बीजगणितीय ज्यामिति और विश्लेषणात्मक ज्यामिति: Difference between revisions
m (added Category:Vigyan Ready using HotCat) |
No edit summary |
||
(One intermediate revision by one other user not shown) | |||
Line 73: | Line 73: | ||
==बाहरी संबंध== | ==बाहरी संबंध== | ||
* Kiran Kedlaya. 18.726 [https://ocw.mit.edu/courses/mathematics/18-726-algebraic-geometry-spring-2009/lecture-notes Algebraic Geometry] ([https://ocw.mit.edu/courses/mathematics/18-726-algebraic-geometry-spring-2009/lecture-notes/MIT18_726s09_lec22_gaga.pdf LEC # 30 - 33 गागा])Spring 2009. Massachusetts Institute of Technology: MIT OpenCourseWare Creative Commons [[BY-NC-SA]] | * Kiran Kedlaya. 18.726 [https://ocw.mit.edu/courses/mathematics/18-726-algebraic-geometry-spring-2009/lecture-notes Algebraic Geometry] ([https://ocw.mit.edu/courses/mathematics/18-726-algebraic-geometry-spring-2009/lecture-notes/MIT18_726s09_lec22_gaga.pdf LEC # 30 - 33 गागा])Spring 2009. Massachusetts Institute of Technology: MIT OpenCourseWare Creative Commons [[BY-NC-SA]] | ||
[[Category:CS1 français-language sources (fr)]] | |||
[[Category: | |||
[[Category:Created On 26/04/2023]] | [[Category:Created On 26/04/2023]] | ||
[[Category:Vigyan Ready]] | [[Category:Lua-based templates]] | ||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:बीजगणितीय ज्यामिति| बीजगणितीय ज्यामिति ]] | |||
[[Category:विश्लेषणात्मक ज्यामिति| विश्लेषणात्मक ज्यामिति ]] |
Latest revision as of 11:42, 10 May 2023
गणित में, बीजगणितीय ज्यामिति और विश्लेषणात्मक ज्यामिति को दो निकट के विषयों से संबंधित किया जाता हैं। जबकि बीजगणितीय ज्यामिति बीजगणितीय विविधता का अध्ययन करती है, इस प्रकार विश्लेषणात्मक ज्यामिति कई जटिल चर के विश्लेषणात्मक कार्य के विलुप्त होने से स्थानीय रूप से परिभाषित जटिलता को कई गुना और अधिक सामान्य विश्लेषणात्मक रिक्त स्थान से संबंधित कर देता हैं। इन विषयों के बीच गहरे संबंध में कई अनुप्रयोग हैं जिनमें बीजगणितीय विधियों को विश्लेषणात्मक स्थानों और विश्लेषणात्मक विधियों को बीजगणितीय प्रकारों पर लागू किया जाता है।
मुख्य कथन
यहाँ पर बता दें कि X प्रक्षेपी जटिल बीजगणितीय प्रकार है। क्योंकि X जटिल प्रकार का एक तत्व है, इसके जटिल बिंदुओं के समूह X('C') को कॉम्पैक्ट जटिल विश्लेषणात्मक स्थान की संरचना दी जा सकती है। इस विश्लेषणात्मक स्थान को X1 दर्शाया गया है, इसी प्रकार यदि X पर यह इसका प्रारूप है, तो संबंधित प्रारूप X1 है। इसके अनुसार बीजगणितीय वस्तु के लिए विश्लेषणात्मक वस्तु का यह संयोजन रोचक है। इस प्रकार X और Xa से संबंधित प्रोटोटाइपिकल प्रमेय कहती है कि किन्हीं दो सुसंगत समूहों के लिए और X पर प्राकृतिक समरूपता को इस प्रकार प्रकट करते हैं:
एक समरूपता है। यहाँ बीजगणितीय प्रकार X और की संरचना शीफ है, जो विश्लेषणात्मक प्रकार X1 से संरचना शीफ के कारण प्रकट होता है, दूसरे शब्दों में, बीजगणितीय प्रकार X पर सुसंगत समूहों की श्रेणी विश्लेषणात्मक विविधता Xan पर विश्लेषणात्मक सुसंगत समूहों की श्रेणी के समान है, और समानता मानचित्रण द्वारा वस्तुओं पर को का मान दिया गया है। (इसके फलस्वरूप विशेष रूप से ध्यान दें कि स्वयं सुसंगत है, परिणाम जिसे ओका जुटना प्रमेय के रूप में जाना जाता है,[1] और साथ ही यह "सुसंगत बीजगणितीय बीम्स" में सिद्ध हुआ था (सेर्रे (1955) ) कि बीजगणितीय प्रकार की संरचना शीफ सुसंगत है।[2])
एक अन्य महत्वपूर्ण कथन इस प्रकार है: किसी सुसंगत शीफ के लिए बीजगणितीय प्रकार X समरूपता पर
सभी q के लिए तुल्याकारिताएँ हैं। इसका मतलब यह है कि X पर q-th कोहोलॉजी समूह, X1 पर कोहोलॉजी समूह के लिए आइसोमोर्फिक कहा जाता है।
इस प्रमेय के अनुसार ऊपर वर्णित प्रमेय की तुलना में सामान्यतः अधिक लागू होता है (नीचे मौलिक कथन देखें)। इसके और इसके प्रमाण के कई परिणाम हैं, जैसे चाउ की प्रमेय या| चाउ की प्रमेय, द लेफ्शेत्ज़ सिद्धांत और कोडैरा लुप्त प्रमेय को प्रकट करता हैं।
पृष्ठभूमि
बीजगणितीय प्रकारों को स्थानीय रूप से बहुपदों के सामान्य शून्य समूह के रूप में परिभाषित किया जाता है और चूंकि जटिल संख्याओं पर बहुपद होलोमॉर्फिक फ़ंक्शन होते हैं, सी से अधिक बीजगणितीय प्रकारों को विश्लेषणात्मक रिक्त स्थान के रूप में व्याख्या किया जा सकता है। इसी तरह, प्रकारों के बीच नियमित माॅर्फिज्म को विश्लेषणात्मक रिक्त स्थान के बीच होलोमोर्फिक मैपिंग के रूप में व्याख्या किया जाता है। कुछ आश्चर्य की बात है, बीजगणितीय तरीके से विश्लेषणात्मक वस्तुओं की व्याख्या करने के लिए अधिकांशतः दूसरी विधि से जाना संभव होता है।
उदाहरण के लिए, यह प्रमाणित करना सरल है कि रीमैन स्फीयर से लेकर स्वयं तक के विश्लेषणात्मक कार्य या तो हैं, इसके अनुसार तर्कसंगत कार्य या समान रूप से अनंत कार्य (लिउविले के प्रमेय का विस्तार (जटिल विश्लेषण) का कल्याण हैं | इस प्रकार लिउविल का प्रमेय के अनुसार यदि ऐसा कोई फ़ंक्शन f गैर-स्थिर है, तो z के समूह के पश्चात जहाँ f(z) अनंत है और रीमैन क्षेत्र कॉम्पैक्ट है, वहाँ बहुत सारे z' हैं के साथ f(z) अनंत के बराबर है। ऐसे सभी 'z' पर लॉरेंट विस्तार पर विचार करें और एकवचन भाग को घटाया जाता हैं: हमारे पास सी में मानों के साथ रीमैन क्षेत्र पर फ़ंक्शन के साथ छोड़ दिया जाता है, जो लिउविल के प्रमेय द्वारा स्थिर है। इस प्रकार 'एफ' तर्कसंगत कार्य है। इस तथ्य से पता चलता है कि बीजगणितीय विविधता के रूप में या रीमैन क्षेत्र के रूप में जटिल प्रक्षेपी रेखा के बीच कोई आवश्यक अंतर नहीं है।
महत्वपूर्ण परिणाम
बीजगणितीय ज्यामिति और विश्लेषणात्मक ज्यामिति के बीच तुलनात्मक परिणामों का लंबा इतिहास है, जो उन्नीसवीं शताब्दी में प्रारंभ हुआ था। कालानुक्रमिक क्रम में कुछ अधिक महत्वपूर्ण प्रगति यहाँ सूचीबद्ध हैं।
रीमैन का अस्तित्व प्रमेय
रीमैन सतह सिद्धांत से पता चलता है कि कॉम्पैक्ट जगह रीमैन की सतह पर पर्याप्त मेरोमॉर्फिक फ़ंक्शन होते हैं, जिससे यह बीजगणितीय वक्र बन जाता है। इस प्रकार रीमैन के अस्तित्व प्रमेय के नाम से[3][4][5] कॉम्पैक्ट रीमैन सतह के रेमीफाइड आवरण पर गहरा परिणाम ज्ञात था: टोपोलॉजिकल स्थान के रूप में इस प्रकार के परिमित आवरण को रेमिफिकेशन (गणित) के पूरक के मौलिक समूह के क्रमपरिवर्तन अभ्यावेदन द्वारा वर्गीकृत किया गया है। चूंकि रीमैन सतह की संपत्ति स्थानीय है, ऐसे आवरण को जटिल-विश्लेषणात्मक अर्थों में आवरण के रूप में सरली से देखा जा सकता है। तब यह निष्कर्ष निकालना संभव है कि वे बीजगणितीय वक्रों के मानचित्रों को कवर करने से आते हैं - अर्थात, ऐसे आवरण बीजगणितीय विविधता के कार्य क्षेत्र के परिमित विस्तार से आते हैं।
लेफ्शेट्ज़ सिद्धांत
बीसवीं शताब्दी में, सोलोमन लेफशेट्ज़ के नाम पर लेफशेट्ज़ सिद्धांत को बीजगणितीय ज्यामिति में उद्धृत किया गया था ताकि किसी भी बीजगणितीय रूप से विवृत फ़ील्ड 'के' की विशेषता (बीजगणित) 0 पर बीजगणितीय ज्यामिति के लिए टोपोलॉजिकल तकनीकों के उपयोग को उचित ठहराया जा सकता हैं। इस कारण K के लिए यदि मानो तो यह सम्मिश्र संख्या का क्षेत्र हैं। इस प्रकार इसका प्राथमिक रूप यह प्रमाण करता है कि सी के बारे में क्षेत्रों के पहले क्रम के सिद्धांत के सच्चे बयान किसी भी बीजगणितीय रूप से विवृत फ़ील्ड के की विशेषता शून्य के लिए सही हैं। इस प्रकार सटीक सिद्धांत और इसका प्रमाण अल्फ्रेड टार्स्की के कारण हैं और गणितीय तर्क पर आधारित हैं।[6][7]
यह सिद्धांत बीजगणितीय प्रकारों के लिए विश्लेषणात्मक या सामयिक विधियों का उपयोग करके प्राप्त किए गए कुछ परिणामों को C से अन्य बीजगणितीय रूप से विवृत क्षेत्रों में ले जाने की अनुमति देता है।
चाउ की प्रमेय
चाऊ (1949) , वी-एल इयान जीसी कैसे द्वारा सिद्ध किया गया, उपलब्ध तुलना के सबसे तत्काल उपयोगी प्रकार का उदाहरण है। इसमें यह कथन हैं कि जटिल प्रक्षेपण स्थान का विश्लेषणात्मक उप-स्थान जो विवृत है (साधारण टोपोलॉजिकल अर्थ में) बीजगणितीय उपप्रकार है।[8] इस प्रकार इसे जटिल प्रोजेक्टिव स्थान के किसी भी विश्लेषणात्मक उप-स्थान के रूप में दोहराया जा सकता है जो इस प्रकार मजबूत टोपोलॉजी में विवृत है, जरिस्की टोपोलॉजी में विवृत है। यह बीजगणितीय ज्यामिति के शास्त्रीय भागों के भीतर जटिल-विश्लेषणात्मक विधियों के मुक्त उपयोग की अनुमति देता है।
गागा
1950 के दशक के प्रारंभिक भाग के समय दो सिद्धांतों के बीच कई संबंधों की नींव रखी गई थी, उदाहरण के लिए, हॉज सिद्धांत से तकनीकों को सम्मिलित करने के लिए बीजगणितीय ज्यामिति की नींव रखने के व्यवसाय के हिस्से के रूप में। सिद्धांत को मजबूत करने वाला प्रमुख पेपर जियोमेट्री अल्जेब्रिक एट जियोमेट्री एनालिटिक था। इस प्रकार सेर्रे (1956) जीन पियरे सेरे द्वारा, अब सामान्यतः गागा के रूप में जाना जाता है। यह सामान्य परिणाम प्रमाणित करता है जो विश्लेषणात्मक रिक्त स्थान, होलोमोर्फिक मैपिंग और शेवों के वर्गों के साथ बीजगणितीय प्रकारों, नियमित संरचना और शीफ (गणित) के वर्गों से संबंधित है। यह इन सभी को समूहों की श्रेणियों की तुलना में कम कर देता है।
आजकल तुलना के किसी भी प्रमेय के लिए गागा-शैली परिणाम वाक्यांश का उपयोग किया जाता है, जो बीजगणितीय ज्यामिति से वस्तुओं की श्रेणी और उनके संरचना के बीच विश्लेषणात्मक ज्यामिति वस्तुओं और होलोमोर्फिक मैपिंग की अच्छी तरह से इस प्रकार परिभाषित उपश्रेणी के बीच पारित होने की अनुमति देता है।
गागा का औपचारिक बयान
- इस प्रकार C पर परिमित प्रकार की योजना बनाते हैं। फिर स्थलीय स्थान Xan है जो समूह के रूप में निरंतर समावेशन मानचित्र λ के साथ XX के विवृत बिंदु होते हैं: Xan → X. Xa पर टोपोलॉजी को जटिल टोपोलॉजी कहा जाता है (और यह सबस्थान टोपोलॉजी से बहुत अलग है)।
- मान लीजिए φ: X → Y 'C' पर स्थानीय रूप से परिमित प्रकार की योजनाओं का आकार है। इस प्रकार पुनः सतत प्रारूप φA में इसे सम्मिलित किया जाता है: XA → YA ऐसा λY ° A = φ ° λX
- यह एक वक्र है जिसमे XA पर ऐसा कि चक्राकार स्थान है और λX: Xan → X चक्राकार स्थानों का मानचित्र बन जाता है। इस प्रकार इस समतल को का विश्लेषण कहा जाता है और विश्लेषणात्मक स्थान है। इस प्रकार सभी φ के लिए: X → Y प्रारूप φa ऊपर परिभाषित विश्लेषणात्मक रिक्त स्थान का मानचित्रण है। इसके अतिरिक्त, प्रारूप φ ↦ φa मानचित्र संवृत्त विसर्जन से संवृत्त विसर्जन में परिवर्तित कर देते हैं। इस प्रकार यदि X = स्पेक ('C' [X1,...,Xn]) का रूप प्रकट होता हैं तो इस स्थिति में XA = Cn और को प्रत्येक पॉलीडिस्क U के लिए U पर होलोमोर्फिक कार्यों के स्थान का उपयुक्त भागफल है।
- इस प्रकार इस प्रारूप के लिए X पर (बीजगणितीय शीफ कहा जाता है) शीफ होता है, जहाँ पर Xa पर (विश्लेषणात्मक शीफ कहा जाता है) और इसके समूहों का प्रारूप -मॉड्यूल पर के रूप में परिभाषित किया जाता है। इस प्रकार के लिए पत्राचार समूहों की श्रेणी से सटीक फ़ैक्टर को परिभाषित करता है के समूहों की श्रेणी में इस प्रकार हैं।
निम्नलिखित दो कथन सेरे के गागा प्रमेय के हृदय हैं[5][9] (अलेक्जेंडर ग्रोथेंडिक, अम्नोन नामान और अन्य द्वारा विस्तारित किया जाता हैं।) - यदि f: X → Y 'C' और पर परिमित प्रकार की योजनाओं का स्वरूप है तो सुसंगत मान को प्रकट करता है इस क्रम में प्राकृतिक मानचित्र इंजेक्शन के रूप में उपयोग किया जाता है। यदि f उचित है तो यह मानचित्र तुल्याकारिता है। इसमें सभी उच्च प्रत्यक्ष छवियों को समूहों की समरूपता जो इस स्थिति में के समान रहती हैं।
- अब मान लीजिए कि Xan हॉसडॉर्फ और कॉम्पैक्ट है। जिसमें यदि दो सुसंगत बीजगणितीय समूहों के समान हैं, इस स्थिति में और यदि के समूहों का प्रारूप है। जहाँ -मॉड्यूल तो वहीं इन समूहों का अनूठा प्रारूप -मॉड्यूल साथ सम्मिलित है। इस स्थिति में यदि का सुसंगत विश्लेषणात्मक शीफ -मॉड्यूल Xa है तो सुसंगत बीजगणितीय शीफ का -मॉड्यूल और समरूपता सम्मिलित है।
थोड़ी कम व्यापकता में, गागा प्रमेय का प्रमाण यह है कि सुसंगत बीजगणितीय समूहों की श्रेणी जटिल प्रक्षेपी प्रकार X पर और संगत विश्लेषणात्मक स्थान Xa पर सुसंगत विश्लेषणात्मक समूहों की श्रेणी समतुल्य हैं। विश्लेषणात्मक स्थान Xa को मुख्यतः 'C' से जटिल संरचना Xn पर वापस खींचकर प्राप्त किया जाता है। इस निर्देशांक के चार्ट के माध्यम से इसे प्रकट करते हैं। इस प्रकार मुख्यतः इस प्रमेय को वाक्यांश देने के लिए इसे किसी पेपर की भावना के समीप माना जाता हैं, यह देखते हुए कि कैसे पूर्ण योजना-सैद्धांतिक भाषा जिसका उपरोक्त औपचारिक कथन पर भारी उपयोग करता है, अभी तक गागा के प्रकाशन के समय तक आविष्कार नहीं किया गया था।
टिप्पणियाँ
- ↑ (Hall 2018)
- ↑ (Remmert 1994)
- ↑ (Grauert & Remmert 1958)
- ↑ (Harbater 2003)
- ↑ 5.0 5.1 (Grothendieck & Raynaud 2002)
- ↑ For discussions see Seidenberg (1958), Comments on Lefschetz's Principle; Frey & Rück (1986), The strong Lefschetz principle in algebraic geometry.
- ↑ (Kuhlmann 2001)
- ↑ (Hartshorne 1970)
- ↑ (Neeman 2007)
संदर्भ
- Chow, Wei-Liang (1949). "On Compact Complex Analytic Varieties". American Journal of Mathematics. 71 (4): 893–914. doi:10.2307/2372375. JSTOR 2372375.
- Frey, Gerhard; Rück, Hans -Georg (1986). "The strong Lefschetz principle in algebraic geometry". Manuscripta Mathematica. 55 (3–4): 385–401. doi:10.1007/BF01186653. S2CID 122967192.
- Grauert, Hans; Remmert, Reinhold (1958). "Komplexe Räume". Mathematische Annalen. 136 (3): 245–318. doi:10.1007/BF01362011. S2CID 121348794.
- Grothendieck, Alexander; Raynaud, Michele (2002). "Revêtements étales et groupe fondamental§XII. Géométrie algébrique et géométrie analytique". Revêtements étales et groupe fondamental (SGA 1) (in français). arXiv:math/0206203. doi:10.1007/BFb0058656. ISBN 978-2-85629-141-2.
- Harbater, David (21 July 2003). "Galois Groups and Fundamental Groups§9.Patching and Galois theory (Dept. of Mathematics, University of Pennsylvania)" (PDF). In Schneps, Leila (ed.). Galois Groups and Fundamental Groups. Cambridge University Press. ISBN 9780521808316.
- Hall, Jack (2018). "GAGA theorems". arXiv:1804.01976 [math.AG].
- Kuhlmann, F.-V. (2001) [1994], "Transfer principle", Encyclopedia of Mathematics, EMS Press
- Neeman, Amnon (2007). Algebraic and Analytic Geometry. doi:10.1017/CBO9780511800443. ISBN 9780511800443.
- Seidenberg, A. (1958). "Comments on Lefschetz's Principle". The American Mathematical Monthly. 65 (9): 685–690. doi:10.1080/00029890.1958.11991979. JSTOR 2308709.
- Hartshorne, Robin (1970). Ample Subvarieties of Algebraic Varieties. Lecture Notes in Mathematics. Vol. 156. doi:10.1007/BFb0067839. ISBN 978-3-540-05184-8.
- Hartshorne, Robin (1977). Algebraic Geometry. Graduate Texts in Mathematics. Vol. 52. Berlin, New York: Springer-Verlag. doi:10.1007/978-1-4757-3849-0. ISBN 978-0-387-90244-9. MR 0463157. S2CID 197660097. Zbl 0367.14001.
- Remmert, R. (1994). "Local Theory of Complex Spaces". Several Complex Variables VII. Encyclopaedia of Mathematical Sciences. Vol. 74. pp. 7–96. doi:10.1007/978-3-662-09873-8_2. ISBN 978-3-642-08150-7.
- Serre, Jean-Pierre (1955), "Faisceaux algébriques cohérents" (PDF), Annals of Mathematics, 61 (2): 197–278, doi:10.2307/1969915, JSTOR 1969915, MR 0068874
- Serre, Jean-Pierre (1956). "Géométrie algébrique et géométrie analytique". Annales de l'Institut Fourier (in français). 6: 1–42. doi:10.5802/aif.59. ISSN 0373-0956. MR 0082175.
बाहरी संबंध
- Kiran Kedlaya. 18.726 Algebraic Geometry (LEC # 30 - 33 गागा)Spring 2009. Massachusetts Institute of Technology: MIT OpenCourseWare Creative Commons BY-NC-SA