अनुरूप ज्यामितीय बीजगणित: Difference between revisions

From Vigyanwiki
No edit summary
 
(3 intermediate revisions by 3 users not shown)
Line 256: Line 256:
{{refend}}
{{refend}}


श्रेणी:ज्यामितीय बीजगणित
श्रेणी:अनुरूप ज्यामिति
श्रेणी:प्रतिक्रमी ज्यामिति
श्रेणी:कम्प्यूटेशनल ज्यामिति
[[Category: Machine Translated Page]]
[[Category:Created On 02/05/2023]]
[[Category:Created On 02/05/2023]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]

Latest revision as of 16:42, 13 September 2023

अनुरूप ज्यामितीय बीजगणित (सीजीए) ज्यामितीय बीजगणित है जो मानचित्र के परिणामी स्थान पर एक n-आयामी आधार स्थान Rp,q में बिंदुओं से Rp+1,q+1 में शून्य वैक्टर के लिए बनाया गया है। यह ज्यामितीय बीजगणित का उपयोग करके प्रदर्शित किए जाने वाले प्रतिबिंब, घुमाव और अनुवाद सहित आधार स्थान पर संचालन की अनुमति देता है; और यह पाया गया है कि बिंदु, रेखाएँ, तल, वृत्त और गोले विशेष रूप से प्राकृतिक और कम्प्यूटेशनल रूप से अनुकूल प्रतिनिधित्व प्राप्त करते हैं।

मानचित्रण का प्रभाव यह है कि सामान्यीकृत (अर्थात शून्य वक्रता सहित) n-क्षेत्र k-क्षेत्र बेस स्पेस मैप में (k + 2)-ब्लेड (ज्यामिति) एस, और जिससे बेस स्पेस के अनुवाद (या किसी अनुरूप मानचित्रण) का प्रभाव उच्च-आयामी स्थान में घूर्णन से मेल खाता हो। इस स्थान के बीजगणित में, वैक्टर के ज्यामितीय उत्पाद के आधार पर, इस तरह के परिवर्तन बीजगणित के विशिष्ट सैंडविच संचालन के अनुरूप होते हैं, जो क्वाटरनियन और स्थानिक घूर्णन के उपयोग के समान होते हैं, जो बहुत कुशलता से संयोजित होते हैं। परिवर्तनों का प्रतिनिधित्व करने वाले रोटरों का परिणाम यह है कि गोले, विमानों, वृत्तों और अन्य ज्यामितीय वस्तुओं का प्रतिनिधित्व, और उन्हें जोड़ने वाले समीकरण, सभी सहपरिवर्ती रूप से रूपांतरित होते हैं। ज्यामितीय वस्तु (a k-क्षेत्र) को वेज उत्पाद के रूप में संश्लेषित किया जा सकता है k + 2 वस्तु पर बिंदुओं का प्रतिनिधित्व करने वाले रैखिक रूप से स्वतंत्र वैक्टर; इसके विपरीत, वस्तु को प्रतिनिधित्व करने वाले वैक्टर के बार-बार वैज उत्पाद के रूप में विघटित किया जा सकता है k + 2 इसकी सतह में अलग-अलग बिंदु। कुछ प्रतिच्छेदन के संचालन भी साफ बीजगणितीय रूप प्राप्त करते हैं: उदाहरण के लिए, यूक्लिडियन बेस स्पेस के लिए R3, दो क्षेत्रों का प्रतिनिधित्व करने वाले टेट्रावेक्टरों के दोहरे उत्पाद को प्रयुक्त करने से उनके प्रतिच्छेदन के व्रत के ट्राइवेक्टर प्रतिनिधित्व के दोहरे का उत्पादन होता है।

चूंकि यह बीजगणितीय संरचना खुद को सीधे प्रभावी संगणना के लिए उधार देती है, यह ठोस, आसानी से हेरफेर करने वाली सेटिंग में प्रक्षेपी ज्यामिति और व्युत्क्रम ज्यामिति के मौलिक विधियों की खोज की सुविधा प्रदान करती है। पेंच सिद्धांत में गणनाओं का प्रतिनिधित्व करने और उन्हें सुविधाजनक बनाने के लिए इसका उपयोग कुशल संरचना के रूप में भी किया गया है। सीजीए को विशेष रूप से दैनिक यूक्लिडियन स्थान R3 पांच आयामी वेक्टर स्थान में R4,1 के प्रक्षेपी मानचित्रण के संबंध में प्रयुक्त किया गया है, जिसकी रोबोटिक्स और कंप्यूटर विज़न में अनुप्रयोगों के लिए जांच की गई है। यह सामान्यतः किसी भी छद्म-यूक्लिडियन स्थान पर प्रयुक्त किया जा सकता है - उदाहरण के लिए, मिन्कोव्स्की स्थान R3,1 से स्थान R4,2 के लिए है

सीजीए का निर्माण

संकेतन और शब्दावली

इस लेख में, ध्यान बीजगणित पर है जैसा कि यह विशेष बीजगणित है जो समय के साथ सबसे अधिक ध्यान देने वाला विषय रहा है; अन्य स्थितियों को संक्षेप में अलग खंड में सम्मिलित किया गया है। जिन वस्तुओं को प्रतिरूपित किया जा रहा है, उन्हें आधार स्थान कहा जाता है, और बीजगणितीय स्थान इन वस्तुओं को प्रतिनिधित्व या अनुरूप स्थान के रूप में मॉडल करने के लिए उपयोग किया जाता है। सजातीय उप-स्थान बीजगणितीय स्थान के रैखिक उप-स्थान को संदर्भित करता है।

वस्तुओं के लिए नियम: बिंदु, रेखा, वृत्त, गोला, अर्ध-गोला आदि का उपयोग या तो आधार स्थान में ज्यामितीय वस्तु, या प्रतिनिधित्व स्थान के सजातीय उप-स्थान के लिए किया जाता है जो उस वस्तु का प्रतिनिधित्व करता है, जिसका सामान्यतः अभिप्रेत होता है जब तक अन्यथा इंगित न किया गया हो।[lower-alpha 1] बीजगणितीय रूप से, सजातीय उप-स्थान के किसी भी अशून्य अशक्त तत्व का उपयोग किया जाएगा, जिसमें तत्व को कुछ मानदंडों द्वारा सामान्यीकृत के रूप में संदर्भित किया जाएगा।

बोल्डफेस लोअरकेस लैटिन अक्षरों का उपयोग मूल स्थान से बेस स्पेस में बिंदु तक स्थिति वैक्टर का प्रतिनिधित्व करने के लिए किया जाता है। प्रतिनिधित्व स्थान के अन्य तत्वों के लिए इटैलिक प्रतीकों का उपयोग किया जाता है।

आधार और प्रतिनिधित्व स्थान\

आधार स्थान R3 को एक चुने हुए मूल से विस्थापन के लिए एक आधार का विस्तार करके और दो आधार वैक्टर e और e+ ऑर्थोगोनल को आधार स्थान और एक दूसरे से जोड़कर, e2 = −1 और e+2 = +1 के साथ दर्शाया गया है। , प्रतिनिधित्व स्थान बनाना है ।

e+ और e के स्थान पर आधार सदिश के रूप में दो अशक्त सदिश संख्या no और n का उपयोग करना सुविधाजनक है, जहाँ no = (ee+)/2 और n = e + e+ है। यह सत्यापित किया जा सकता है, जहां x आधार स्थान में है, कि:

ये गुण एक सामान्य सदिश r के आधार सदिश गुणांक के लिए निम्नलिखित सूत्रों की ओर ले जाते हैं, जो तत्वों के आधार के लिए प्रत्येक अन्य आधार तत्व ei के लिए ऑर्थोगोनल के आधार के लिए प्रतिनिधित्व करते हैं:

r के लिए no का गुणांक nr है
r का गुणांक n के लिए nor है
r का गुणांक ei के लिए ei−1r है

आधार स्थान और प्रतिनिधित्व स्थान के बीच मानचित्रण

बेस स्पेस में वेक्टर से मैपिंग (मूल से प्रतिनिधित्व किए गए एफाइन स्पेस में बिंदु तक) सूत्र द्वारा दी गई है:[lower-alpha 2]

बिंदु और अन्य वस्तुएं जो केवल गैर-शून्य स्केलर कारक से भिन्न होती हैं, आधार स्थान में ही वस्तु के लिए मैप करती हैं। जब सामान्यीकरण वांछित होता है, जैसा कि प्रतिनिधित्व स्थान से आधार स्थान तक या दूरी निर्धारित करने के लिए बिंदु का सरल उल्टा नक्शा बनाने के लिए, स्थिति F(x) ⋅ n = −1 उपयोग किया जा सकता है।

सामान्यीकरण का परिवर्तन: हाइपरप्लेन से अशक्त शंकु का मानचित्रण करना r ⋅ (nno) = 1 हाइपरप्लेन के लिए rn = −1.

अग्रिम मैपिंग इसके सामन है:

  • स्थान e+e123 (5-D में यह उपस्थान r ⋅ (−no1/2n) = 0 में e123 से एक इकाई 3-गोले पर x को पहले अनुरूप रूप से प्रक्षेपित करता है;
    फिर इसे e = 1 से जोड़कर, एक प्रक्षेप्य स्थान में उठाएं, और मूल से एक ही किरण पर सभी बिंदुओं की पहचान करें (5-D में यह उपस्थान r ⋅ (−no1/2n) = 1 में है;
  • फिर सामान्यीकरण को बदलें, इसलिए सजातीय प्रक्षेपण के लिए स्थान को कोई समन्वय no दिया गया है जिसका मान 1 है, अर्थात rn = −1

व्युत्क्रम मानचित्रण

रिक्त शंकु पर X के लिए एक व्युत्क्रम मानचित्रण द्वारा दिया गया है (पेरवास समीकरण 4.37) द्वारा

यह पहले प्रकाश-शंकु से समतल rn = −1पर एक त्रिविम प्रक्षेपण देता है, और फिर संख्या no और n भागों को दूर फेंक देता है, जिससे समग्र परिणाम सभी समकक्ष बिंदुओं αX = α(no + x + 1/2x2n) से x तक है |

उत्पत्ति और अनंत पर बिंदु

बिंदु x = 0 में p,q मानचित्र p+1,q+1 में नहीं, इसलिए (no) को मूल बिंदु पर बिंदु के (प्रतिनिधित्व) वेक्टर के रूप में पहचाना जाता है। p+1,q+1 में एक वेक्टर एक अशून्य n गुणांक के साथ, किंतु एक शून्य (no) गुणांक, (उल्टे मानचित्र पर विचार करते हुए) p,q में एक अनंत वेक्टर की छवि होनी चाहिए। इसलिए दिशा n अनंत पर (अनुरूप) बिंदु का प्रतिनिधित्व करती है। यह शून्य आधार वैक्टर की पहचान करने के लिए उपलेख o और को प्रेरित करता है।

उत्पत्ति का चुनाव इच्छानुसार है: किसी अन्य बिंदु को चुना जा सकता है, क्योंकि प्रतिनिधित्व सघन स्थान का है। मूल केवल संदर्भ बिंदु का प्रतिनिधित्व करता है, और बीजगणितीय रूप से किसी अन्य बिंदु के समान है। किसी भी अनुवाद के साथ, उत्पत्ति को बदलने से प्रतिनिधित्व स्थान में घूर्णन होता है।

ज्यामितीय वस्तुएँ

आधार

Basis Blades of
तत्वों ज्यामितीय अवधारणा
बिंदु और दोहरी क्षेत्र
बिना द्वितल है
बिंदु जोड़ी
बायवेक्टर
स्पर्शरेखा सदिश
दिशा सदिश (प्लस बाइवेक्टर दोहरी रेखा है)
सपाट बिंदु उत्पत्ति *
घेरा
3डी स्यूडोस्केलर
स्पर्शरेखा बाइवेक्टर
दिशा बायवेक्टर (प्लस रेखा है)
Sphere
बिना स्थान है

साथ में और , ये बीजगणित के 32 आधार ब्लेड हैं। समतल बिंदु मूल को एक बाहरी उत्पाद के रूप में लिखा जाता है क्योंकि ज्यामितीय उत्पाद मिश्रित श्रेणी का होता है।

समीकरणों की जोड़ी के समाधान के रूप में

प्रतिनिधित्व करने वाले स्थान के किसी भी गैर-शून्य ब्लेड A को देखते हुए, वैक्टर का समूह जो फॉर्म के सजातीय समीकरणों की एक जोड़ी के समाधान हैं[3]

अशक्त सदिशों के सजातीय 1-डी उपस्थानों का संघ है, और इस प्रकार आधार स्थान में बिंदुओं के एक समूह का प्रतिनिधित्व है। यह ज्यामितीय वस्तुओं के एक विशेष वर्ग का प्रतिनिधित्व करने के लिए एक उपयोगी विधि के रूप में एक ब्लेड A की पसंद की ओर जाता है। आधार स्थान यूक्लिडियन स्थान होने पर ब्लेड A (स्थान के आयामों की संख्या से स्वतंत्र) के लिए विशिष्ट स्थिति हैं:

  • एक अदिश: खाली समूह
  • एक वेक्टर: बिंदु
  • एक बायवेक्टर: बिंदुओं की जोड़ी
  • एक ट्राइवेक्टर: सामान्यीकृत चक्र
  • एक 4-वेक्टर: सामान्यीकृत क्षेत्र
  • वगैरह।

इनमें से प्रत्येक को तीन स्थितियों में विभाजित किया जा सकता है कि क्या A2 सकारात्मक, शून्य या ऋणात्मक है, सूचीबद्ध वस्तु के अनुरूप (कुछ स्थितियों में उल्टे क्रम में), एकल बिंदु का पतित स्थिति , या कोई बिंदु नहीं (जहां गैर-शून्य समाधान) XA शून्य वैक्टर को बाहर करता है)।

आधार स्थान छद्म-यूक्लिडियन होने के अधिक सामान्य स्थिति में सूचीबद्ध ज्यामितीय वस्तुएं (सामान्यीकृत एन-क्षेत्र) अर्ध-क्षेत्र बन जाती हैं। [4]

समाधान में सम्मिलित अनंतता पर बिंदु द्वारा समतल वस्तुओं की पहचान की जा सकती है। इस प्रकार, यदि nA = 0 ब्लेड A के लिए वस्तु क्रमशः श्रेणी 3, 4, आदि के लिए एक रेखा, तल आदि होगी।

जैसा कि वस्तु के बिंदुओं से प्राप्त होता है

वस्तु के इस वर्ग में से किसी एक का प्रतिनिधित्व करने वाला ब्लेड A वस्तु पर बिंदुओं का प्रतिनिधित्व करने वाले रैखिक रूप से स्वतंत्र वैक्टर के बाहरी उत्पाद के रूप में पाया जा सकता है। आधार स्थान में, यह रैखिक स्वतंत्रता अन्य बिंदुओं द्वारा परिभाषित वस्तु के बाहर स्थित प्रत्येक बिंदु के रूप में प्रकट होती है। इसलिए, उदाहरण के लिए, तीन अलग-अलग बिंदुओं द्वारा परिभाषित सामान्यीकृत वृत्त पर पड़ा चौथा बिंदु गोले को परिभाषित करने के लिए चौथे बिंदु के रूप में उपयोग नहीं किया जा सकता है।

ऑड्स

यदि हम r सेट करते हैं तो e123 मानचित्र में शून्य शंकु-शून्य पैराबोला पर अंक। n = -1

हम e123 सेंट में बिंदुओं के स्थान पर विचार कर सकते हैं। अनुरूप स्थान g(x) में। A = 0, विभिन्न प्रकार की ज्यामितीय वस्तु A के लिए।


हम उस देखकर प्रारंभ करते हैं

तुलना करना:

  • x. a = 0 => x पर्प a; x.(a∧b) = 0 => x perp a और x perp b
  • x∧a = 0 => x a के समानांतर; x∧(a∧b) = 0 => x a या b के समानांतर (या कुछ रैखिक संयोजन के लिए)

आंतरिक उत्पाद और बाहरी उत्पाद प्रतिनिधित्व दोहरीकरण से संबंधित हैं

x∧A = 0 <=> x । A* = 0 (जाँच—कार्य करता है यदि x 1-मंद है, A n-1 मंद है)

g(x) . A = 0

  • एक बिंदु: 'R3 ' में x का स्थान बिंदु है यदि A में 'R4,1 ' है रिक्त शंकु पर सदिश है।
(ध्यान दें कि क्योंकि यह एक सजातीय प्रक्षेप्य स्थान है, मूल के माध्यम से किरण पर किसी भी लम्बाई के वैक्टर समकक्ष हैं, इसलिए g(x).A =0 g(x).g(a) = 0 के समान है)।
  • एक गोला: 'x' का स्थान गोला है यदि A = S, शून्य शंकु से दूर सदिश।
यदि
तब S.X = 0 =>
ये गोले के अनुरूप बिंदु हैं
नल-शंकु से सदिश S के लिए, कौन-सी दिशाएँ अतिशयोक्तिपूर्ण रूप से लंबकोणीय हैं? (cf लोरेंत्ज़ परिवर्तन मॉड्यूलेशन) 2+1 D में, यदि S, (1,a,b) है, (सह-ऑर्ड्स e-, {e+, ei} का उपयोग करते हुए), S के हाइपरबोलिकली ओर्थोगोनल बिंदु (-1,a,b) के यूक्लिडियनली ऑर्थोगोनल हैं ) - अर्थात , एक स्थान ; या n आयामों में, मूल के माध्यम से एक हाइपरप्लेन। यह एक अन्य स्थान को एक रेखा (एक n-2 सतह में एक हाइपरसफेस) में उत्पत्ति के माध्यम से नहीं काटेगा, और फिर शंकु को दो बिंदुओं (प्रतिक्रिया में कुछ प्रकार की n-3 शंकु सतह) में काट देगा। तो यह संभवतः किसी प्रकार के शंकु जैसा दिखने वाला है। यह वह सतह है जो g के नीचे एक गोले की छवि है।
  • एक समतल: 'x' का स्थान तल है यदि A = P, शून्य no वाला सदिश अवयव। सजातीय प्रक्षेप्य स्थान में ऐसा वेक्टर P स्थान no=1 पर वेक्टर का प्रतिनिधित्व करता है जो मूल से असीम रूप से दूर होगा (अर्थात् अशक्त शंकु के बाहर असीम रूप से दूर), इसलिए g(x).P =0 अनंत त्रिज्या के गोले, तल पर x के संगत है।
विशेष रूप से:
  • सामान्य के साथ एक स्थान पर x से मेल खाती है मूल से एक ओर्थोगोनल दूरी α है ।
  • सामान्य a - b के साथ, a और b के बीच आधे रास्ते के स्थान से मेल खाता है
  • मंडलियां
  • स्पर्शरेखा स्थान
  • पंक्तियां
  • अनंत पर रेखाएँ
  • 'बिंदु जोड़े

रूपांतरण

  • प्रतिबिंब
यह सत्यापित किया जा सकता है कि P g(x) P बनाने से नल-शंकु, g(x' ) पर एक नई दिशा मिलती है, जहाँ x' R3 में बिंदु p के तल में एक प्रतिबिंब के अनुरूप होता है जो g(p) को संतुष्ट करता है। P = 0।
g(x) . A = 0 => P g(x) . A P = 0 => P g(x) P . P A P (और इसी तरह कील उत्पाद के लिए), इसलिए P सैंडविच-फैशन को उपरोक्त अनुभाग में किसी भी मात्रा A पर प्रयुक्त करने का प्रभाव इसी तरह अंक x के संबंधित लोकस को प्रतिबिंबित करने के लिए है, इसलिए संबंधित सर्कल, गोलाकार, रेखाएं और स्थान संबंधित हैं विशेष प्रकार के A के लिए ठीक उसी तरह परिलक्षित होते हैं जैसे P को g(x) पर प्रयुक्त करने से एक बिंदु x को दर्शाता है।

इस प्रतिबिंब ऑपरेशन का उपयोग सामान्य अनुवाद और घुमाव बनाने के लिए किया जा सकता है:

  • अनुवाद
दो समांतर स्थानो में प्रतिबिंब अनुवाद देता है,
यदि और तब
* घूर्णन
x' से मेल खाता है जो मूल के बारे में 2 θ कोण से घूमता है जहां θ a और b के बीच का कोण है - वही प्रभाव जो इस रोटर पर सीधे x पर प्रयुक्त होता है।
  • सामान्य घूर्णन
एक सामान्य बिंदु के बारे में घुमाव पहले बिंदु को मूल स्थान पर ले जाकर, फिर मूल के चारों ओर घुमाकर, फिर बिंदु को वापस उसकी मूल स्थिति में अनुवाद करके प्राप्त किया जा सकता है, अर्थात संचालिका द्वारा सैंडविचिंग इसलिए
* पेंच

प्रभाव एक पेंच, या मोटर, (एक सामान्य बिंदु के बारे में एक घूर्णन , घूर्णन के अक्ष के समानांतर एक अनुवाद के बाद) संचालिका M द्वारा सैंडविचिंग g(x) द्वारा प्राप्त किया जा सकता है (चैसल्स प्रमेय)

  • व्युत्क्रम
एक व्युत्क्रम परिवर्तन क्षेत्र में प्रतिबिंब है - ऐसे व्युत्क्रमों का उपयोग करके प्राप्त किए जा सकने वाले विभिन्न कार्यों की चर्चा व्युत्क्रम ज्यामिति में की जाती है। विशेष रूप से, यूक्लिडियन परिवर्तन अनुवाद और घूर्णन के साथ व्युत्क्रम का संयोजन किसी भी अनुरूप मैपिंग को व्यक्त करने के लिए पर्याप्त है - अर्थात कोई भी मैपिंग जो सार्वभौमिक रूप से कोणों को संरक्षित करता है। (लिउविल की प्रमेय (अनुरूप मैपिंग) | लिउविल की प्रमेय)।
  • फैलाव
एक ही केंद्र के साथ दो व्युत्क्रम फैलाव (मीट्रिक स्थान) उत्पन्न करते हैं।

सामान्यीकरण

इतिहास

सम्मेलन और पत्रिकाएँ

अनुप्रयोगों की विस्तृत श्रृंखला के साथ क्लिफोर्ड और ज्यामितीय बीजगणित के आसपास जीवंत और अंतःविषय समुदाय है। इस विषय में मुख्य सम्मेलनों में सम्मिलित हैं क्लिफोर्ड बीजगणित पर अंतर्राष्ट्रीय सम्मेलन और गणितीय भौतिकी में उनके अनुप्रयोग (आईसीसीए) और cz/main.php एप्लीकेशन ऑफ़ जियोमेट्रिक बीजगणित इन कंप्यूटर साइंस एंड इंजीनियरिंग (आगास) श्रृंखला मुख्य प्रकाशन आउटलेट एप्लाइड क्लिफोर्ड बीजगणित में स्प्रिंगर जर्नल एडवांस है।

टिप्पणियाँ

  1. For clarity, this homogeneous subspace includes non-null vectors, which do not correspond to any point in the base space.
  2. The mapping can also be written F : x → −(xe+) n (xe+), as given in Hestenes and Sobczyk (1984), p.303.[1] The equivalence of the two forms is noted in Lasenby and Lasenby (2000).[2]


संदर्भ

  1. Hestenes, David and Garret Sobczyk (1984), Clifford Algebra to Geometric Calculus: A Unified Language for Mathematics and Physics. Dordrecht: Reidel; pp. 302–303.
  2. Lasenby, AN and Lasenby, J (2000), Surface evolution and representation using geometric algebra; in The Mathematics of Surfaces IX: the 9th IMA Conference, Cambridge, 4–7 September 2000, pp. 144–168
  3. Chris Doran (2003), Circle and sphere blending with conformal geometric algebra
  4. Jayme Vaz, Jr.; Roldão da Rocha, Jr. (2016). क्लिफोर्ड अलजेब्रा और स्पिनर्स का एक परिचय. Oxford University Press. p. 140. ISBN 9780191085789.


ग्रन्थसूची



किताबें

ऑनलाइन संसाधन