इलेक्ट्रोवैक्यूम समाधान: Difference between revisions
No edit summary |
No edit summary |
||
(11 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
[[सामान्य सापेक्षता]] में, | [[सामान्य सापेक्षता]] में, विद्युत निर्वात समाधान (विद्युत निर्वात) [[आइंस्टीन क्षेत्र समीकरण]] के सामान्य सापेक्षता में स्पष्ट समाधान है जिसमें उपस्थित एकमात्र गैर-गुरुत्वाकर्षण द्रव्यमान-ऊर्जा [[विद्युत चुम्बकीय]] क्षेत्र की क्षेत्र ऊर्जा होता है, जिसे (घुमावदार-स्पेसटाइम ) को संतुष्ट करना चाहिए। 'स्रोत-मुक्त [[मैक्सवेल समीकरण]] दी गई ज्यामिति के लिए उपयुक्त किया जाता हैं। इस कारण से, विद्युत निर्वात को कभी-कभी (स्रोत-मुक्त) आइंस्टीन-मैक्सवेल समाधान कहा जाता है। | ||
== परिभाषा == | == परिभाषा == | ||
सामान्य सापेक्षता में, भौतिक घटनाओं के लिए ज्यामितीय | सामान्य सापेक्षता में, भौतिक घटनाओं के लिए ज्यामितीय निर्धारण [[लोरेंट्ज़ियन कई गुना]] हो जाती है, जिसे घुमावदार स्पेसटाइम के रूप में व्याख्या किया जाता है, और जो [[मीट्रिक टेंसर]] <math>g_{ab}</math> (या सामान्य सापेक्षता में फ्रेम क्षेत्र को परिभाषित करके) को परिभाषित करके निर्दिष्ट किया जाता है। इस कई गुना और संबंधित मात्रा जैसे [[आइंस्टीन टेंसर]] <math>G^{ab}</math>,के [[रीमैन टेंसर|रीमैन वक्रता टेंसर]] <math>R_{abcd}</math> अच्छी तरह से परिभाषित होती हैं। सामान्य सापेक्षता में, उन्हें [[गुरुत्वाकर्षण क्षेत्र]] के ज्यामितीय अभिव्यक्तियों (वक्रता और बल) के रूप में व्याख्या किया जा सकता है। | ||
हमें [[विद्युत चुम्बकीय टेंसर | हमें अपने लोरेंट्ज़ियन मैनिफोल्ड पर एक [[विद्युत चुम्बकीय टेंसर|विद्युत चुम्बकीय क्षेत्र टेंसर]] <math>F_{ab}</math> को परिभाषित करके एक विद्युत चुम्बकीय क्षेत्र को निर्दिष्ट करने की भी आवश्यकता है। विद्युत निर्वात समाधान के रूप में वर्गीकृत होने के लिए, इन दो टेंसरों को निम्नलिखित दो नियमो को पूरा करने की आवश्यकता होती है | ||
# विद्युत चुम्बकीय क्षेत्र टेंसर को स्रोत-मुक्त घुमावदार स्पेसटाइम मैक्सवेल | # विद्युत चुम्बकीय क्षेत्र टेंसर को स्रोत-मुक्त घुमावदार स्पेसटाइम मैक्सवेल क्षेत्र समीकरणों <math>\, F_{ab;c} + F_{bc;a} + F_{ca;b} = 0</math> और <math>{F^{jb}}_{;j} = 0</math> को संतुष्ट करना चाहिए | ||
# आइंस्टीन टेंसर को | # आइंस्टीन टेंसर को विद्युत चुम्बकीय तनाव ऊर्जा टेंसर <math>G^{ab}= 2 \, \left( F^{a}{}_{j}F^{bj}-\frac{1}{4}g^{ab} \, F^{mn} \, F_{mn} \right )</math> से मेल खाना चाहिए| | ||
#यदि हम विद्युत चुम्बकीय संभावित सदिश <math>\vec{A}</math> के संदर्भ में क्षेत्र टेंसर को परिभाषित करते हैं तो पहला मैक्सवेल समीकरण स्वचालित रूप से संतुष्ट हो जाता है। दोहरे कोवेक्टर (या संभावित एक-रूप) और विद्युत चुम्बकीय दो-रूप के संदर्भ में, हम <math>F = dA</math> स्थित करके ऐसा कर सकते हैं। तब हमें केवल यह सुनिश्चित करने की आवश्यकता है कि विचलन विलुप्त हो जाए (अथार्त कि दूसरा मैक्सवेल समीकरण एक स्रोत-मुक्त क्षेत्र के लिए संतुष्ट है) और यह कि विद्युत चुम्बकीय तनाव-ऊर्जा आइंस्टीन टेंसर से मेल खाती है। | |||
यदि हम क्षेत्र टेंसर को | |||
== अपरिवर्तनीय == | == अपरिवर्तनीय == | ||
विद्युत चुम्बकीय क्षेत्र टेंसर एंटीसिमेट्रिक है, जिसमें केवल दो बीजगणितीय रूप से स्वतंत्र स्केलर अपरिवर्तनीय हैं, | |||
:<math> I = \star ( F \wedge \star F ) = F_{ab} \, F^{ab} = -2 \, \left ( \| \vec{E} \|^2 - \|\vec{B} \|^2 \right) </math> | :<math> I = \star ( F \wedge \star F ) = F_{ab} \, F^{ab} = -2 \, \left ( \| \vec{E} \|^2 - \|\vec{B} \|^2 \right) </math> | ||
:<math> J = \star (F \wedge F) = F_{ab} \, {\star F}^{ab} = -4 \, \vec{E} \cdot \vec{B} </math> | :<math> J = \star (F \wedge F) = F_{ab} \, {\star F}^{ab} = -4 \, \vec{E} \cdot \vec{B} </math> | ||
Line 19: | Line 18: | ||
इनका उपयोग करके, हम संभावित विद्युत चुम्बकीय क्षेत्रों को निम्नानुसार वर्गीकृत कर सकते हैं: | इनका उपयोग करके, हम संभावित विद्युत चुम्बकीय क्षेत्रों को निम्नानुसार वर्गीकृत कर सकते हैं: | ||
# यदि <math>I < 0</math> | # यदि <math>I < 0</math> किन्तु<math>J = 0</math>, हमारे पास स्थिर विद्युत क्षेत्र है, जिसका अर्थ है कि कुछ पर्यवेक्षक स्थिर विद्युत क्षेत्र को मापेंगे, और कोई चुंबकीय क्षेत्र नहीं। | ||
# यदि <math>I > 0</math> | # यदि <math>I > 0</math> किन्तु<math>J = 0</math>, हमारे पास चुंबकीय स्थिर क्षेत्र है, जिसका अर्थ है कि कुछ पर्यवेक्षक स्थिर चुंबकीय क्षेत्र को मापेंगे, और कोई विद्युत क्षेत्र नहीं। | ||
# यदि <math>I = J = 0</math>, विद्युत चुम्बकीय क्षेत्र को अशक्त कहा जाता है, और हमारे पास 'अशक्त | # यदि <math>I = J = 0</math>, विद्युत चुम्बकीय क्षेत्र को अशक्त कहा जाता है, और हमारे पास 'अशक्त विद्युत निर्वात' होता है। | ||
अशक्त | अशक्त विद्युत निर्वात विद्युत चुम्बकीय विकिरण से जुड़े होते हैं। विद्युत चुम्बकीय क्षेत्र जो अशक्त नहीं है, गैर-शून्य कहलाता है, और फिर हमारे पास 'गैर-शून्य विद्युत निर्वात' होता है। | ||
== आइंस्टीन टेंसर == | == आइंस्टीन टेंसर == | ||
समन्वय आधार | समन्वय आधार के अतिरिक्त सामान्य सापेक्षता में फ्रेम क्षेत्र के संबंध में गणना किए गए टेन्सर के घटकों को अधिकांशतः भौतिक घटक कहा जाता है, क्योंकि ये घटक हैं जो (सिद्धांत रूप में) पर्यवेक्षक द्वारा मापा जा सकता है। | ||
एक | एक विद्युत निर्वात समाधान के स्थितियों में एक अनुकूलित फ्रेम | ||
:<math> \vec{e}_0, \; \vec{e}_1, \; \vec{e}_2, \; \vec{e}_3 </math> | :<math> \vec{e}_0, \; \vec{e}_1, \; \vec{e}_2, \; \vec{e}_3 </math> | ||
सदैव पाया जा सकता है जिसमें आइंस्टीन टेंसर का विशेष रूप से सरल रूप है। | सदैव पाया जा सकता है जिसमें आइंस्टीन टेंसर का विशेष रूप से सरल रूप होता है। | ||
यहाँ, पहले वेक्टर को टाइमलाइक | यहाँ, पहले वेक्टर को टाइमलाइक इकाई वेक्टर क्षेत्र के रूप में समझा जाता है; यह हर स्थान अनुकूलित पर्यवेक्षकों के संबंधित वर्ग की विश्व रेखाओं के लिए स्पर्शरेखा है, जिनकी गति विद्युत चुम्बकीय क्षेत्र के साथ संरेखित होती है। अंतिम तीन स्पेसलाइक इकाई वेक्टर क्षेत्र हैं। | ||
एक गैर-शून्य | एक गैर-शून्य विद्युत निर्वात के लिए, अनुकूलित फ्रेम पाया जा सकता है जिसमें आइंस्टीन टेंसर फॉर्म लेता है | ||
:<math> G^{\hat{a}\hat{b}} = 8 \pi \epsilon \, \left[ \begin{matrix} 1&0&0&0\\0&1&0&0\\0&0&1&0\\0&0&0&-1\end{matrix} \right] </math> | :<math> G^{\hat{a}\hat{b}} = 8 \pi \epsilon \, \left[ \begin{matrix} 1&0&0&0\\0&1&0&0\\0&0&1&0\\0&0&0&-1\end{matrix} \right] </math> | ||
जहाँ <math>\epsilon</math> विद्युत चुम्बकीय क्षेत्र का ऊर्जा घनत्व है, जैसा कि किसी अनुकूलित पर्यवेक्षक द्वारा मापा जाता है। इस अभिव्यक्ति से, यह देखना आसान है कि हमारे गैर-शून्य विद्युत निर्वात का [[आइसोट्रॉपी समूह]] <math>\vec{e}_3</math> दिशा में बूस्ट और <math>\vec{e}_3</math> अक्ष के बारे में घुमाव से उत्पन्न होता है दूसरे शब्दों में, किसी भी गैर-शून्य विद्युत निर्वात का आइसोट्रॉपी समूह SO(1,1) x SO(2) के लिए द्वि-आयामी एबेलियन लाइ समूह आइसोमॉर्फिक है। | |||
एक अशक्त | एक अशक्त विद्युत निर्वात के लिए, अनुकूलित फ्रेम पाया जा सकता है जिसमें आइंस्टीन टेंसर रूप लेता है | ||
:<math> G^{\hat{a}\hat{b}} = 8 \pi \epsilon \, \left[ \begin{matrix} 1&0&0&\pm 1\\ 0&0&0&0\\0&0&0&0\\ \pm 1 &0&0&1\end{matrix} \right] </math> | :<math> G^{\hat{a}\hat{b}} = 8 \pi \epsilon \, \left[ \begin{matrix} 1&0&0&\pm 1\\ 0&0&0&0\\0&0&0&0\\ \pm 1 &0&0&1\end{matrix} \right] </math> | ||
इससे यह देखना आसान है कि हमारे अशक्त | इससे यह देखना आसान है कि हमारे अशक्त विद्युत निर्वात के आइसोट्रॉपी समूह में <math>\vec{e}_3</math> अक्ष के बारे में घूर्णन सम्मिलित है; लोरेंत्ज़ समूह पर लेख में दिए गए <math>\vec{e}_3</math> दिशा के साथ संरेखित दो और जनरेटर दो परवलयिक लोरेंत्ज़ रूपांतरण हैं। दूसरे शब्दों में, किसी भी अशक्त विद्युत निर्वात का आइसोट्रॉपी समूह यूक्लिडियन स्तर के आइसोमेट्री समूह ई (2) के लिए एक त्रि-आयामी लाइ समूह आइसोमोर्फिक है। | ||
तथ्य यह है कि ये परिणाम घुमावदार | तथ्य यह है कि ये परिणाम घुमावदार स्पेसटाइम में ठीक वैसे ही हैं जैसे फ्लैट मिंकोस्की स्पेसटाइम में विद्युतगतिकी के लिए तुल्यता सिद्धांत की अभिव्यक्ति है। | ||
== ईजेनवेल्यूज == | == ईजेनवेल्यूज == | ||
एक गैर-शून्य | एक गैर-शून्य विद्युत निर्वात के आइंस्टीन टेंसर की [[विशेषता बहुपद]] का रूप होना चाहिए | ||
:<math> \chi(\lambda) = \left( \lambda + 8 \pi \epsilon \right)^2 \, \left( \lambda - 8 \pi \epsilon \right)^2 </math> | :<math> \chi(\lambda) = \left( \lambda + 8 \pi \epsilon \right)^2 \, \left( \lambda - 8 \pi \epsilon \right)^2 </math> | ||
न्यूटन की सर्वसमिकाओं का उपयोग करते हुए, इस स्थिति को आइंस्टीन टेंसर की शक्तियों के [[ट्रेस (रैखिक बीजगणित)]] के रूप में फिर से व्यक्त किया जा सकता है | न्यूटन की सर्वसमिकाओं का उपयोग करते हुए, इस स्थिति को आइंस्टीन टेंसर की शक्तियों के [[ट्रेस (रैखिक बीजगणित)]] के रूप में फिर से व्यक्त किया जा सकता है | ||
:<math> t_1 = t_3 = 0, \; t_4 = t_2^2/4 </math> | :<math> t_1 = t_3 = 0, \; t_4 = t_2^2/4 </math> | ||
जहाँ | |||
:<math> t_1 = {G^a}_a, \; t_2 = {G^a}_b \, {G^b}_a, \; t_3 = {G^a}_b \, {G^b}_c \, {G^c}_a, \; t_4 = {G^a}_b \, {G^b}_c \, {G^c}_d \, {G^d}_a</math> | :<math> t_1 = {G^a}_a, \; t_2 = {G^a}_b \, {G^b}_a, \; t_3 = {G^a}_b \, {G^b}_c \, {G^c}_a, \; t_4 = {G^a}_b \, {G^b}_c \, {G^c}_d \, {G^d}_a</math> | ||
यह आवश्यक मानदंड यह जांचने के लिए उपयोगी हो सकता है कि पुटीय गैर-शून्य | यह आवश्यक मानदंड यह जांचने के लिए उपयोगी हो सकता है कि पुटीय गैर-शून्य विद्युत निर्वात समाधान प्रशंसनीय है, और कभी-कभी गैर-शून्य विद्युत निर्वात समाधान खोजने के लिए उपयोगी होता है। | ||
एक अशक्त | एक अशक्त विद्युत निर्वात की विशेषता बहुपद समान रूप से विलुप्त हो जाती है, तथापि ऊर्जा घनत्व अशून्य हो। यह संभावना सर्वविदित का टेन्सर एनालॉग है कि अशक्त वेक्टर (मिन्कोव्स्की स्पेस) में सदैव विलुप्त होने वाली लंबाई होती है, तथापि वह शून्य वेक्टर न हो। इस प्रकार, प्रत्येक अशक्त विद्युत निर्वात का चौगुना आइगेनमान अर्थात शून्य होता है। | ||
== रेनिच की स्थिति == | == रेनिच की स्थिति == | ||
1925 में, [[जॉर्ज यूरी रेनिच]] ने विशुद्ध रूप से गणितीय स्थितियां प्रस्तुत कीं, जो सामान्य सापेक्षता में गैर-शून्य | 1925 में, [[जॉर्ज यूरी रेनिच]] ने विशुद्ध रूप से गणितीय स्थितियां प्रस्तुत कीं, जो सामान्य सापेक्षता में गैर-शून्य विद्युत निर्वात के रूप में व्याख्या को स्वीकार करने के लिए लोरेंट्ज़ियन मैनिफोल्ड के लिए आवश्यक और पर्याप्त दोनों हैं। इनमें तीन बीजगणितीय स्थितियाँ और विभेदक स्थितियाँ सम्मिलित हैं। स्थितियाँ कभी-कभी यह जाँचने के लिए उपयोगी होती हैं कि ख्यात गैर-शून्य विद्युत निर्वात वास्तव में वही है जो यह प्रमाणित करता है, या ऐसे समाधान खोजने के लिए भी। | ||
चार्ल्स टोरे द्वारा अशक्त | चार्ल्स टोरे द्वारा अशक्त विद्युत निर्वात के लिए समान आवश्यक और पर्याप्त स्थितियाँ पाई गई हैं।<ref>{{cite journal|last=Torre|first=Charles|title=शून्य विद्युत चुम्बकीय क्षेत्र की स्पेसटाइम ज्यामिति|journal=Classical and Quantum Gravity|date=2014|volume=31|issue=4 |page=045022|doi=10.1088/0264-9381/31/4/045022|arxiv = 1308.2323 |bibcode = 2014CQGra..31d5022T |s2cid=22243824 }}</ref> | ||
== परीक्षण क्षेत्र == | == परीक्षण क्षेत्र == | ||
कभी-कभी कोई यह मान सकता है कि किसी विद्युत चुम्बकीय क्षेत्र की क्षेत्र ऊर्जा इतनी कम है कि इसके गुरुत्वाकर्षण प्रभाव की उपेक्षा की जा सकती है। फिर, अनुमानित | कभी-कभी कोई यह मान सकता है कि किसी विद्युत चुम्बकीय क्षेत्र की क्षेत्र ऊर्जा इतनी कम है कि इसके गुरुत्वाकर्षण प्रभाव की उपेक्षा की जा सकती है। फिर, अनुमानित विद्युत निर्वात समाधान प्राप्त करने के लिए, हमें केवल दिए गए वैक्यूम समाधान (सामान्य सापेक्षता) पर मैक्सवेल समीकरणों को हल करने की आवश्यकता है। इस स्थितियों में, विद्युत चुम्बकीय क्षेत्र को अधिकांशतः परीक्षण क्षेत्र कहा जाता है, शब्द [[परीक्षण कण]] के अनुरूप (एक छोटी वस्तु को दर्शाता है जिसका द्रव्यमान परिवेशी गुरुत्वाकर्षण क्षेत्र में सराहनीय योगदान देने के लिए बहुत छोटा है)। | ||
यहां, यह जानना उपयोगी है कि कोई भी किलिंग वैक्टर जो उपस्थित हो सकता है (वैक्यूम समाधान के स्थितियोंमें) घुमावदार स्पेसटाइम में मैक्सवेल के समीकरणों को स्वचालित रूप से संतुष्ट करेगा।<ref name=papa66>{{cite journal|last=Papapetrou|first=A|title=Champs gravitationnels stationnaires à symétrie axiale|journal=[[Annales de l'Institut Henri Poincaré A]] |year=1966|volume=4|issue=2|pages=83–105|url=http://www.numdam.org/item?id=AIHPA_1966__4_2_83_0|accessdate=19 December 2011|language=French|bibcode = 1966AIHPA...4...83P }}</ref> | यहां, यह जानना उपयोगी है कि कोई भी किलिंग वैक्टर जो उपस्थित हो सकता है (वैक्यूम समाधान के स्थितियोंमें) घुमावदार स्पेसटाइम में मैक्सवेल के समीकरणों को स्वचालित रूप से संतुष्ट करेगा।<ref name=papa66>{{cite journal|last=Papapetrou|first=A|title=Champs gravitationnels stationnaires à symétrie axiale|journal=[[Annales de l'Institut Henri Poincaré A]] |year=1966|volume=4|issue=2|pages=83–105|url=http://www.numdam.org/item?id=AIHPA_1966__4_2_83_0|accessdate=19 December 2011|language=French|bibcode = 1966AIHPA...4...83P }}</ref> | ||
ध्यान दें कि यह प्रक्रिया यह मानने के | ध्यान दें कि यह प्रक्रिया यह मानने के सामान्य है कि विद्युत चुम्बकीय क्षेत्र, किन्तुगुरुत्वाकर्षण क्षेत्र नहीं, अशक्त है। कभी-कभी हम और भी आगे जा सकते हैं; यदि गुरुत्वाकर्षण क्षेत्र को भी अशक्त माना जाता है, तो हम स्वतंत्र रूप से आइंस्टीन क्षेत्र समीकरणों और (फ्लैट स्पेसटाइम) मैक्सवेल समीकरणों को मिंकोव्स्की वैक्यूम पृष्ठभूमि पर स्वतंत्र रूप से हल कर सकते हैं। तब ( अशक्त) मीट्रिक टेन्सर अनुमानित ज्यामिति देता है; मिन्कोव्स्की पृष्ठभूमि भौतिक साधनों से अप्राप्य है, किन्तुगणितीय रूप से काम करना बहुत सरल है, जब भी हम इस तरह की निपुणता से दूर हो सकते हैं। | ||
== उदाहरण == | == उदाहरण == | ||
उल्लेखनीय व्यक्तिगत गैर-शून्य | उल्लेखनीय व्यक्तिगत गैर-शून्य विद्युत निर्वात समाधानों में सम्मिलित हैं: | ||
*रीस्नर-नॉर्डस्ट्रॉम | *रीस्नर-नॉर्डस्ट्रॉम विद्युत निर्वात (जो आवेशित गोलाकार द्रव्यमान के चारों ओर ज्यामिति का वर्णन करता है), | ||
*केर-न्यूमैन मेट्रिक|केर-न्यूमैन | *केर-न्यूमैन मेट्रिक|केर-न्यूमैन विद्युत निर्वात (जो आवेशित, घूमती हुई वस्तु के चारों ओर ज्यामिति का वर्णन करता है), | ||
* मेल्विन | * मेल्विन विद्युत निर्वात (बेलनाकार सममित मैग्नेटोस्टैटिक क्षेत्र का मॉडल), | ||
* गारफिंकल-मेल्विन | * गारफिंकल-मेल्विन विद्युत निर्वात (पिछले की तरह, किन्तुसमरूपता के अक्ष के साथ यात्रा करने वाली गुरुत्वाकर्षण तरंग सहित), | ||
*बर्टोटी-रॉबिन्सन | *बर्टोटी-रॉबिन्सन विद्युत निर्वात: यह उल्लेखनीय उत्पाद संरचना वाला साधारण स्पेसटाइम है; यह रीस्नर-नॉर्डस्ट्रॉम विद्युत निर्वात के क्षितिज के प्रकार के विस्फोट से उत्पन्न होता है, | ||
* विटन | * विटन विद्युत निर्वात ([[एडवर्ड विटन]] के पिता [[लुइस विटन]] द्वारा खोजा गया)। | ||
उल्लेखनीय व्यक्तिगत अशक्त | उल्लेखनीय व्यक्तिगत अशक्त विद्युत निर्वात समाधानों में सम्मिलित हैं: | ||
*[[मोनोक्रोमैटिक इलेक्ट्रोमैग्नेटिक प्लेन वेव]], | *[[मोनोक्रोमैटिक इलेक्ट्रोमैग्नेटिक प्लेन वेव|मोनोक्रोमैटिक विद्युत चुम्बकीय प्लेन वेव]], स्पष्ट समाधान जो क्लासिकल इलेक्ट्रोमैग्नेटिज्म में प्लेन वेव्स का सामान्य सापेक्षतावादी एनालॉग है, | ||
*बेल-ज़ेकेरेस | *बेल-ज़ेकेरेस विद्युत निर्वात (एक कोलाइडिंग प्लेन वेव मॉडल)। | ||
विद्युत निर्वात के कुछ प्रसिद्ध वर्ग हैं: | |||
*वेइल-मैक्सवेल | *वेइल-मैक्सवेल विद्युत निर्वात: यह सभी स्थैतिक अक्षीय विद्युत निर्वात समाधानों का वर्ग है; इसमें रीस्नर-नॉर्डस्ट्रॉम विद्युत निर्वात सम्मिलित है, | ||
*अर्नस्ट-मैक्सवेल | *अर्नस्ट-मैक्सवेल विद्युत निर्वात: यह सभी स्थिर अक्षीय विद्युत निर्वात समाधानों का वर्ग है; इसमें केर-न्यूमैन विद्युत निर्वात सम्मिलित है, | ||
*बेक-मैक्सवेल | *बेक-मैक्सवेल विद्युत निर्वात: सभी गैर-घूर्णन बेलनाकार सममित विद्युत निर्वात समाधान, | ||
*एहलर्स-मैक्सवेल | *एहलर्स-मैक्सवेल विद्युत निर्वात: सभी स्थिर बेलनाकार सममित विद्युत निर्वात समाधान, | ||
* ज़ेकेरेस | * ज़ेकेरेस विद्युत निर्वात: टकराने वाली समतल तरंगों के सभी जोड़े, जहाँ प्रत्येक तरंग में गुरुत्वाकर्षण और विद्युत चुम्बकीय विकिरण दोनों हो सकते हैं; ये समाधान परस्पर क्रिया ज़ोन के बाहर अशक्त विद्युत निर्वात हैं, किन्तु सामान्यतः परस्पर क्रिया ज़ोन के अंदर गैर-शून्य विद्युत निर्वात होते हैं, क्योंकि वे टकराने के बाद दो तरंगों के गैर-रैखिक संपर्क के कारण होते हैं। | ||
कई [[पीपी-वेव स्पेसटाइम]] विद्युत चुम्बकीय क्षेत्र टेंसर को स्वीकार करते हैं जो उन्हें | कई [[पीपी-वेव स्पेसटाइम]] विद्युत चुम्बकीय क्षेत्र टेंसर को स्वीकार करते हैं जो उन्हें स्पष्ट अशक्त विद्युत निर्वात समाधान में बदल देता है। | ||
== यह भी देखें == | == यह भी देखें == | ||
* [[विद्युत चुम्बकीय क्षेत्रों का वर्गीकरण]] | * [[विद्युत चुम्बकीय क्षेत्रों का वर्गीकरण]] | ||
* सामान्य सापेक्षता में | * सामान्य सापेक्षता में स्पष्ट समाधान | ||
* लोरेंत्ज़ समूह | * लोरेंत्ज़ समूह | ||
Line 105: | Line 104: | ||
*{{cite book |author1=Stephani, Hans |author2=Kramer, Dietrich |author3=MacCallum, Malcolm |author4=Hoenselaers, Cornelius |author5=Herlt, Eduard | title=Exact Solutions of Einstein's Field Equations | location=Cambridge | publisher=[[Cambridge University Press]] | year=2003 | isbn=0-521-46136-7}} See ''section 5.4'' for the Rainich conditions, ''section 19.4'' for the Weyl–Maxwell electrovacuums, ''section 21.1'' for the Ernst-Maxwell electrovacuums, ''section 24.5'' for pp-waves, ''section 25.5'' for Szekeres electrovacuums, etc. | *{{cite book |author1=Stephani, Hans |author2=Kramer, Dietrich |author3=MacCallum, Malcolm |author4=Hoenselaers, Cornelius |author5=Herlt, Eduard | title=Exact Solutions of Einstein's Field Equations | location=Cambridge | publisher=[[Cambridge University Press]] | year=2003 | isbn=0-521-46136-7}} See ''section 5.4'' for the Rainich conditions, ''section 19.4'' for the Weyl–Maxwell electrovacuums, ''section 21.1'' for the Ernst-Maxwell electrovacuums, ''section 24.5'' for pp-waves, ''section 25.5'' for Szekeres electrovacuums, etc. | ||
*{{cite book | author=Griffiths, J. B. | title=Colliding Plane Waves in General Relativity | location=Oxford | publisher=[[Clarendon Press]] | year=1991 | isbn=0-19-853209-1}} The definitive resource on colliding plane waves, including the examples mentioned above. | *{{cite book | author=Griffiths, J. B. | title=Colliding Plane Waves in General Relativity | location=Oxford | publisher=[[Clarendon Press]] | year=1991 | isbn=0-19-853209-1}} The definitive resource on colliding plane waves, including the examples mentioned above. | ||
[[Category: | [[Category:CS1 maint]] | ||
[[Category:Created On 29/03/2023]] | [[Category:Created On 29/03/2023]] | ||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:विद्युत चुंबकत्व]] | |||
[[Category:सामान्य सापेक्षता में सटीक समाधान]] |
Latest revision as of 18:17, 16 May 2023
सामान्य सापेक्षता में, विद्युत निर्वात समाधान (विद्युत निर्वात) आइंस्टीन क्षेत्र समीकरण के सामान्य सापेक्षता में स्पष्ट समाधान है जिसमें उपस्थित एकमात्र गैर-गुरुत्वाकर्षण द्रव्यमान-ऊर्जा विद्युत चुम्बकीय क्षेत्र की क्षेत्र ऊर्जा होता है, जिसे (घुमावदार-स्पेसटाइम ) को संतुष्ट करना चाहिए। 'स्रोत-मुक्त मैक्सवेल समीकरण दी गई ज्यामिति के लिए उपयुक्त किया जाता हैं। इस कारण से, विद्युत निर्वात को कभी-कभी (स्रोत-मुक्त) आइंस्टीन-मैक्सवेल समाधान कहा जाता है।
परिभाषा
सामान्य सापेक्षता में, भौतिक घटनाओं के लिए ज्यामितीय निर्धारण लोरेंट्ज़ियन कई गुना हो जाती है, जिसे घुमावदार स्पेसटाइम के रूप में व्याख्या किया जाता है, और जो मीट्रिक टेंसर (या सामान्य सापेक्षता में फ्रेम क्षेत्र को परिभाषित करके) को परिभाषित करके निर्दिष्ट किया जाता है। इस कई गुना और संबंधित मात्रा जैसे आइंस्टीन टेंसर ,के रीमैन वक्रता टेंसर अच्छी तरह से परिभाषित होती हैं। सामान्य सापेक्षता में, उन्हें गुरुत्वाकर्षण क्षेत्र के ज्यामितीय अभिव्यक्तियों (वक्रता और बल) के रूप में व्याख्या किया जा सकता है।
हमें अपने लोरेंट्ज़ियन मैनिफोल्ड पर एक विद्युत चुम्बकीय क्षेत्र टेंसर को परिभाषित करके एक विद्युत चुम्बकीय क्षेत्र को निर्दिष्ट करने की भी आवश्यकता है। विद्युत निर्वात समाधान के रूप में वर्गीकृत होने के लिए, इन दो टेंसरों को निम्नलिखित दो नियमो को पूरा करने की आवश्यकता होती है
- विद्युत चुम्बकीय क्षेत्र टेंसर को स्रोत-मुक्त घुमावदार स्पेसटाइम मैक्सवेल क्षेत्र समीकरणों और को संतुष्ट करना चाहिए
- आइंस्टीन टेंसर को विद्युत चुम्बकीय तनाव ऊर्जा टेंसर से मेल खाना चाहिए|
- यदि हम विद्युत चुम्बकीय संभावित सदिश के संदर्भ में क्षेत्र टेंसर को परिभाषित करते हैं तो पहला मैक्सवेल समीकरण स्वचालित रूप से संतुष्ट हो जाता है। दोहरे कोवेक्टर (या संभावित एक-रूप) और विद्युत चुम्बकीय दो-रूप के संदर्भ में, हम स्थित करके ऐसा कर सकते हैं। तब हमें केवल यह सुनिश्चित करने की आवश्यकता है कि विचलन विलुप्त हो जाए (अथार्त कि दूसरा मैक्सवेल समीकरण एक स्रोत-मुक्त क्षेत्र के लिए संतुष्ट है) और यह कि विद्युत चुम्बकीय तनाव-ऊर्जा आइंस्टीन टेंसर से मेल खाती है।
अपरिवर्तनीय
विद्युत चुम्बकीय क्षेत्र टेंसर एंटीसिमेट्रिक है, जिसमें केवल दो बीजगणितीय रूप से स्वतंत्र स्केलर अपरिवर्तनीय हैं,
यहाँ, तारा हॉज तारा है।
इनका उपयोग करके, हम संभावित विद्युत चुम्बकीय क्षेत्रों को निम्नानुसार वर्गीकृत कर सकते हैं:
- यदि किन्तु, हमारे पास स्थिर विद्युत क्षेत्र है, जिसका अर्थ है कि कुछ पर्यवेक्षक स्थिर विद्युत क्षेत्र को मापेंगे, और कोई चुंबकीय क्षेत्र नहीं।
- यदि किन्तु, हमारे पास चुंबकीय स्थिर क्षेत्र है, जिसका अर्थ है कि कुछ पर्यवेक्षक स्थिर चुंबकीय क्षेत्र को मापेंगे, और कोई विद्युत क्षेत्र नहीं।
- यदि , विद्युत चुम्बकीय क्षेत्र को अशक्त कहा जाता है, और हमारे पास 'अशक्त विद्युत निर्वात' होता है।
अशक्त विद्युत निर्वात विद्युत चुम्बकीय विकिरण से जुड़े होते हैं। विद्युत चुम्बकीय क्षेत्र जो अशक्त नहीं है, गैर-शून्य कहलाता है, और फिर हमारे पास 'गैर-शून्य विद्युत निर्वात' होता है।
आइंस्टीन टेंसर
समन्वय आधार के अतिरिक्त सामान्य सापेक्षता में फ्रेम क्षेत्र के संबंध में गणना किए गए टेन्सर के घटकों को अधिकांशतः भौतिक घटक कहा जाता है, क्योंकि ये घटक हैं जो (सिद्धांत रूप में) पर्यवेक्षक द्वारा मापा जा सकता है।
एक विद्युत निर्वात समाधान के स्थितियों में एक अनुकूलित फ्रेम
सदैव पाया जा सकता है जिसमें आइंस्टीन टेंसर का विशेष रूप से सरल रूप होता है।
यहाँ, पहले वेक्टर को टाइमलाइक इकाई वेक्टर क्षेत्र के रूप में समझा जाता है; यह हर स्थान अनुकूलित पर्यवेक्षकों के संबंधित वर्ग की विश्व रेखाओं के लिए स्पर्शरेखा है, जिनकी गति विद्युत चुम्बकीय क्षेत्र के साथ संरेखित होती है। अंतिम तीन स्पेसलाइक इकाई वेक्टर क्षेत्र हैं।
एक गैर-शून्य विद्युत निर्वात के लिए, अनुकूलित फ्रेम पाया जा सकता है जिसमें आइंस्टीन टेंसर फॉर्म लेता है
जहाँ विद्युत चुम्बकीय क्षेत्र का ऊर्जा घनत्व है, जैसा कि किसी अनुकूलित पर्यवेक्षक द्वारा मापा जाता है। इस अभिव्यक्ति से, यह देखना आसान है कि हमारे गैर-शून्य विद्युत निर्वात का आइसोट्रॉपी समूह दिशा में बूस्ट और अक्ष के बारे में घुमाव से उत्पन्न होता है दूसरे शब्दों में, किसी भी गैर-शून्य विद्युत निर्वात का आइसोट्रॉपी समूह SO(1,1) x SO(2) के लिए द्वि-आयामी एबेलियन लाइ समूह आइसोमॉर्फिक है।
एक अशक्त विद्युत निर्वात के लिए, अनुकूलित फ्रेम पाया जा सकता है जिसमें आइंस्टीन टेंसर रूप लेता है
इससे यह देखना आसान है कि हमारे अशक्त विद्युत निर्वात के आइसोट्रॉपी समूह में अक्ष के बारे में घूर्णन सम्मिलित है; लोरेंत्ज़ समूह पर लेख में दिए गए दिशा के साथ संरेखित दो और जनरेटर दो परवलयिक लोरेंत्ज़ रूपांतरण हैं। दूसरे शब्दों में, किसी भी अशक्त विद्युत निर्वात का आइसोट्रॉपी समूह यूक्लिडियन स्तर के आइसोमेट्री समूह ई (2) के लिए एक त्रि-आयामी लाइ समूह आइसोमोर्फिक है।
तथ्य यह है कि ये परिणाम घुमावदार स्पेसटाइम में ठीक वैसे ही हैं जैसे फ्लैट मिंकोस्की स्पेसटाइम में विद्युतगतिकी के लिए तुल्यता सिद्धांत की अभिव्यक्ति है।
ईजेनवेल्यूज
एक गैर-शून्य विद्युत निर्वात के आइंस्टीन टेंसर की विशेषता बहुपद का रूप होना चाहिए
न्यूटन की सर्वसमिकाओं का उपयोग करते हुए, इस स्थिति को आइंस्टीन टेंसर की शक्तियों के ट्रेस (रैखिक बीजगणित) के रूप में फिर से व्यक्त किया जा सकता है
जहाँ
यह आवश्यक मानदंड यह जांचने के लिए उपयोगी हो सकता है कि पुटीय गैर-शून्य विद्युत निर्वात समाधान प्रशंसनीय है, और कभी-कभी गैर-शून्य विद्युत निर्वात समाधान खोजने के लिए उपयोगी होता है।
एक अशक्त विद्युत निर्वात की विशेषता बहुपद समान रूप से विलुप्त हो जाती है, तथापि ऊर्जा घनत्व अशून्य हो। यह संभावना सर्वविदित का टेन्सर एनालॉग है कि अशक्त वेक्टर (मिन्कोव्स्की स्पेस) में सदैव विलुप्त होने वाली लंबाई होती है, तथापि वह शून्य वेक्टर न हो। इस प्रकार, प्रत्येक अशक्त विद्युत निर्वात का चौगुना आइगेनमान अर्थात शून्य होता है।
रेनिच की स्थिति
1925 में, जॉर्ज यूरी रेनिच ने विशुद्ध रूप से गणितीय स्थितियां प्रस्तुत कीं, जो सामान्य सापेक्षता में गैर-शून्य विद्युत निर्वात के रूप में व्याख्या को स्वीकार करने के लिए लोरेंट्ज़ियन मैनिफोल्ड के लिए आवश्यक और पर्याप्त दोनों हैं। इनमें तीन बीजगणितीय स्थितियाँ और विभेदक स्थितियाँ सम्मिलित हैं। स्थितियाँ कभी-कभी यह जाँचने के लिए उपयोगी होती हैं कि ख्यात गैर-शून्य विद्युत निर्वात वास्तव में वही है जो यह प्रमाणित करता है, या ऐसे समाधान खोजने के लिए भी।
चार्ल्स टोरे द्वारा अशक्त विद्युत निर्वात के लिए समान आवश्यक और पर्याप्त स्थितियाँ पाई गई हैं।[1]
परीक्षण क्षेत्र
कभी-कभी कोई यह मान सकता है कि किसी विद्युत चुम्बकीय क्षेत्र की क्षेत्र ऊर्जा इतनी कम है कि इसके गुरुत्वाकर्षण प्रभाव की उपेक्षा की जा सकती है। फिर, अनुमानित विद्युत निर्वात समाधान प्राप्त करने के लिए, हमें केवल दिए गए वैक्यूम समाधान (सामान्य सापेक्षता) पर मैक्सवेल समीकरणों को हल करने की आवश्यकता है। इस स्थितियों में, विद्युत चुम्बकीय क्षेत्र को अधिकांशतः परीक्षण क्षेत्र कहा जाता है, शब्द परीक्षण कण के अनुरूप (एक छोटी वस्तु को दर्शाता है जिसका द्रव्यमान परिवेशी गुरुत्वाकर्षण क्षेत्र में सराहनीय योगदान देने के लिए बहुत छोटा है)।
यहां, यह जानना उपयोगी है कि कोई भी किलिंग वैक्टर जो उपस्थित हो सकता है (वैक्यूम समाधान के स्थितियोंमें) घुमावदार स्पेसटाइम में मैक्सवेल के समीकरणों को स्वचालित रूप से संतुष्ट करेगा।[2]
ध्यान दें कि यह प्रक्रिया यह मानने के सामान्य है कि विद्युत चुम्बकीय क्षेत्र, किन्तुगुरुत्वाकर्षण क्षेत्र नहीं, अशक्त है। कभी-कभी हम और भी आगे जा सकते हैं; यदि गुरुत्वाकर्षण क्षेत्र को भी अशक्त माना जाता है, तो हम स्वतंत्र रूप से आइंस्टीन क्षेत्र समीकरणों और (फ्लैट स्पेसटाइम) मैक्सवेल समीकरणों को मिंकोव्स्की वैक्यूम पृष्ठभूमि पर स्वतंत्र रूप से हल कर सकते हैं। तब ( अशक्त) मीट्रिक टेन्सर अनुमानित ज्यामिति देता है; मिन्कोव्स्की पृष्ठभूमि भौतिक साधनों से अप्राप्य है, किन्तुगणितीय रूप से काम करना बहुत सरल है, जब भी हम इस तरह की निपुणता से दूर हो सकते हैं।
उदाहरण
उल्लेखनीय व्यक्तिगत गैर-शून्य विद्युत निर्वात समाधानों में सम्मिलित हैं:
- रीस्नर-नॉर्डस्ट्रॉम विद्युत निर्वात (जो आवेशित गोलाकार द्रव्यमान के चारों ओर ज्यामिति का वर्णन करता है),
- केर-न्यूमैन मेट्रिक|केर-न्यूमैन विद्युत निर्वात (जो आवेशित, घूमती हुई वस्तु के चारों ओर ज्यामिति का वर्णन करता है),
- मेल्विन विद्युत निर्वात (बेलनाकार सममित मैग्नेटोस्टैटिक क्षेत्र का मॉडल),
- गारफिंकल-मेल्विन विद्युत निर्वात (पिछले की तरह, किन्तुसमरूपता के अक्ष के साथ यात्रा करने वाली गुरुत्वाकर्षण तरंग सहित),
- बर्टोटी-रॉबिन्सन विद्युत निर्वात: यह उल्लेखनीय उत्पाद संरचना वाला साधारण स्पेसटाइम है; यह रीस्नर-नॉर्डस्ट्रॉम विद्युत निर्वात के क्षितिज के प्रकार के विस्फोट से उत्पन्न होता है,
- विटन विद्युत निर्वात (एडवर्ड विटन के पिता लुइस विटन द्वारा खोजा गया)।
उल्लेखनीय व्यक्तिगत अशक्त विद्युत निर्वात समाधानों में सम्मिलित हैं:
- मोनोक्रोमैटिक विद्युत चुम्बकीय प्लेन वेव, स्पष्ट समाधान जो क्लासिकल इलेक्ट्रोमैग्नेटिज्म में प्लेन वेव्स का सामान्य सापेक्षतावादी एनालॉग है,
- बेल-ज़ेकेरेस विद्युत निर्वात (एक कोलाइडिंग प्लेन वेव मॉडल)।
विद्युत निर्वात के कुछ प्रसिद्ध वर्ग हैं:
- वेइल-मैक्सवेल विद्युत निर्वात: यह सभी स्थैतिक अक्षीय विद्युत निर्वात समाधानों का वर्ग है; इसमें रीस्नर-नॉर्डस्ट्रॉम विद्युत निर्वात सम्मिलित है,
- अर्नस्ट-मैक्सवेल विद्युत निर्वात: यह सभी स्थिर अक्षीय विद्युत निर्वात समाधानों का वर्ग है; इसमें केर-न्यूमैन विद्युत निर्वात सम्मिलित है,
- बेक-मैक्सवेल विद्युत निर्वात: सभी गैर-घूर्णन बेलनाकार सममित विद्युत निर्वात समाधान,
- एहलर्स-मैक्सवेल विद्युत निर्वात: सभी स्थिर बेलनाकार सममित विद्युत निर्वात समाधान,
- ज़ेकेरेस विद्युत निर्वात: टकराने वाली समतल तरंगों के सभी जोड़े, जहाँ प्रत्येक तरंग में गुरुत्वाकर्षण और विद्युत चुम्बकीय विकिरण दोनों हो सकते हैं; ये समाधान परस्पर क्रिया ज़ोन के बाहर अशक्त विद्युत निर्वात हैं, किन्तु सामान्यतः परस्पर क्रिया ज़ोन के अंदर गैर-शून्य विद्युत निर्वात होते हैं, क्योंकि वे टकराने के बाद दो तरंगों के गैर-रैखिक संपर्क के कारण होते हैं।
कई पीपी-वेव स्पेसटाइम विद्युत चुम्बकीय क्षेत्र टेंसर को स्वीकार करते हैं जो उन्हें स्पष्ट अशक्त विद्युत निर्वात समाधान में बदल देता है।
यह भी देखें
- विद्युत चुम्बकीय क्षेत्रों का वर्गीकरण
- सामान्य सापेक्षता में स्पष्ट समाधान
- लोरेंत्ज़ समूह
संदर्भ
- ↑ Torre, Charles (2014). "शून्य विद्युत चुम्बकीय क्षेत्र की स्पेसटाइम ज्यामिति". Classical and Quantum Gravity. 31 (4): 045022. arXiv:1308.2323. Bibcode:2014CQGra..31d5022T. doi:10.1088/0264-9381/31/4/045022. S2CID 22243824.
- ↑ Papapetrou, A (1966). "Champs gravitationnels stationnaires à symétrie axiale". Annales de l'Institut Henri Poincaré A (in French). 4 (2): 83–105. Bibcode:1966AIHPA...4...83P. Retrieved 19 December 2011.
{{cite journal}}
: CS1 maint: unrecognized language (link)
- Stephani, Hans; Kramer, Dietrich; MacCallum, Malcolm; Hoenselaers, Cornelius; Herlt, Eduard (2003). Exact Solutions of Einstein's Field Equations. Cambridge: Cambridge University Press. ISBN 0-521-46136-7. See section 5.4 for the Rainich conditions, section 19.4 for the Weyl–Maxwell electrovacuums, section 21.1 for the Ernst-Maxwell electrovacuums, section 24.5 for pp-waves, section 25.5 for Szekeres electrovacuums, etc.
- Griffiths, J. B. (1991). Colliding Plane Waves in General Relativity. Oxford: Clarendon Press. ISBN 0-19-853209-1. The definitive resource on colliding plane waves, including the examples mentioned above.