अभिलक्षण (गणित): Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(8 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{Short description|Term in mathematics}}
{{Short description|Term in mathematics}}
गणित में, किसी वस्तु का लक्षण वर्णन समूह होता है, जो वस्तु की परिभाषा से भिन्न होते हुए इसके समकक्ष होते है।<ref name=":0">{{Cite web|url=http://mathworld.wolfram.com/निस्र्पण.html|title=निस्र्पण|last=Weisstein|first=Eric W.|website=mathworld.wolfram.com|language=en|access-date=2019-11-21}}</ref> संपत्ति P वस्तु X की विशेषता है, X में न केवल [[संपत्ति (दर्शन)]] P है, अन्यथा यह X ही एकमात्र वस्तु है जिसमें संपत्ति P है (जैसे, P X की परिभाषित संपत्ति है)। इस प्रकार, गुणों का सेट P को X को चिह्नित करने के लिए उपयोग किया जाता है, जब ये गुण X को अन्य सभी वस्तुओं से भिन्न करते हैं। लक्षण वर्णन किसी वस्तु को अद्भुत विधि से पहचानता है, तो वस्तु के लिए कई लक्षण उपस्थित हो सकते हैं। P के संदर्भ में X के लक्षण वर्णन के लिए सामान्य गणितीय अभिव्यक्तियों में P [[आवश्यक और पर्याप्त|आवश्यक]] है और X के लिए [[आवश्यक और पर्याप्त|पर्याप्त]] होता है।
गणित में, किसी वस्तु का '''अभिलक्षण''' वर्णन समूह होता है, जो वस्तु की परिभाषा से भिन्न होते हुए इसके समकक्ष होते है।<ref name=":0">{{Cite web|url=http://mathworld.wolfram.com/निस्र्पण.html|title=निस्र्पण|last=Weisstein|first=Eric W.|website=mathworld.wolfram.com|language=en|access-date=2019-11-21}}</ref> संपत्ति P वस्तु X की विशेषता होती है, X में न केवल [[संपत्ति (दर्शन)]] P है, अन्यथा यह X ही एकमात्र वस्तु है जिसमें संपत्ति P है (जैसे, P X की परिभाषित संपत्ति है)। इस प्रकार, गुणों का समुच्चय P को X को चिह्नित करने के लिए उपयोग किया जाता है, जब ये गुण X को अन्य सभी वस्तुओं से भिन्न करते हैं। तो अभिलक्षण वर्णन किसी वस्तु को अद्भुत विधि से पहचानता है, तो वस्तु के लिए कई अभिलक्षण उपस्थित हो सकते हैं। P के संदर्भ में X के अभिलक्षण वर्णन के लिए सामान्य गणितीय अभिव्यक्तियों में P [[आवश्यक और पर्याप्त|आवश्यक]] है और X के लिए [[आवश्यक और पर्याप्त|पर्याप्त]] होता है।


संपत्ति क्यू जैसे वर्णन शोध को भी सरल कहा जाता है जो वाई को [[ समाकृतिकता ]] [[तक]] दर्शाता है। पूर्व प्रकार का कथन भिन्न-भिन्न शब्दों को कहा जाता है कि पी का [[विस्तार (शब्दार्थ)]] एक [[सिंगलटन (गणित)]] समुच्चय है, क्यू का विस्तार एकल [[तुल्यता वर्ग]] है (समरूपता के लिए, दिए गए उदाहरण में - पर निर्भर करता है) तक उपयोग किया जा रहा है, कुछ अन्य [[तुल्यता संबंध]] समिलित होते हैं।
संपत्ति Q, Y द्वारा आइसोमोर्फिज्म जैसे वर्णन शोध भी सरल होते है जो Y को [[ समाकृतिकता |समाकृतिकता]] [[तक]] दर्शाता है। पूर्व प्रकार का कथन भिन्न-भिन्न शब्दों को कहा जाता है कि P का [[विस्तार (शब्दार्थ)]] [[सिंगलटन (गणित)]] समुच्चय होता है, Q का विस्तार एकल [[तुल्यता वर्ग]] है (समरूपता के लिए, दिए गए उदाहरण पर निर्भर करता है कि इसका उपयोग कैसे किया जा रहा है, कुछ अन्य [[तुल्यता संबंध]] सम्मिलित हो सकते हैं)।


गणितीय शब्दावली संदर्भ है ग्रीक शब्द खारक्स से उत्पन्न होती है, एक नुकीली साझा: ग्रीक खारैक्स से खाराखटर आया, एक उपकरण जिसका उपयोग किसी वस्तु को चिह्नित  किया जाता है। जब किसी वस्तु को चिन्हित कर लिया जाता है, तो वह विशिष्ट हो जाती है, इसलिए किसी वस्तु के चरित्र का अर्थ उसकी विशिष्ट प्रकृति से हो जाता है। देर से ग्रीक प्रत्यय -इस्टिकोस ने संज्ञा वर्ण को विशेषण विशेषता में परिवर्तित कर दिया, जो इसके विशेषण अर्थ को बनाए रखने में एक संज्ञा भी बन जाती है।<ref>Steven Schwartzmann (1994) ''The Words of Mathematics: An etymological dictionary of mathematical terms used in English'', page 43, [[The Mathematical Association of America]] {{ISBN|0-88385-511-9}}</ref>जिस तरह रसायन विज्ञान में, किसी पदार्थ का विशिष्ट गुण  प्रतिरूप की पहचान करने के लिए काम करेगा, या सामग्री, संरचनाओं और गुणों के अध्ययन में [[लक्षण वर्णन (सामग्री विज्ञान)]] का निर्धारण करेगा, उसी तरह गणित में गुणों को व्यक्त करने का एक निरंतर प्रयास है। जो एक सिद्धांत या प्रणाली में एक वांछित विशेषता को भिन्न करेगा। लक्षण वर्णन गणित के लिए अद्वितीय नहीं है, चूंकि विज्ञान अमूर्त है, इसलिए अधिकांश गतिविधि को लक्षण वर्णन के रूप में वर्णित किया जा सकता है। उदाहरण के लिए, [[गणितीय समीक्षा]]ओं में, 2018 तक, 24,000 से अधिक लेखों में लेख के शीर्षक में शब्द समिलित हैं, और समीक्षा में कहीं 93,600 हैं।<!-- Might consider a different reference, since the access to Mathematics Reviews requires active subscription . -->
गणितीय शब्दावली पर संदर्भ है कि विशेषता ग्रीक शब्द खारैक्स से उत्पन्न होती है, जिसकी भागीदारी निम्नलिखित है:  


वस्तुओं और सुविधाओं के मनमाना संदर्भ में, चरित्र-चित्रण को [[विषम संबंध]] aRb के माध्यम से व्यक्त किया गया है, जिसका अर्थ है कि वस्तु में विशेषता b है। उदाहरण के लिए, b का अर्थ अमूर्त और ठोस हो सकता है। वस्तुओं को संसार का विस्तार (शब्दार्थ) माना जा सकता है, जबकि विशेषताएँ अभिप्राय की अभिव्यक्ति हैं। विभिन्न वस्तुओं के लक्षण वर्णन का एक सतत कार्यक्रम उनके [[वर्गीकरण]] की ओर ले जाता है।
"यूनानी खरैक्स से खरखटर आया, उपकरण जिसका उपयोग किसी वस्तु को चिह्नित करने के लिए किया जाता है। जब किसी वस्तु को चिन्हित कर लिया जाता है, तो वह विशिष्ट हो जाती है, इसलिए किसी वस्तु के चरित्र का अर्थ उसकी विशिष्ट प्रकृति से हो जाता है। स्वर्गीय ग्रीक प्रत्यय-इस्टिकोस ने संज्ञा वर्ण को विशेषण से विशेषता में परिवर्तित कर दिया, जो इसके विशेषण अर्थ को बनाए रखने में संज्ञा भी बन जाती है।<ref>Steven Schwartzmann (1994) ''The Words of Mathematics: An etymological dictionary of mathematical terms used in English'', page 43, [[The Mathematical Association of America]] {{ISBN|0-88385-511-9}}</ref>
 
जिस प्रकार रसायन विज्ञान में, किसी पदार्थ का विशिष्ट गुण प्रतिरूप की पहचान करने के लिए कार्य करेगा, या सामग्री, संरचनाओं और गुणों के अध्ययन में [[लक्षण वर्णन (सामग्री विज्ञान)|अभिलक्षण वर्णन (सामग्री विज्ञान)]] का निर्धारण करेगा, उसी प्रकार गणित में गुणों को व्यक्त करने का निरंतर प्रयास है। जो सिद्धांत या प्रणाली में वांछित विशेषता को भिन्न करेगा। अभिलक्षण वर्णन गणित के लिए अद्वितीय नहीं है, चूंकि विज्ञान अमूर्त है, इसलिए अधिकांश गतिविधि को अभिलक्षण वर्णन के रूप में वर्णित किया जा सकता है। उदाहरण के लिए, [[गणितीय समीक्षा]] में, 2018 तक, 24,000 से अधिक लेख के शीर्षक में शब्द सम्मिलित हैं, और समीक्षा में कहीं 93,600 हैं।
 
वस्तुओं और सुविधाओं के संदर्भ में, चरित्र-चित्रण को [[विषम संबंध]] aRb के माध्यम से व्यक्त किया गया है, जिसका अर्थ है कि वस्तु में विशेषता b है। उदाहरण के लिए, b का अर्थ अमूर्त और ठोस हो सकता है। वस्तुओं को संसार का विस्तार (शब्दार्थ) माना जा सकता है, जबकि विशेषताएँ अभिप्राय की अभिव्यक्ति हैं। विभिन्न वस्तुओं के अभिलक्षण वर्णन का सतत कार्यक्रम उनके [[वर्गीकरण]] की ओर ले जाता है।


== उदाहरण ==
== उदाहरण ==
* एक परिमेय संख्या, जिसे समिलित दो पूर्णांकों के [[अनुपात]] के रूप में परिभाषित किया जाता है, को परिमित या दोहराए जाने वाले [[दशमलव विस्तार]] वाली संख्या के रूप में वर्णित किया जा सकता है।<ref name=":0" />*एक समांतर [[चतुर्भुज]] एक चतुर्भुज होता है जिसकी विरोधी भुजाएँ समानांतर होती हैं। इसकी एक विशेषता यह है कि इसके विकर्ण एक दूसरे को समद्विभाजित करते हैं। इसका मतलब यह है कि सभी समांतर चतुर्भुजों के विकर्ण एक-दूसरे को समद्विभाजित करते हैं, और इसके विपरीत, कोई भी चतुर्भुज जिसके विकर्ण एक-दूसरे को समद्विभाजित करते हैं, एक समांतर चतुर्भुज होना चाहिए। बाद वाला कथन केवल तभी सत्य है जब चतुर्भुजों की समावेशी परिभाषाओं का उपयोग किया जाता है (ताकि, उदाहरण के लिए, [[आयत]]ों को समांतर चतुर्भुज के रूप में गिना जाए), जो आजकल गणित में वस्तुओं को परिभाषित करने का प्रमुख तरीका है।
* परिमेय संख्या, जिसे सामान्यतः दो पूर्णांकों के [[अनुपात]] के रूप में परिभाषित किया जाता है, और परिमित या दोहराए जाने वाले [[दशमलव विस्तार]] वाली संख्या के रूप में वर्णित किया जा सकता है।<ref name=":0" />
* वास्तविक रेखा पर 0 से ∞ के अंतराल पर संभाव्यता वितरण के बीच, [[स्मृतिहीनता]] घातीय वितरण की विशेषता है। इस कथन का अर्थ है कि घातीय वितरण केवल संभाव्यता वितरण हैं जो मेमोरीलेस हैं, बशर्ते कि वितरण निरंतर हो जैसा कि ऊपर परिभाषित किया गया है (अधिक के लिए [[संभाव्यता वितरण की विशेषता]] देखें)।
*समांतर [[चतुर्भुज]] ऐसा चतुर्भुज होता है जिसकी विरोधी भुजाएँ समानांतर होती हैं। इसकी विशेषता यह है कि इसके विकर्ण एक दूसरे को समद्विभाजित करते हैं। इसका अर्थ यह है कि सभी समांतर चतुर्भुजों के विकर्ण एक-दूसरे को समद्विभाजित करते हैं, और इसके विपरीत, कोई भी चतुर्भुज जिसके विकर्ण एक-दूसरे को समद्विभाजित करते हैं, जो समांतर चतुर्भुज होना चाहिए। पश्चात में कथन केवल तभी सत्य है जब चतुर्भुजों की समावेशी परिभाषाओं का उपयोग किया जाता है (जिससे, उदाहरण के लिए, [[आयत|आयतों]] को समांतर चतुर्भुज के रूप में गिना जाए), जो वर्तमान गणित में वस्तुओं को परिभाषित करने की प्रमुख विधि है।
* बोह्र-मोलेरुप प्रमेय के अनुसार, सभी कार्यों के बीच f जैसे कि f(1) = 1 और x f(x) = f(x + 1) x> 0 के लिए, लॉग-उत्तलता [[गामा समारोह]] की विशेषता है। इसका मतलब यह है कि ऐसे सभी कार्यों में, गामा फ़ंक्शन एकमात्र ऐसा है जो लॉग-उत्तल है।<ref>A function ''f'' is ''log-convex'' [[Iff|if and only if]] log(''f'') is a [[convex function]]. The base of the logarithm does not matter as long as it is more than 1, but mathematicians generally take "log" with no subscript to mean the [[natural logarithm]], whose base is ''e''.</ref>
* वास्तविक रेखा पर 0 से ∞ के अंतराल पर संभाव्यता वितरण के मध्य, [[स्मृतिहीनता]] घातीय वितरण की विशेषता है। इस कथन का अर्थ है कि घातीय वितरण केवल संभाव्यता वितरण हैं जो मेमोरीलेस हैं, नियम के अनुसार वितरण निरंतर को जैसा कि ऊपर परिभाषित किया गया है (अधिक के लिए [[संभाव्यता वितरण की विशेषता]] देखें)।
* सर्कल को एक-आयामी, [[ कॉम्पैक्ट जगह ]] और [[ जुड़ा हुआ स्थान ]] होने के कारण [[कई गुना]] बताया जाता है; यहाँ लक्षण वर्णन, एक चिकनी कई गुना के रूप में, भिन्नता तक है।
* बोह्र-मोलेरुप प्रमेय के अनुसार, सभी कार्यों के मध्य f जैसे कि f(1) = 1 और x f(x) = f(x + 1) x> 0 के लिए, लॉग-उत्तलता [[गामा समारोह|गामा फ़ंक्शन]] की विशेषता है। इसका अर्थ यह है कि ऐसे सभी कार्यों में, गामा फ़ंक्शन एकमात्र ऐसा है जो लॉग-उत्तल है।<ref>A function ''f'' is ''log-convex'' [[Iff|if and only if]] log(''f'') is a [[convex function]]. The base of the logarithm does not matter as long as it is more than 1, but mathematicians generally take "log" with no subscript to mean the [[natural logarithm]], whose base is ''e''.</ref>
* वृत्त को आयामी, [[ कॉम्पैक्ट जगह |सघन]] और [[ जुड़ा हुआ स्थान |जुड़ा हुआ स्थान]] होने के कारण [[कई गुना]] के रूप में जाना जाता है; जहाँ अभिलक्षण वर्णन कई गुना के रूप में भिन्न है।


== यह भी देखें ==
== यह भी देखें ==


* संभाव्यता वितरण की विशेषता
* संभाव्यता वितरण की विशेषता
* टोपोलॉजिकल स्पेस की श्रेणी के लक्षण
* टोपोलॉजिकल स्पेस की श्रेणी के अभिलक्षण
* [[घातीय समारोह के लक्षण]]
* [[घातीय समारोह के लक्षण|घातीय फ़ंक्शन के अभिलक्षण]]
* [[विशेषता (बीजगणित)]]
* [[विशेषता (बीजगणित)]]
* [[विशेषता (प्रतिपादक संकेतन)]]
* [[विशेषता (प्रतिपादक संकेतन)]]
Line 28: Line 33:
{{Reflist}}
{{Reflist}}


{{DEFAULTSORT:Characterization (Mathematics)}}[[Category: गणितीय शब्दावली]] [[Category: तुल्यता (गणित)]]
{{DEFAULTSORT:Characterization (Mathematics)}}
 
 


[[Category: Machine Translated Page]]
[[Category:CS1 English-language sources (en)]]
[[Category:Created On 05/04/2023]]
[[Category:Created On 05/04/2023|Characterization (Mathematics)]]
[[Category:Lua-based templates|Characterization (Mathematics)]]
[[Category:Machine Translated Page|Characterization (Mathematics)]]
[[Category:Pages with script errors|Characterization (Mathematics)]]
[[Category:Templates Vigyan Ready|Characterization (Mathematics)]]
[[Category:Templates that add a tracking category|Characterization (Mathematics)]]
[[Category:Templates that generate short descriptions|Characterization (Mathematics)]]
[[Category:Templates using TemplateData|Characterization (Mathematics)]]
[[Category:गणितीय शब्दावली|Characterization (Mathematics)]]
[[Category:तुल्यता (गणित)|Characterization (Mathematics)]]

Latest revision as of 12:46, 30 October 2023

गणित में, किसी वस्तु का अभिलक्षण वर्णन समूह होता है, जो वस्तु की परिभाषा से भिन्न होते हुए इसके समकक्ष होते है।[1] संपत्ति P वस्तु X की विशेषता होती है, X में न केवल संपत्ति (दर्शन) P है, अन्यथा यह X ही एकमात्र वस्तु है जिसमें संपत्ति P है (जैसे, P X की परिभाषित संपत्ति है)। इस प्रकार, गुणों का समुच्चय P को X को चिह्नित करने के लिए उपयोग किया जाता है, जब ये गुण X को अन्य सभी वस्तुओं से भिन्न करते हैं। तो अभिलक्षण वर्णन किसी वस्तु को अद्भुत विधि से पहचानता है, तो वस्तु के लिए कई अभिलक्षण उपस्थित हो सकते हैं। P के संदर्भ में X के अभिलक्षण वर्णन के लिए सामान्य गणितीय अभिव्यक्तियों में P आवश्यक है और X के लिए पर्याप्त होता है।

संपत्ति Q, Y द्वारा आइसोमोर्फिज्म जैसे वर्णन शोध भी सरल होते है जो Y को समाकृतिकता तक दर्शाता है। पूर्व प्रकार का कथन भिन्न-भिन्न शब्दों को कहा जाता है कि P का विस्तार (शब्दार्थ) सिंगलटन (गणित) समुच्चय होता है, Q का विस्तार एकल तुल्यता वर्ग है (समरूपता के लिए, दिए गए उदाहरण पर निर्भर करता है कि इसका उपयोग कैसे किया जा रहा है, कुछ अन्य तुल्यता संबंध सम्मिलित हो सकते हैं)।

गणितीय शब्दावली पर संदर्भ है कि विशेषता ग्रीक शब्द खारैक्स से उत्पन्न होती है, जिसकी भागीदारी निम्नलिखित है:

"यूनानी खरैक्स से खरखटर आया, उपकरण जिसका उपयोग किसी वस्तु को चिह्नित करने के लिए किया जाता है। जब किसी वस्तु को चिन्हित कर लिया जाता है, तो वह विशिष्ट हो जाती है, इसलिए किसी वस्तु के चरित्र का अर्थ उसकी विशिष्ट प्रकृति से हो जाता है। स्वर्गीय ग्रीक प्रत्यय-इस्टिकोस ने संज्ञा वर्ण को विशेषण से विशेषता में परिवर्तित कर दिया, जो इसके विशेषण अर्थ को बनाए रखने में संज्ञा भी बन जाती है।[2]

जिस प्रकार रसायन विज्ञान में, किसी पदार्थ का विशिष्ट गुण प्रतिरूप की पहचान करने के लिए कार्य करेगा, या सामग्री, संरचनाओं और गुणों के अध्ययन में अभिलक्षण वर्णन (सामग्री विज्ञान) का निर्धारण करेगा, उसी प्रकार गणित में गुणों को व्यक्त करने का निरंतर प्रयास है। जो सिद्धांत या प्रणाली में वांछित विशेषता को भिन्न करेगा। अभिलक्षण वर्णन गणित के लिए अद्वितीय नहीं है, चूंकि विज्ञान अमूर्त है, इसलिए अधिकांश गतिविधि को अभिलक्षण वर्णन के रूप में वर्णित किया जा सकता है। उदाहरण के लिए, गणितीय समीक्षा में, 2018 तक, 24,000 से अधिक लेख के शीर्षक में शब्द सम्मिलित हैं, और समीक्षा में कहीं 93,600 हैं।

वस्तुओं और सुविधाओं के संदर्भ में, चरित्र-चित्रण को विषम संबंध aRb के माध्यम से व्यक्त किया गया है, जिसका अर्थ है कि वस्तु में विशेषता b है। उदाहरण के लिए, b का अर्थ अमूर्त और ठोस हो सकता है। वस्तुओं को संसार का विस्तार (शब्दार्थ) माना जा सकता है, जबकि विशेषताएँ अभिप्राय की अभिव्यक्ति हैं। विभिन्न वस्तुओं के अभिलक्षण वर्णन का सतत कार्यक्रम उनके वर्गीकरण की ओर ले जाता है।

उदाहरण

  • परिमेय संख्या, जिसे सामान्यतः दो पूर्णांकों के अनुपात के रूप में परिभाषित किया जाता है, और परिमित या दोहराए जाने वाले दशमलव विस्तार वाली संख्या के रूप में वर्णित किया जा सकता है।[1]
  • समांतर चतुर्भुज ऐसा चतुर्भुज होता है जिसकी विरोधी भुजाएँ समानांतर होती हैं। इसकी विशेषता यह है कि इसके विकर्ण एक दूसरे को समद्विभाजित करते हैं। इसका अर्थ यह है कि सभी समांतर चतुर्भुजों के विकर्ण एक-दूसरे को समद्विभाजित करते हैं, और इसके विपरीत, कोई भी चतुर्भुज जिसके विकर्ण एक-दूसरे को समद्विभाजित करते हैं, जो समांतर चतुर्भुज होना चाहिए। पश्चात में कथन केवल तभी सत्य है जब चतुर्भुजों की समावेशी परिभाषाओं का उपयोग किया जाता है (जिससे, उदाहरण के लिए, आयतों को समांतर चतुर्भुज के रूप में गिना जाए), जो वर्तमान गणित में वस्तुओं को परिभाषित करने की प्रमुख विधि है।
  • वास्तविक रेखा पर 0 से ∞ के अंतराल पर संभाव्यता वितरण के मध्य, स्मृतिहीनता घातीय वितरण की विशेषता है। इस कथन का अर्थ है कि घातीय वितरण केवल संभाव्यता वितरण हैं जो मेमोरीलेस हैं, नियम के अनुसार वितरण निरंतर को जैसा कि ऊपर परिभाषित किया गया है (अधिक के लिए संभाव्यता वितरण की विशेषता देखें)।
  • बोह्र-मोलेरुप प्रमेय के अनुसार, सभी कार्यों के मध्य f जैसे कि f(1) = 1 और x f(x) = f(x + 1) x> 0 के लिए, लॉग-उत्तलता गामा फ़ंक्शन की विशेषता है। इसका अर्थ यह है कि ऐसे सभी कार्यों में, गामा फ़ंक्शन एकमात्र ऐसा है जो लॉग-उत्तल है।[3]
  • वृत्त को आयामी, सघन और जुड़ा हुआ स्थान होने के कारण कई गुना के रूप में जाना जाता है; जहाँ अभिलक्षण वर्णन कई गुना के रूप में भिन्न है।

यह भी देखें

संदर्भ

  1. 1.0 1.1 Weisstein, Eric W. "निस्र्पण". mathworld.wolfram.com (in English). Retrieved 2019-11-21.
  2. Steven Schwartzmann (1994) The Words of Mathematics: An etymological dictionary of mathematical terms used in English, page 43, The Mathematical Association of America ISBN 0-88385-511-9
  3. A function f is log-convex if and only if log(f) is a convex function. The base of the logarithm does not matter as long as it is more than 1, but mathematicians generally take "log" with no subscript to mean the natural logarithm, whose base is e.