHz. Model 349A also uses an argon tube in a coaxial configuration for frequencies from 400 to 4000 MHz."
- ↑ "Sylvania: 6D4 Miniature triode thyratron data sheet" (PDF). Retrieved 25 May 2013.
- ↑ Motchenbacher & Fitchen 1973, p. 180
- ↑ 10.0 10.1 10.2 Motchenbacher & Fitchen 1973, p. 181
- ↑ "346C Noise Source, 10 MHz to 26.5 GHz". Keysight.
- Motchenbacher, C. D.; Fitchen, F. C. (1973), Low-Noise Electronic Design, John Wiley & Sons, Bibcode:1973lned.book.....M, ISBN 978-0-471-61950-5
- Ott, Henry W. (1976), Noise Reduction Techniques in Electronic Systems, John Wiley, ISBN 0-471-65726-3