पतली फिल्म: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(26 intermediate revisions by 6 users not shown)
Line 1: Line 1:
'''पतली फिल्म''' नैनोमीटर (मोनोलेयर) के अंशों से लेकर मोटाई में कई माइक्रोमीटर तक की सामग्री की एक परत है। पतली फिल्मों के रूप में सामग्री का नियंत्रित संश्लेषण (एक प्रक्रिया जिसे निक्षेपण कहा जाता है) कई अनुप्रयोगों में एक मौलिक कदम है। एक परिचित उदाहरण घरेलू दर्पण है, जिसमें आमतौर पर एक '''परावर्तक अंतरपृष्‍ठ''' बनाने के लिए कांच की शीट के पीछे एक पतली धातु की कोटिंग होती है। चांदी को चमकाने की प्रक्रिया का इस्तेमाल आमतौर पर दर्पण बनाने के लिए किया जाता था, जबकि हाल ही में धातु की परत को कणक्षेपण जैसी तकनीकों का उपयोग करके जमा किया जाता है। 20वीं शताब्दी के दौरान पतली फिल्म निक्षेपण तकनीकों में हुई प्रगति ने क्षेत्रों में व्यापक श्रेणी की तकनीकी सफलताओं को संभव बनाया है जैसे चुंबकीय रिकॉर्डिंग मीडिया, इलेक्ट्रॉनिक अर्धचालक उपकरण, एकीकृत निष्क्रिय उपकरण, एलईडी, प्रकाशिकी कोटिंग्स (जैसे कि एंटीरफ्लेक्टिव कोटिंग्स), काटने के उपकरण पर कठोर कोटिंग्स, और ऊर्जा उत्पादन (जैसे पतली-फिल्म सौर सेल) और भंडारण (पतली-फिल्म) दोनों के लिए बैटरी)। यह पतली फिल्म दवा वितरण के माध्यम से फार्मास्यूटिकल्स पर भी लागू किया जा रहा है। पतली फिल्मों के ढेर को बहुपरत कहा जाता है।
'''पतली फिल्म''' द्रव्य की परत होती है जो एक नैनोमीटर (एकल परत) के अंश से लेकर मोटाई में कई माइक्रोमीटर तक हो सकती हैं। पतली फिल्मों के रूप में द्रव्य का नियंत्रित संश्लेषण (एक प्रक्रिया जिसे [[निक्षेपण]] कहा जाता है) कई अनुप्रयोगों में एक मौलिक उपाय हो सकता है। इसका एक परिचित उदाहरण घरों में प्रयोग किए जाने वाला दर्पण है, जिसमें सामान्यतः एक परावर्तक अंतरपृष्‍ठ बनाने के लिए कांच के पृष्ठ के पीछे एक पतली धातु का लेप लगा होता है। धातु के लेपन की प्रक्रिया का प्रयोग सामान्यतः दर्पण बनाने के लिए किया जाता था, लेकिन वर्तमान में जो प्रयास धातु की परत का कणक्षेपण करने में सहायक है उसका प्रयोग एकत्रित करने के लिए किया जाने लगा हैं। 20वीं शताब्दी में पतली फिल्म की निक्षेपण प्रयासों में हुई प्रगति ने कई क्षेत्रों में व्यापक श्रेणियों के प्रयासों में सफलताओं को संभव बनाया है जैसे चुंबकीय अभिलेकन संचार माध्यम, इलेक्ट्रॉनिक अर्धचालक उपकरण, एकीकृत निष्क्रिय उपकरण, [[एलईडी-बैकलिट एलसीडी|एलईडी]] (LED), प्रकाशिकी लेपन (जैसे कि अपरावर्ती लेपन), काटने के उपकरण पर कठोर लेपन, ऊर्जा उत्पादन (जैसे पतली-फिल्म [[सौर सेल]]) और ऊर्जा भंडारण (पतली-फिल्म) दोनों के लिए [[बैटरी आवेशक|बैटरी]]) इत्यादि। आधुनिक समय में पतली फिल्म का प्रयोग दवा वितरण के माध्यम से औषधीय चीजों को बनाने में भी किया जाने लगा हैं। पतली फिल्मों के एकत्रित संगठन को एकल परत कहा जाता है।


उनकी लागू रुचि के अलावा, पतली फिल्में नई और अनूठी गुणों वाली सामग्रियों के विकास और अध्ययन में महत्वपूर्ण भूमिका निभाती हैं। उदाहरणों में शामिल हैं मल्टीफ़ेरिक सामग्री, और सुपरलैटिस जो क्वांटम घटना के अध्ययन की अनुमति देता है।
निम्नवत अलग अलग रूचि के कारण, पतली फिल्में अपने नए और अनूठे गुणों के कारण द्रव्य पदार्थ के विकास और अध्ययन में महत्वपूर्ण भूमिका निभाती हैं। बहुलौहिक द्रव्य, और अतिजालक इस प्रमाणित घटना के कुछ उदाहरण हैं जो इसके अध्ययन में सहायता प्रदान करते हैं।


== केंद्रक (न्यूक्लिएशन) ==
== केंद्रक (न्यूक्लिएशन) ==
'''केंद्रक (न्यूक्लिएशन)''' वृद्धि की दिशा में एक महत्वपूर्ण कदम है जो एक पतली फिल्म की अंतिम संरचना को निर्धारित करने में मदद करता है। कई विकास विधियां '''केंद्रक (न्यूक्लिएशन)''' नियंत्रण पर निर्भर करती हैं जैसे कि परमाणु परत अधिरोहण (परमाणु परत जमाव)। केंद्रक (न्यूक्लिएशन) को अवशोषण, निक्षेपण, और सतह प्रसार की सतह प्रक्रिया को चिह्नित करके तैयार किया जा सकता है।<ref name=":02">{{Cite book |last=Ohring |first=Milton |title=Materials science of thin films : deposition and structure |publisher=Academic Press |year=2002 |isbn=9780125249751 |edition=2nd |location=San Diego, CA}}</ref>
केंद्रक (न्यूक्लिएशन) वृद्धि करने की दिशा में एक महत्वपूर्ण कदम है जो एक पतली फिल्म की अंतिम संरचना को निर्धारित करने में मदद करता है। कई विकसित विधियां हैं जो केंद्रक नियंत्रण पर निर्भर करती हैं जैसे कि परमाणु परत अधिरोहण ( जिसे परमाणु परत जमाव भी कहते हैं)। केंद्रक को अवशोषण, निक्षेपण, और सतह प्रसार की सतह प्रक्रिया को चिह्नित करके तैयार किया जा सकता है।<ref name=":02">{{Cite book |last=Ohring |first=Milton |title=Materials science of thin films : deposition and structure |publisher=Academic Press |year=2002 |isbn=9780125249751 |edition=2nd |location=San Diego, CA}}</ref>


=== अवशोषण और विशोषण ===
=== अवशोषण और विशोषण ===
'''अवशोषण''' एक क्रियाधार सतह के साथ वाष्प परमाणु या अणु की बातचीत है। बातचीत को चिपके हुए गुणांक की विशेषता के रूप में देखा जा सकता है, आने वाली प्रजातियों का अंश सतह के साथ थर्मली संतुलित अवस्था बनाता है। विशोषण अवशोषण को उलट देता है जहां पहले से अधिशोषित अणु सीमांकन ऊर्जा पर काबू पा लेता है और क्रियाधार सतह को छोड़ देता है।
अवशोषण एक क्रियाधार सतह है जो वाष्पित परमाणु या अणुओं के साथ मिलकर पारस्परिक क्रिया बनाती है। पारस्परिक क्रिया से संलग्न हुए गुणांक की विशेषता के रूप में देखा जा सकता है, और आने वाली प्रजातियों का अंश सतह के साथ ताप संतुलित की अवस्था बनाता है। विशोषण, अवशोषण का व्युत्क्रम होता है जहां पहले से अधिशोषित अणु सीमांकन ऊर्जा पर अधिकार प्राप्त कर लेते है और क्रियाधार सतह को छोड़ देते है।


दो प्रकार के अवशोषण, '''भौतिक अधिशोषण''' और '''रासायनिक अधिशोषण''', परमाणु बातचीत की ताकत से प्रतिष्ठित हैं। भौतिक अधिशोषण एक फैला हुआ या मुड़ा हुआ अणु और '''अवशोषण ऊर्जा''' '''<math>E_{p}</math>''' द्वारा विशेषता सतह के बीच वैन डर वाल्स के बंधन का वर्णन करता है। वाष्पित अणु तेजी से गतिज ऊर्जा खो देते हैं और सतह के परमाणुओं के साथ बंधन करके अपनी मुक्त ऊर्जा को कम कर देते हैं। रासायनिक अधिशोषण अणु के मजबूत इलेक्ट्रॉन हस्तांतरण (आयनिक या सहसंयोजक बंधन) का वर्णन करता है जिसमें क्रियाधार परमाणुओं के साथ अवशोषण ऊर्जा <math>E_{c}</math> होती है। दूरी के एक कार्य के रूप में संभावित ऊर्जा द्वारा भौतिक और रसायन विज्ञान की प्रक्रिया की कल्पना की जा सकती है। भौतिक अधिशोषण के लिए संतुलन दूरी रसायन अधिशोषण की अपेक्षा सतह से अधिक होती है। भौतिक अधिशोषण से रासायनिक अधिशोषण अवस्थाओं में '''संक्रमण प्रभावी ऊर्जा''' <math>E_{a}</math> अवरोध द्वारा नियंत्रित होता है ।<ref name=":02" />
दो प्रकार के अवशोषण जिन्हें [[भौतिक अधिशोषण]] और [[रासायनिक अधिशोषण]] कहा जाता है परमाणु अंतःक्रियाओं के लिए शक्ति प्रदान करने में प्रतिष्ठित हैं। भौतिक अधिशोषण एक फैला हुआ या मुड़ा हुआ अणु है और [[अवशोषण ऊर्जा]] '''<math>E_{p}</math>''' द्वारा विशेषतयः सतह के बीच वैन डर वाल्स के बंधन का वर्णन करता है। वाष्पित अणु तेजी से गतिज ऊर्जा को खो देते हैं और सतह के परमाणुओं के साथ बंधन करके अपनी मुक्त ऊर्जा को कम कर देते हैं। रासायनिक अधिशोषण अणु के मजबूत इलेक्ट्रॉन हस्तांतरण (आयनिक या सहसंयोजक बंधन) का वर्णन करते हैं जिसमें क्रियाधार परमाणुओं के साथ अवशोषण ऊर्जा <math>E_{c}</math> होती है। इस दूरी को एक कार्य के रूप में संभावित ऊर्जा द्वारा भौतिक और रसायन विज्ञान की प्रक्रिया की कल्पना करने में उपयोग में लाया जाता हैं। भौतिक अधिशोषण के लिए संतुलन दूरी रसायन अधिशोषण की दूरी की अपेक्षा सतह से अधिक होती है। भौतिक अधिशोषण से रासायनिक अधिशोषण अवस्थाओं में संक्रमण प्रभावी ऊर्जा <math>E_{a}</math> अवरोध द्वारा नियंत्रित होती हैं।<ref name=":02" />


क्रिस्टल सतहों में बड़े <math>E_{a}</math> मान वाली विशिष्ट बॉन्डिंग साइटें होती हैं जो समग्र मुक्त ऊर्जा को कम करने के लिए अधिमानतः वाष्प अणुओं द्वारा आबाद किया जाएगा। ये स्थिर स्थान अक्सर चरण के किनारों, रिक्तियों और पेंच अव्यवस्थाओं पर पाए जाते हैं। सबसे स्थिर साइटों के भर जाने के बाद, अधिपरमाणु (वाष्प अणु) बातचीत महत्वपूर्ण हो जाती है।<ref>{{Cite book |last=Venables |first=John A. |url=https://www.cambridge.org/core/product/identifier/9780511755651/type/book |title=Introduction to Surface and Thin Film Processes |date=2000-08-31 |publisher=Cambridge University Press |isbn=978-0-521-78500-6 |edition=1 |doi=10.1017/cbo9780511755651}}</ref>
क्रिस्टलीय सतहों में बड़े <math>E_{a}</math> मान वाली विशिष्ट बंधन साइटें होती हैं जो समग्र मुक्त ऊर्जा को कम करने के लिए अधिमानतः वाष्पित अणुओं द्वारा स्वतंत्र किये जाते हैं। ये स्थिर स्थान सामान्यतः किनारों पर, रिक्तियों पर और पेंच अव्यवस्थाओं पर पाए जाते हैं। सबसे स्थिर साइटों के भर जाने के बाद, अधिपरमाणुओं (वाष्पित अणु) में परस्पर क्रियाएं और अधिक महत्वपूर्ण हो जाती हैं।<ref>{{Cite book |last=Venables |first=John A. |url=https://www.cambridge.org/core/product/identifier/9780511755651/type/book |title=Introduction to Surface and Thin Film Processes |date=2000-08-31 |publisher=Cambridge University Press |isbn=978-0-521-78500-6 |edition=1 |doi=10.1017/cbo9780511755651}}</ref>
=== केंद्रक प्रतिरूप (न्यूक्लिएशन मॉडल) ===
=== केंद्रक प्रतिरूप (न्यूक्लिएशन मॉडल) ===
'''केंद्रक (न्यूक्लिएशन)''' गतिकी को केवल अवशोषण और विशोषण पर विचार करके तैयार किया जा सकता है। पहले उस मामले पर विचार करें जहां कोई पारस्परिक अनुकूलन बातचीत नहीं है, कोई गुच्छन (क्लस्टरिंग) या चरण किनारों के साथ बातचीत नहीं है।
केंद्रक गतिकी को केवल अवशोषण और विशोषण पर विचार करके तैयार किया जा सकता है। पहले इस समस्या पर विचार करें जिस पर कोई पारस्परिक अनुकूलन परस्पर क्रियाएं नहीं होता हैं, कोई गुच्छन ([[क्लस्टरिंग]]) या चरण किनारों के साथ परस्पर क्रियाएं नहीं करता हैं।


अधिपरमाणु सतह घनत्व के परिवर्तन की दर <math>n</math>, जहाँ पर <math>J</math> शुद्ध प्रवाह है,  <math>\tau_{a}</math> विशोषण से पहले सतह की सतह का जीवनकाल है और <math>\sigma</math> चिपके हुए गुणांक है:
अधिपरमाणु सतह घनत्व के परिवर्तन की दर <math>n</math> होती हैं, जहाँ पर <math>J</math> शुद्ध प्रवाह है,  <math>\tau_{a}</math> विशोषण से पहले सतह की सतह का जीवनकाल है और <math>\sigma</math> चिपका हुआ गुणांक है:


<math>{dn\over dt}=J \sigma-{n\over \tau_{a}} </math>
<math>{dn\over dt}=J \sigma-{n\over \tau_{a}} </math>
Line 22: Line 22:
n = J\sigma\tau_{a}\left[\exp\left({-t\over\tau_{a}}\right)\right]</math>
n = J\sigma\tau_{a}\left[\exp\left({-t\over\tau_{a}}\right)\right]</math>


अधिशोषण को विभिन्न समतापी द्वारा भी प्रतिरूपित किया जा सकता है जैसे लैंगमुइर प्रतिरूप और बीईटी (BET) प्रतिरूप। लैंगमुइर प्रतिरूप क्रियाधार सतह पर रिक्ति के साथ वाष्प अधिपरमाणु की अवशोषण प्रतिक्रिया के आधार पर एक संतुलन स्थिरांक <math>b</math> प्राप्त करता है। बीईटी(BET) प्रतिरूप आगे फैलता है और परमाणुओं के आसन्न ढेर के बीच बातचीत के बिना पहले से '''अधिशोषित अधिपरमाणु''' पर '''अधिपरमाणु निक्षेपण''' की अनुमति देता है। परिणामी व्युत्पन्न सतह आवृत्त क्षेत्र संतुलन वाष्प दबाव और लागू दबाव के संदर्भ में है।
अधिशोषण को विभिन्न समतापी द्वारा भी प्रतिरूपित किया जा सकता है जैसे लैंगमुइर प्रतिरूप और बीईटी (BET) प्रतिरूप। लैंगमुइर प्रतिरूप क्रियाधार सतह पर रिक्ति के साथ वाष्प अधिपरमाणु की अवशोषण प्रतिक्रिया के आधार पर एक संतुलन स्थिरांक <math>b</math> प्राप्त करता है। बीईटी प्रतिरूप आगे फैलता है और परमाणुओं के आसन्न ढेर के बीच परस्पर क्रिया किये बिना पहले से '''अधिशोषित अधिपरमाणु''' पर '''अधिपरमाणु निक्षेपण''' करने की अनुमति देता है। परिणामी व्युत्पन्न सतह आवृत्त क्षेत्र संतुलन वाष्प दबाव और लागू दबाव के संदर्भ में होते हैं।


'''लैंगमुइर प्रतिरूप''' जहां <math>P_{A}</math>  अधिशोषित अधिपरमाणु का वाष्प दबाव है:
'''लैंगमुइर प्रतिरूप''' जहां <math>P_{A}</math>  अधिशोषित अधिपरमाणु का वाष्प दबाव है:
Line 28: Line 28:
<math>\theta = {bP_{A}\over (1+bP_{A})}</math>
<math>\theta = {bP_{A}\over (1+bP_{A})}</math>


'''बीईटी(BET) प्रतिरूप''' जहां <math>p_{e}</math> अधिशोषित अधिपरमाणु का संतुलन वाष्प दबाव है और <math>p</math> अधिशोषित अधिपरमाणु का लागू वाष्प दबाव है:
'''बीईटी प्रतिरूप''' जहां <math>p_{e}</math> अधिशोषित अधिपरमाणु का संतुलन वाष्पित दबाव है और <math>p</math> अधिशोषित अधिपरमाणु का लागू वाष्पित दबाव है:


<math>\theta ={X p \over (p_{e}-p)\left[1+(X-1){p\over p_{e}}\right]}</math>
<math>\theta ={X p \over (p_{e}-p)\left[1+(X-1){p\over p_{e}}\right]}</math>


एक महत्वपूर्ण नोट के रूप में, सतह स्फटिक रूप-विधा (क्रिस्टलोग्राफी) और सतह पर टूटे हुए बंधन के कारण समग्र मुक्त इलेक्ट्रॉनिक और बंधन ऊर्जा को कम करने के लिए थोक से भिन्न होता है। यह एक नई संतुलन स्थिति में परिणाम कर सकता है जिसे "सेल्वेडेज" के रूप में जाना जाता है, जहां समानांतर बल्क जाली समरूपता संरक्षित है। यह घटना '''केंद्रक (न्यूक्लिएशन)''' की सैद्धांतिक गणना से विचलन का कारण बन सकती है।<ref name=":02" />
एक महत्वपूर्ण संदेश, सतह स्फटिक रूप-विधा (क्रिस्टलोग्राफी) हैं और सतह पर टूटे हुए बंधन के कारण समग्र मुक्त इलेक्ट्रॉनिक और बंधन ऊर्जा को कम करने के लिए थोक से भिन्न होता है। यह एक नई संतुलन स्थिति का परिणाम है जिसे "सेल्वेडेज" के रूप में जाना जाता है, जहां समानांतर थोक जाली समरूपता के रूप में संरक्षित होती है। यह घटना केंद्रक के सैद्धांतिक गणना से विचलित होने का कारण बन सकती है।<ref name=":02" />
=== सतह प्रसार ===
=== [[सतह प्रसार]] ===
'''सतह प्रसार''' क्रियाधार सतह पर ऊर्जा मिनिमा के बीच चलते हुए अधिशोषित परमाणुओं की पार्श्व गति का वर्णन करता है। प्रसार सबसे आसानी से सबसे कम हस्तक्षेप संभावित बाधाओं के साथ स्थितियों के बीच होता है।सतह के प्रसार को ग्लेंसिंग-एंगल आयन बिखरने का उपयोग करके मापा जा सकता है। घटनाओं के बीच औसत समय का वर्णन किया जा सकता है:<ref name=":02" />
सतह प्रसार क्रियाधार सतह पर ऊर्जा मिनिमा के बीच चलते हुए अधिशोषित परमाणुओं की पार्श्व गति का वर्णन करता है। प्रसार सबसे आसानी से सबसे कम हस्तक्षेप करने वाली संभावित बाधाओं के साथ कई अतिरिक्त स्थितियों के बीच हो सकता है। सतह के प्रसार को ग्लेंसिंग-कोण आयन द्वारा बिखेर कर मापा जा सकता है। घटनाओं के बीच औसत समय का वर्णन भी किया जा सकता है:<ref name=":02" />


<math>\tau_{d}=(1/v_{1})\exp(E_{d}/kT_{s})</math>
<math>\tau_{d}=(1/v_{1})\exp(E_{d}/kT_{s})</math>


'''अधिपरमाणु स्थानांतरण''' के अलावा, अधिपरमाणु के क्लस्टर कोयलेस या व्यय कर सकते हैं। प्रक्रियाओं के माध्यम से क्लस्टर सहसंयोजक, जैसे कि ओस्टवल्ड पकने और सिंटरिंग, सिस्टम की कुल सतह ऊर्जा को कम करने के जवाब में होता है। ओस्टवल्ड रेपिनिंग उस प्रक्रिया का वर्णन करता है जिसमें विभिन्न आकारों के साथ एडैटम्स के द्वीप छोटे लोगों की कीमत पर बड़े लोगों में बढ़ते हैं। जब द्वीप संपर्क करते हैं और जुड़ते हैं तो सिंटरिंग सह -तंत्र है।<ref name=":02" />
अधिपरमाणु स्थानांतरण के अतिरिक्त, अधिपरमाणु के कोयलेस समूह को व्यय किया जा सकता हैं। प्रक्रियाओं के माध्यम से ये सहसंयोजक समूह, जैसे कि ओस्टवल्ड रेपिनिंग और सिंटरिंग की क्रिया, निकाय की कुल सतह ऊर्जा को कम करने के प्रत्युत्तर है। ओस्टवल्ड रेपिनिंग उस प्रक्रिया का वर्णन करता है जिसमें विभिन्न आकारों के अनुकूलन द्वीप छोटे लोगों की कीमतों की तुलना में बड़े लोगों में बढ़ते हैं। सिंटरिंग सहसंयोजन तंत्र तब होता है जब द्वीप परस्पर क्रिया करते हैं और आपस में जुड़ते हैं।<ref name=":02" />
== निक्षेप ==
== निक्षेप ==
पतली फिल्म को एक सतह पर लागू करने का कार्य ही पतली-फिल्म का '''निक्षेपण''' है- एक क्रियाधार पर और पहले से जमा की गई परतों पर सामग्री की एक पतली फिल्म जमा करने के लिए कोई भी तकनीक से बना होता है। पतला एक सापेक्ष शब्द है, लेकिन अधिकांश निक्षेपण तकनीक कुछ दसियों नैनोमीटर के भीतर परत की मोटाई को नियंत्रित करती हैं। आणविक किरण अधिरोहण द लैंगमुइर-ब्लोडगेट फिल्म आदि है। लैंगमुइर ब्लोडगेट विधि, परमाणु परत जमाव और आणविक परत के निक्षेपण परमाणुओं और अणुओं की एक ही परत को एक समय में जमा करने की अनुमति देते हैं।
पतली फिल्म को एक सतह पर लागू करने का कार्य ही पतली-फिल्म का निक्षेपण है, एक क्रियाधार पर और पहले से जमा की गई परतों पर द्रव्य की एक पतली फिल्म जमा करने के लिए कोई भी प्रवधि प्रयोग में लाई जा सकती हैं। पतला एक सापेक्ष शब्द है, लेकिन अधिकांश निक्षेपण प्रवधि कुछ दसियों नैनोमीटर के भीतर परत की मोटाई को नियंत्रित करती हैं। आण्विक किरण अधिरोहण द लैंगमुइर-ब्लोडगेट परत आदि हैं। लैंगमुइर ब्लोडगेट विधि, परमाणु परत के एकीकरण और आण्विक परत के निक्षेपण परमाणुओं और अणुओं की एक ही परत को एक समय में जमा करने की अनुमति देता है।


यह प्रकाशिकी के निर्माण में उपयोगी होते है (उदाहरण के लिए, परावर्तक, विरोधी चिंतनशील कोटिंग्स या सेल्फ-क्लीनिंग ग्लास के लिए), इलेक्ट्रॉनिक्स (रोधक, अर्धचालक की परतें, और सुचालक एकीकृत परिपथ बनाते हैं), पैकेजिंग (यानी, एल्यूमीनियम-कोटेड पीईटी फिल्म ), और समकालीन कला में (लैरी बेल का काम देखें)। इसी तरह की प्रक्रियाओं का उपयोग कभी-कभी किया जाता है जहां मोटाई महत्वपूर्ण नहीं होती है: उदाहरण के लिए, इलेक्ट्रोप्लेटिंग द्वारा तांबे की शुद्धि, और गैस-चरण प्रसंस्करण के बाद सीवीडी (CVD) जैसी प्रक्रिया द्वारा सिलिकॉन और समृद्ध यूरेनियम का जमाव होता है।
यह प्रकाशिकी के निर्माण में उपयोगी होता हैं (उदाहरण के लिए, परावर्तक, विरोधी चिंतनशील लेपन या स्वयं द्वारा ग्लास की सफाई के लिए), इलेक्ट्रॉनिक्स (रोधक, अर्धचालक की परतें, और सुचालक एकीकृत परिपथ बनाते हैं), संकुलन (यानी, एल्यूमीनियम-लेपित पीईटी फिल्म ), और समकालीन कला में (लैरी बेल का काम देखें)। इसी तरह की प्रक्रियाओं का उपयोग कभी-कभी किया जाता है जहां मोटाई महत्वपूर्ण नहीं होती है: उदाहरण के लिए, विद्युत आवरण द्वारा तांबे की शुद्धि, और गैस-चरण प्रसंस्करण के बाद सीवीडी जैसी प्रक्रिया द्वारा सिलिकॉन और समृद्ध यूरेनियम का एकत्रित होना।


'''निक्षेपण''' तकनीक दो व्यापक श्रेणियों में आती है,और यह इस बात पर निर्भर करता है कि प्रक्रिया मुख्य रूप से रासायनिक और भौतिक है या नहीं है।<ref>{{cite book |editor1-last=Knoll |editor1-first=Wolfgang Knoll |editor2-last=Advincula |editor2-first=Rigoberto C. |date=2011-06-07 |title=Functional Polymer Films, 2 Volume Set 1st Edition |publisher=Wiley-VCH |isbn=978-3527321902 }}</ref>
निक्षेपण प्रवधि दो व्यापक श्रेणियों में आती है,और यह इस बात पर निर्भर करती है कि प्रक्रियाएं मुख्य रूप से रासायनिक और भौतिक है या नहीं है।<ref>{{cite book |editor1-last=Knoll |editor1-first=Wolfgang Knoll |editor2-last=Advincula |editor2-first=Rigoberto C. |date=2011-06-07 |title=Functional Polymer Films, 2 Volume Set 1st Edition |publisher=Wiley-VCH |isbn=978-3527321902 }}</ref>


=== रासायनिक जमाव ===
=== [[रासायनिक निक्षेपण]] ===
यहां, एक द्रव अग्रदूत एक ठोस सतह को छोड़कर, एक ठोस सतह पर रासायनिक परिवर्तन से गुजरता है। एक दैनिक उदाहरण एक ठंडी वस्तु पर कालिख का बनना है जब इसे आग के अंदर रखा जाता है। चूंकि द्रव ठोस वस्तु को घेरता है, इसलिए हर सतह पर निक्षेपण होता है, दिशा की परवाह किए बिना; रासायनिक निक्षेपण तकनीकों की पतली फिल्में दिशात्मक होने के बजाय अनुरूप होती हैं।
यहां, एक द्रव अग्रदूत ठोस सतह पर रासायनिक परिवर्तन करता है, जो एक ठोस परत को छोड़ता है। इसका एक दैनिक उदाहरण एक ठंडी वस्तु पर कालिख का बनना है और एसा तब होता हैं जब इस वस्तु को एक लौ के अंदर रखा जाता है। चूंकि द्रव ठोस वस्तु को घेरता है, इसलिए हर सतह पर निक्षेपण होता है, दिशा के बारे में सोचे बिना, [[रासायनिक निक्षेपण]] प्रवधिों की पतली फिल्में दिशात्मक होने के बजाय अनुरूपित हो जाती हैं।


रासायनिक निक्षेपण को आगे अग्रगामी के चरण द्वारा वर्गीकृत किया गया है:
रासायनिक निक्षेपण को आगे अग्रगामी चरण द्वारा वर्गीकृत किया गया है:


चढ़ाना तरल अग्रदूतों पर निर्भर करता है, अक्सर धातु के नमक के साथ पानी का एक समाधान जमा किया जाता है। कुछ चढ़ाना प्रक्रियाएं समाधान में अभिकर्मकों द्वारा पूरी तरह से संचालित होती हैं (आमतौर पर महान धातुओं के लिए), लेकिन अब तक सबसे व्यावसायिक रूप से महत्वपूर्ण प्रक्रिया इलेक्ट्रोप्लेटिंग है। सेमीकंडक्टर निर्माण में, इलेक्ट्रोकेमिकल डिपोजिशन के रूप में जाना जाने वाला इलेक्ट्रोप्लेटिंग का एक उन्नत रूप अब उन्नत चिप्स में तांबे के प्रवाहकीय तारों को बनाने के लिए उपयोग किया जाता है, और यह एल्यूमीनियम तारों के लिए पिछली चिप पीढ़ियों के लिए उपयोग की जाने वाली रासायनिक और भौतिक जमाव प्रक्रियाओं की जगह ले रहा है।<ref>{{Cite web|date=2017-11-15|title=One big wire change in '97 still helping chips achieve tiny scale|url=https://www.ibm.com/blogs/research/2017/11/20years-cuwires/|access-date=2021-04-20|website=IBM Research Blog|language=en-US}}</ref>
चढ़ाना तरल अग्रदूतों पर निर्भर करता है, सामान्यतः धातु के नमक के साथ पानी का एक विलयन बना लिया जाता है। कुछ चढ़ाना प्रक्रियाएं समाधान में अभिकर्मकों द्वारा पूरी तरह से संचालित होती हैं (सामान्यतः महान धातुओं के लिए), लेकिन अब तक सबसे व्यावसायिक रूप से महत्वपूर्ण प्रक्रिया विद्युत आवरण है। सुचालक निर्माण में, विद्युत रसायन निक्षेप के रूप में जाना जाने वाला विद्युत आवरण का एक उन्नत रूप अब उन्नत चिप्स में तांबे के प्रवाहकीय तारों को बनाने के लिए उपयोग किया जाता है, और यह एल्यूमीनियम तारों के लिए पिछली चिप पीढ़ियों के लिए उपयोग की जाने वाली रासायनिक और भौतिक एकीकरण प्रक्रियाओं की जगह ले रहा है।<ref>{{Cite web|date=2017-11-15|title=One big wire change in '97 still helping chips achieve tiny scale|url=https://www.ibm.com/blogs/research/2017/11/20years-cuwires/|access-date=2021-04-20|website=IBM Research Blog|language=en-US}}</ref>


रासायनिक समाधान बयान (सीएसडी) या रासायनिक स्नान बयान (सीबीडी) एक तरल अग्रदूत का उपयोग करता है, जो आमतौर पर एक कार्बनिक विलायक में घुले हुए ऑर्गेनोमेटेलिक पाउडर का घोल होता है। यह अपेक्षाकृत सस्ती, सरल पतली फिल्म प्रक्रिया है जो स्टोइकोमेट्रिक रूप से सटीक क्रिस्टलीय चरणों का उत्पादन करता है। इस तकनीक को सोल जेल विधि के रूप में भी जाना जाता है क्योंकि 'सॉल' (या विलयन) धीरे-धीरे एक जैल के निर्माण की दिशा में विकसित होता है, जैसे कि डिफैसिक सिस्टम।
रासायनिक समाधान बयान (सीएसडी-CSD) या रासायनिक स्नान बयान (सीबीडी-CBD) एक तरल अग्रदूत का उपयोग करता है, जो सामान्यतः एक कार्बनिक विलायक में घुले हुए कार्बन धात्विक पाउडर का घोल होता है। यह अपेक्षाकृत सस्ती, सरल पतली फिल्म प्रक्रिया है जो उचित तत्वानुपातकीय रूप से सटीक क्रिस्टलीय चरणों का उत्पादन करता है। इस प्रवधि को सोल जेल विधि के रूप में भी जाना जाता है क्योंकि 'विलयन' धीरे-धीरे एक जैल के निर्माण की दिशा में विकसित होता है, जिसका एक उदाहरण द्विध्रुवीय प्रणाली हैं।


लैंगमुइर ब्लोडेट विधि एक जलीय उप-चरण के शीर्ष पर तैरने वाले अणुओं का उपयोग करती है। अणुओं के पैकिंग घनत्व को नियंत्रित किया जाता है, और पैक किए गए मोनोलेयर को सबफ़ेज़ से ठोस सब्सट्रेट की नियंत्रित निकासी द्वारा एक ठोस सब्सट्रेट पर स्थानांतरित किया जाता है। यह विभिन्न अणुओं की पतली फिल्म बनाने की अनुमति देता है जैसे नैनोकणों, पॉलिमर और लिपिड नियंत्रित कण पैकिंग घनत्व और परत मोटाई के साथ।<ref>{{cite journal |last1 = Ariga |first1 = Katsuhiko |last2 = Yamauchi |first2 = Yusuke |last3 = Mori |first3 = Taizo |last4 = Hill |first4 = Jonathan P. |year = 2013 |title = 25th Anniversary Article: What Can Be Done with the Langmuir-Blodgett Method? Recent Developments and its Critical Role in Materials Science |url = https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.201302283} |journal = Advanced Materials |publisher = VCH Publishers |location = Deerfield Beach FL USA |publication-date = 2013-10-08 |volume = 25 |issue = 45 |pages = 6477–6512 |doi = 10.1002/adma.201302283 |issn = 1521-4095 |pmid = 24302266 |s2cid = 205251007 }}</ref>
लैंगमुइर ब्लोडेट विधि एक जलीय उप-चरण के शीर्ष पर तैरने वाले अणुओं का उपयोग करती है। अणुओं के संकुलित घनत्व को नियंत्रित किया जाता है, और संकुल किए गए एकल परत को उपचरण द्वारा ठोस क्रियाधार की नियंत्रित निकासी के रूप में एक ठोस क्रियाधार पर स्थानांतरित किया जाता है। यह विभिन्न अणुओं की पतली फिल्म बनाने की अनुमति देता है जैसे नैनोकण, पॉलिमर और लिपिड नियंत्रित कण पैकिंग घनत्व और परत मोटाई।<ref>{{cite journal |last1 = Ariga |first1 = Katsuhiko |last2 = Yamauchi |first2 = Yusuke |last3 = Mori |first3 = Taizo |last4 = Hill |first4 = Jonathan P. |year = 2013 |title = 25th Anniversary Article: What Can Be Done with the Langmuir-Blodgett Method? Recent Developments and its Critical Role in Materials Science |url = https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.201302283} |journal = Advanced Materials |publisher = VCH Publishers |location = Deerfield Beach FL USA |publication-date = 2013-10-08 |volume = 25 |issue = 45 |pages = 6477–6512 |doi = 10.1002/adma.201302283 |issn = 1521-4095 |pmid = 24302266 |s2cid = 205251007 }}</ref>


स्पिन कोटिंग या स्पिन कास्टिंग, एक तरल अग्रदूत का उपयोग करता है, या एक चिकनी, सपाट सब्सट्रेट पर जमा सोल जेल अग्रदूत का उपयोग करता है जो बाद में सब्सट्रेट पर घोल को सेंट्रीफ्यूजली फैलाने के लिए उच्च वेग से काता जाता है। जिस गति से घोल काता जाता है और सोल की चिपचिपाहट जमा फिल्म की अंतिम मोटाई निर्धारित करती है। वांछित के रूप में फिल्मों की मोटाई बढ़ाने के लिए बार-बार जमा किए जा सकते हैं। अनाकार स्पिन लेपित फिल्म को क्रिस्टलीकृत करने के लिए अक्सर थर्मल उपचार किया जाता है। ऐसी पारदर्शी फिल्में एकल पारदर्शी क्रियाधार पर पारदर्शिता के बाद कुछ पसंदीदा झुकाव प्रदर्शित कर सकती हैं।<ref>{{cite journal |last1=Hanaor |first1=D.A.H. |last2=Triani |first2=G. |last3=Sorrell |first3=C.C. |date=2011-03-15 |title=Morphology and photocatalytic activity of highly oriented mixed phase titanium dioxide thin films |journal=Surface and Coatings Technology |volume=205 |issue=12 |pages=3658–3664 |doi=10.1016/j.surfcoat.2011.01.007 |arxiv=1303.2741 |s2cid=96130259 }}</ref>
चक्रण प्रक्षेप, एक तरल अग्रदूत का उपयोग करता है, या एक चिकनी, सपाट क्रियाधार पर जमा सोल जेल अग्रदूत का उपयोग करता है जो बाद में क्रियाधार पर घोल को केन्द्र से हटते हुए फैलाने के लिए उच्च वेग से काता जाता है। जिस गति से घोल काता जाता है और सोल की चिपचिपाहट जमा फिल्म की अंतिम मोटाई निर्धारित करती है। वांछित के रूप में फिल्मों की मोटाई बढ़ाने के लिए बार-बार जमा किए जा सकते हैं। अनाकार चक्रण लेपित फिल्म को क्रिस्टलीकृत करने के लिए अक्सर उष्मीय उपचार किया जाता है। ऐसी पारदर्शी फिल्में एकल पारदर्शी क्रियाधार पर पारदर्शिता के बाद कुछ सदृश झुकाव प्रदर्शित कर सकती हैं।<ref>{{cite journal |last1=Hanaor |first1=D.A.H. |last2=Triani |first2=G. |last3=Sorrell |first3=C.C. |date=2011-03-15 |title=Morphology and photocatalytic activity of highly oriented mixed phase titanium dioxide thin films |journal=Surface and Coatings Technology |volume=205 |issue=12 |pages=3658–3664 |doi=10.1016/j.surfcoat.2011.01.007 |arxiv=1303.2741 |s2cid=96130259 }}</ref>


यह जब डूब जाता है या फिर नियंत्रित परिस्थितियों में वापस ले लिया जाता है। वापस की गयी गति को नियंत्रित करके, उसे वाष्पीकरण की स्थिति (मुख्य रूप से आर्द्रता, तापमान) और विलायक की अस्थिरता/चिपचिपाहट, फिल्म की मोटाई, समरूपता और नैनोस्कोपिक आकृति विज्ञान को नियंत्रित किया जाता है। दो वाष्पीकरण व्यवस्थाएं होती हैं: केशिकाओं के क्षेत्र में बहुत कम वापसी की गति पर, और तेजी से वाष्पीकरण गति पर जल निकासी क्षेत्र होते है।<ref>{{cite journal |last1=Faustini |first1=Marco |last2=Drisko |first2=Glenna L |last3=Boissiere |first3=Cedric |last4=Grosso |first4=David |date=2014-03-01 |title=Liquid deposition approaches to self-assembled periodic nanomasks |journal=Scripta Materialia |volume=74 |pages=13–18 |doi=10.1016/j.scriptamat.2013.07.029 }}</ref> रासायनिक वाष्प जमाव (सीवीडी CVD) आम तौर पर एक गैस-चरण अग्रदूत का उपयोग करता है,अक्सर तत्व के एक हलाइड और हाइड्राइड को जमा किया जाता है। एमओसीवीडी (MOCVD) के मामले में, एक ऑर्गनोमेटेलिक गैस का उपयोग किया जाता है। वाणिज्यिक तकनीक अक्सर अग्रदूत गैस के बहुत कम दबाव का उपयोग करती है।
यह जब डूब जाता है या फिर नियंत्रित परिस्थितियों में वापस ले लिया जाता है तब वापस की गयी गति को नियंत्रित करके, उसे वाष्पीकरण की स्थिति (मुख्य रूप से आर्द्रता, तापमान) और विलायक की अस्थिरता/चिपचिपाहट, फिल्म की मोटाई, समरूपता और नैनोस्कोपिक आकृति विज्ञान को नियंत्रित किया जाता है। दो वाष्पीकरण व्यवस्थाएं होती हैं: केशिकाओं के क्षेत्र में बहुत कम वापसी की गति पर, और तेजी से वाष्पीकरण गति पर जल निकासी क्षेत्र होते है।<ref>{{cite journal |last1=Faustini |first1=Marco |last2=Drisko |first2=Glenna L |last3=Boissiere |first3=Cedric |last4=Grosso |first4=David |date=2014-03-01 |title=Liquid deposition approaches to self-assembled periodic nanomasks |journal=Scripta Materialia |volume=74 |pages=13–18 |doi=10.1016/j.scriptamat.2013.07.029 }}</ref> रासायनिक वाष्प जमाव (सीवीडी) आम तौर पर एक गैस-चरण अग्रदूत का उपयोग करता है,अक्सर तत्व के एक हलाइड और हाइड्राइड को जमा किया जाता है। एमओसीवीडी (MOCVD) के मामले में, एक कार्बधात्विक गैस का उपयोग किया जाता है। वाणिज्यिक प्रवधि अक्सर अग्रदूत गैस के बहुत कम दबाव का उपयोग करती है।


प्लाज्मा एन्हांस्ड सीवीडी (पीईसीवीडी) (CVD (PECVD)) एक अग्रदूत के रूप में एक आयनित वाष्प, या प्लाज्मा का उपयोग करता है। उपरोक्त कालिख उदाहरण के विपरीत, वाणिज्यिक पीईसीवीडी (PECVD) एक प्लाज्मा का उत्पादन करने के लिए, रासायनिक-प्रतिक्रिया के बजाय विद्युत चुम्बकीय साधनों (विद्युत प्रवाह, माइक्रोवेव उत्तेजना) पर निर्भर करता है।
प्लाविका वर्धित सीवीडी (पीईसीवीडी) एक अग्रदूत के रूप में एक आयनित वाष्प, या प्लाविका का उपयोग करता है। उपरोक्त कालिख उदाहरण के विपरीत, वाणिज्यिक पीईसीवीडी एक प्लावक (प्लाविका) का उत्पादन करने के लिए, रासायनिक-प्रतिक्रिया के बजाय विद्युत चुम्बकीय साधनों (विद्युत प्रवाह, माइक्रोवेव उत्तेजना) पर निर्भर करता है।


परमाणु परत जमाव (एएलडी - ALD), और इसकी बहन तकनीक आणविक परत जमाव (एमएलडी - MLD), एक समय में एक परत को एक परत जमा करने के लिए गैसीय अग्रदूत का उपयोग करती है। प्रक्रिया को दो आधी प्रतिक्रियाओं में विभाजित किया जाता है, और इसे अनुक्रम में चलाया जाता है और प्रत्येक परत के लिए दोहराया जाता है, ताकि अगली परत शुरू करने से पहले कुल परत संतृप्ति सुनिश्चित हो सके। इसलिए एक अभिकारक को पहले जमा किया जाता है, और फिर दूसरा अभिकारक जमा किया जाता है, जिसके दौरान क्रियाधार पर एक रासायनिक प्रतिक्रियाऐ होती है, जिससे वांछित रचना बनती है। स्टेपवाइज के परिणामस्वरूप, प्रक्रिया सीवीडी की तुलना में धीमी होती है, हालांकि इसे सीवीडी के विपरीत, कम तापमान पर चलाया जा सकता है।
परमाणु परत जमाव (एएलडी - ALD), और इसकी सह प्रवधि आण्विक परत एकीकरण (एमएलडी - MLD), एक समय में एक परत को एक परत एकत्रित करने के लिए गैसीय अग्रदूत का उपयोग करती है। प्रक्रिया को दो आधी प्रतिक्रियाओं में विभाजित किया जाता है, और इसे अनुक्रम में चलाया जाता है और प्रत्येक परत के लिए इसे दोहराया जाता है, जिसके कारण अगली परत शुरू करने से पहले कुल परत संतृप्ति सुनिश्चित हो सके। इसलिए एक अभिकारक को पहले एकत्रित करके फिर दूसरा अभिकारक एकत्रित किया जाता है, इस तरह से क्रियाधार पर रासायनिक प्रतिक्रियाएं होती है, जिससे वांछित रचना बनती है। चरणगत होने के परिणामस्वरूप, प्रक्रिया सीवीडी की तुलना में धीमी होती है, हालांकि इस सीवीडी के विपरीत, कम तापमान पर इसे चलाया जा सकता है।


=== भौतिक  निक्षेपण ===
=== भौतिक  निक्षेपण ===
'''भौतिक निक्षेपण''' यांत्रिक, विद्युत या थर्मोडायनामिक का उपयोग करता है जो ठोस की एक पतली फिल्म का निर्माण करता है। एक रोजमर्रा का उदाहरण ठंढ का गठन है। चूंकि अधिकांश इंजीनियरिंग सामग्री अपेक्षाकृत उच्च ऊर्जाओं द्वारा एक साथ आयोजित की जाती हैं, और इन ऊर्जाओं को संग्रहीत करने के लिए रासायनिक प्रतिक्रियाओं का उपयोग नहीं किया जाता है, वाणिज्यिक '''भौतिक निक्षेपण''' प्रणालियों को ठीक से काम करने के लिए कम दबाव वाले वाष्प वातावरण की आवश्यकता होती है; अधिकांश को भौतिक वाष्प जमाव (पीवीडी) के रूप में वर्गीकृत किया जा सकता है।
'''भौतिक निक्षेपण''' यांत्रिकी, विद्युत या उष्मागतिकी का उपयोग करके एक ठोस पतली फिल्म का निर्माण करता है। इसका एक उदाहरण ठंड का गठन है। चूंकि अधिकांश अभियांत्रिक द्रव्य अपेक्षाकृत उच्च ऊर्जाओं द्वारा एक साथ आयोजित की जाती हैं, और इन ऊर्जाओं को संग्रहित करने के लिए रासायनिक प्रतिक्रियाओं का उपयोग नहीं किया जाता है, वाणिज्यिक [[भौतिक निक्षेपण]] प्रणालियों का ठीक से काम करने के लिए कम दबाव वाले वाष्पित वातावरण की आवश्यकता होती है, इस प्रकार अधिकांश को भौतिक वाष्प एकीकरण (पीवीडी PVD) के रूप में वर्गीकृत किया जा सकता है।


जमा की जाने वाली सामग्री को एक ऊर्जावान, एन्ट्रोपिक वातावरण में रखा जाता है, ताकि सामग्री के कण इसकी सतह से बच जाएं। इस स्रोत का सामना करना एक कूलर सतह है जो इन कणों से ऊर्जा खींचता है जैसे वे आते हैं, जिससे उन्हें एक ठोस परत बनाने की अनुमति मिलती है। पूरे सिस्टम को एक वैक्यूम निक्षेपण चैंबर में रखा जाता है, ताकि कणों को यथासंभव स्वतंत्र रूप से यात्रा करने की अनुमति मिल सके। चूंकि कण एक सीधे रास्ते का पालन करते हैं, इसलिए भौतिक साधनों द्वारा जमा की गई फिल्में आमतौर पर दिशात्मक होती हैं, बजाय इसके अनुरूप।
एकीकृत की जाने वाली द्रव्य को एक ऊर्जावान, एन्ट्रोपिक वातावरण में रखा जाता है, जिससे द्रव्य के कण इसकी सतह से बच जाएं। इस स्रोत का सामना करना एक ठंडी सतह से सामना करने जैसा है जो इनसे आने वाले कणों से ऊर्जा खींचता है, जिसकी सहायता से उन्हें एक ठोस परत बनाने की अनुमति मिलती है। पूरे निकाय को एक निर्वात निक्षेपण कक्षिका में रखा जाता है, जिससे कणों को यथासंभव स्वतंत्र रूप से यात्रा करने की अनुमति मिल सके। चूंकि कण एक सीधे रास्ते का पालन करते हैं, इसलिए इसके अनुरूप की जगह भौतिक साधनों द्वारा जमा की गई फिल्में सामान्यतः दिशात्मक होती हैं।


'''भौतिक निक्षेपण''' के उदाहरणों में शामिल हैं:
भौतिक निक्षेपण के उदाहरणों में शामिल हैं:
[[File:Scanning tunneling microscope (STM) 250 nm by 250 nm image of one-atom-thick silver islands grown on palladium (111) surface.png|thumb|चांदी के एक-परमाणु-मोटी द्वीपों को थर्मल वाष्पीकरण द्वारा पैलेडियम की सतह पर जमा किया जाता है।टनलिंग माइक्रोस्कोपी (एसटीएम) का उपयोग करके एक पूर्ण मोनोलेयर को पूरा करने के लिए आवश्यक समय को ट्रैक करके सतह के कवरेज का अंशांकन प्राप्त किया गया था और क्वांटम-अच्छी तरह से राज्यों के उद्भव से कोण-संकल्पित फोटोमिशन स्पेक्ट्रोस्कोपी में सिल्वर फिल्म की मोटाई की विशेषता है।।छवि का आकार 250 एनएम से 250 एनएम है।<ref>{{Cite journal|last1=Trontl|first1=V. Mikšić|last2=Pletikosić|first2=I.|last3=Milun|first3=M.|last4=Pervan|first4=P.|last5=Lazić|first5=P.|last6=Šokčević|first6=D.|last7=Brako|first7=R.|date=2005-12-16|title=Experimental and ab initio study of the structural and electronic properties of subnanometer thick Ag films on Pd(111)|journal=Physical Review B|volume=72|issue=23|pages=235418|doi=10.1103/PhysRevB.72.235418|bibcode=2005PhRvB..72w5418T}}</ref>]]
[[File:Scanning tunneling microscope (STM) 250 nm by 250 nm image of one-atom-thick silver islands grown on palladium (111) surface.png|thumb|चांदी के एक-[[परमाणु]]-मोटी द्वीपों को ऊष्मीय वाष्पीकरण द्वारा पैलेडियम की सतह पर जमा किया जाता है।टनलिंग माइक्रोस्कोपी (एसटीएम) का उपयोग करके एक पूर्ण मोनोलेयर को पूरा करने के लिए आवश्यक समय को ट्रैक करके सतह के कवरेज का अंशांकन प्राप्त किया गया था और क्वांटम-अच्छी तरह से राज्यों के उद्भव से कोण-संकल्पित फोटोमिशन स्पेक्ट्रोस्कोपी में सिल्वर फिल्म की मोटाई की विशेषता है।।छवि का आकार 250 एनएम से 250 एनएम है।<ref>{{Cite journal|last1=Trontl|first1=V. Mikšić|last2=Pletikosić|first2=I.|last3=Milun|first3=M.|last4=Pervan|first4=P.|last5=Lazić|first5=P.|last6=Šokčević|first6=D.|last7=Brako|first7=R.|date=2005-12-16|title=Experimental and ab initio study of the structural and electronic properties of subnanometer thick Ag films on Pd(111)|journal=Physical Review B|volume=72|issue=23|pages=235418|doi=10.1103/PhysRevB.72.235418|bibcode=2005PhRvB..72w5418T}}</ref>]]
एक थर्मल वाष्पीकरणकर्ता जो सामग्री को पिघलाने और एक उपयोगी सीमा तक अपने वाष्प दबाव को बढ़ाने के लिए एक विद्युत प्रतिरोध हीटर का उपयोग करता है। यह एक उच्च वैक्यूम में किया जाता है, दोनों वाष्प को चैम्बर में अन्य गैस-चरण परमाणुओं के खिलाफ प्रतिक्रिया या बिखरने के बिना क्रियाधार तक पहुंचने की अनुमति देते हैं, और वैक्यूम चैम्बर में अवशिष्ट गैस से अशुद्धियों के समावेश को कम करते हैं। जाहिर है, हीटिंग तत्व की तुलना में बहुत अधिक वाष्प दबाव वाली सामग्री को फिल्म के संदूषण के बिना जमा किया जा सकता है। आणविक किरण अधिरोहण (एपिटैक्सी) थर्मल वाष्पीकरण का एक विशेष रूप से परिष्कृत रूप है।
एक उष्मीय वाष्पीकरणकर्ता जो द्रव्य को पिघलाने और एक उपयोगी सीमा तक अपने वाष्प दबाव को बढ़ाने के लिए एक विद्युत प्रतिरोध हीटर का उपयोग करता है। यह एक उच्च निर्वात में किया जाता है, दोनों वाष्प को कक्ष में अन्य गैसीय-चरणों में परमाणुओं के विपरीत प्रतिक्रियाओं या बिखरने के बिना क्रियाधार तक पहुंचने की अनुमति मिल जाती है, और निर्वात कक्ष में अवशिष्ट गैस से अशुद्धियों के समावेश को कम कर देती हैं। इससे यह पता चलता है कि प्रतिदीप्त तत्व की तुलना में बहुत अधिक वाष्प दबाव वाली द्रव्य को फिल्म के संदूषण के बिना एकत्रित किया जा सकता है। आण्विक किरण अधिरोहण (एपिटैक्सी) ऊष्मीय वाष्पीकरण का एक विशेष रूप से परिष्कृत रूप है।


एक इलेक्ट्रॉन किरण वाष्पीकरणकर्ता सामग्री के एक छोटे से स्थान को उबालने के लिए एक इलेक्ट्रॉन बंदूक से एक उच्च-ऊर्जा किरण को आग लगाता है; चूंकि हीटिंग एक समान नहीं है, इसलिए कम वाष्प दबाव सामग्री जमा की जा सकती है। किरण आमतौर पर 270 ° के कोण के माध्यम से मुड़ा हुआ है ताकि यह सुनिश्चित किया जा सके कि बंदूक फिलामेंट सीधे वाष्पीकरण प्रवाह के संपर्क में नहीं है। इलेक्ट्रॉन किरण वाष्पीकरण के लिए विशिष्ट निक्षेपण दर 1 से 10 नैनोमीटर प्रति सेकंड तक होती है।
एक इलेक्ट्रॉन किरण का प्रयोग करके वाष्पीकरणकर्ता द्रव्य के एक छोटे से स्थान को उबालने के लिए एक इलेक्ट्रॉन बंदूक से एक उच्च-ऊर्जा किरण की सहायता लेकर उस स्थान को प्रतिदीप्त कर देता है, चूंकि प्रतिदीप्त एक समान नहीं है, इसलिए कम वाष्पित दबाव द्रव्य जमा की जा सकती है। किरण सामान्यतः 270° के कोण के माध्यम से मुड़ा हुआ है ताकि यह सुनिश्चित किया जा सके कि बंदूक फिलामेंट सीधे वाष्पीकृत प्रवाह के संपर्क में नहीं है। इलेक्ट्रॉन किरण वाष्पीकरण के लिए विशिष्ट निक्षेपण दर 1 से 10 नैनोमीटर प्रति सेकंड तक का प्रयाग करती है।


'''आणविक किरण अधिरोहण (एपिटैक्सी) (एमबीई - MBE)''' में, एक तत्व की धीमी धाराओं को क्रियाधार पर निर्देशित किया जा सकता है, ताकि सामग्री एक समय में एक परमाणु परत जमा करती है। गैलियम आर्सेनाइड जैसे यौगिकों को आमतौर पर एक तत्व (यानी, गैलियम) की एक परत को बार -बार लागू करके जमा किया जाता है, फिर दूसरे की एक परत (यानी, आर्सेनिक), ताकि प्रक्रिया रासायनिक हो, साथ ही भौतिक भी हो; यह परमाणु परत के निक्षेपण के रूप में भी जाना जाता है। यदि उपयोग में अग्रदूत कार्बनिक हैं, तो तकनीक को आणविक परत जमाव कहा जाता है। सामग्री की किरण को या तो भौतिक साधनों (यानी, एक भट्ठी द्वारा) या एक रासायनिक प्रतिक्रिया (रासायनिक किरण अधिरोहण (एपिटैक्सी)) द्वारा उत्पन्न किया जा सकता है।
'''आण्विक किरण अधिरोहण (एपिटैक्सी) (एमबीई - MBE)''' में, एक तत्व की धीमी धाराओं को क्रियाधार पर निर्देशित किया जा सकता है, ताकि द्रव्य एक समय में एक परमाणु परत जमा करती है। गैलियम आर्सेनाइड जैसे यौगिकों को सामान्यतः एक तत्व (यानी, गैलियम) की एक परत को बार -बार लागू करके जमा किया जाता है, फिर दूसरे की एक परत (यानी, आर्सेनिक), ताकि प्रक्रिया रासायनिक हो, साथ ही भौतिक भी हो, यह परमाणु परत के निक्षेपण के रूप में भी जाना जाता है। यदि उपयोग में अग्रदूत कार्बनिक हैं, तो प्रवधि को आण्विक परत एकीकरण कहा जाता है। द्रव्य की किरण को या तो भौतिक साधनों (यानी, एक भट्ठी द्वारा) या एक रासायनिक प्रतिक्रिया (रासायनिक किरण अधिरोहण (एपिटैक्सी)) द्वारा उत्पन्न किया जा सकता है।


'''कणक्षेपण''' एक प्लाज्मा (आमतौर पर एक महान गैस, जैसे आर्गन) पर निर्भर करता है, एक समय में कुछ परमाणुओं को लक्ष्य से दस्तक देता है। लक्ष्य को अपेक्षाकृत कम तापमान पर रखा जा सकता है, क्योंकि यह प्रक्रिया वाष्पीकरण में से एक नहीं है, जिससे यह सबसे लचीली निक्षेपण तकनीकों में से एक है। यह विशेष रूप से यौगिकों या मिश्रणों के लिए उपयोगी है, जहां विभिन्न घटक अन्यथा अलग-अलग दरों पर वाष्पित हो जाते हैं। ध्यान दें, कणक्षेपण का कदम कवरेज कम या ज्यादा अनुरूप है। यह प्रकाशिकी मीडिया में भी व्यापक रूप से उपयोग किया जाता है। सीडी (CD), डीवीडी (DVD) और बीडी (BD) के सभी प्रारूपों का निर्माण इस तकनीक की मदद से किया जाता है। यह एक तेज तकनीक है और यह एक अच्छी मोटाई नियंत्रण भी प्रदान करती है। वर्तमान में, नाइट्रोजन और ऑक्सीजन गैसों का उपयोग कणक्षेपण में भी किया जा रहा है।
'''कणक्षेपण''' एक प्लाविका (सामान्यतः एक महान गैस, जैसे आर्गन) पर निर्भर करता है, एक समय में कुछ परमाणुओं को लक्ष्य से दस्तक देता है। लक्ष्य को अपेक्षाकृत कम तापमान पर रखा जा सकता है, क्योंकि यह प्रक्रिया वाष्पीकरण में से एक नहीं है, जिससे यह सबसे लचीली निक्षेपण प्रविधि में से एक है। यह विशेष रूप से यौगिकों या मिश्रणों के लिए उपयोगी है, जहां विभिन्न घटक अन्यथा अलग-अलग दरों पर वाष्पित हो जाते हैं। ध्यान दें, कणक्षेपण की ओर यह कदम कवरेज को कम या ज्यादा अनुरूपित कर देता है। यह प्रकाशिकी मीडिया में भी व्यापक रूप से उपयोग किया जाता है। सीडी (CD), डीवीडी (DVD) और बीडी (BD) के सभी प्रारूपों का निर्माण इस प्रविधि की मदद से किया जाता है। यह एक तेज प्रवधि है और एक अच्छी मोटाई नियंत्रण भी प्रदान करती है। वर्तमान में, नाइट्रोजन और ऑक्सीजन गैसों का उपयोग कणक्षेपण में भी किया जा रहा है।


'''स्पंदित लेजर निक्षेपण सिस्टम''' एक अपक्षरण प्रक्रिया द्वारा काम करते हैं। इसमें लक्ष्य सामग्री की सतह को वाष्पीकृत किया जाता है और इसे प्लाज्मा में बदल दिया जाता है; यह प्लाज्मा आमतौर पर क्रियाधार तक पहुंचने से पहले ही एक गैस के लिए प्रतिवाद करता है।<ref>{{cite journal |last1=Rashidian Vaziri |first1=M. R. |last2=Hajiesmaeilbaigi |first2=F. |last3=Maleki |first3=M. H. |date=2011-08-24 |title=Monte Carlo simulation of the subsurface growth mode during pulsed laser deposition |journal=Journal of Applied Physics |volume=110 |issue=4 |pages= 043304|bibcode=2011JAP...110d3304R |doi=10.1063/1.3624768 }}</ref> कैथोडिक चाप निक्षेपण (एआरसी-पीवीडी/ARC-PVD) जो एक प्रकार का आयन बीम  निक्षेपण होता है और जहां एक विद्युत चाप बनाया जाता है जो कैथोड से आयन को सचमुच विस्फोट करता है। चाप में एक उच्च शक्ति घनत्व होता है जिसके परिणामस्वरूप उच्च स्तर का आयनीकरण (30-100%) होता है, जो आयनों, तटस्थ कणों, समूहों और मैक्रो-कणों (बूंदों) को गुणा किया जाता है। यदि वाष्पीकरण प्रक्रिया के दौरान एक प्रतिक्रियाशील गैस पेश की जाती है, तो आयन प्रवाह के साथ बातचीत के दौरान पृथक्करण, आयनीकरण और उत्तेजना हो सकती है और एक यौगिक फिल्म जमा की जाती है।
[[स्पंदित लेजर निक्षेपण सिस्टम|स्पंदित लेजर निक्षेपण प्रणाली]] एक अपक्षरण प्रक्रिया द्वारा काम करते हैं। इसमें लक्ष्य द्रव्य की सतह को वाष्पीकृत किया जाता है और इसे प्लाविका में बदल दिया जाता है; यह प्लावक (प्लाविका) सामान्यतः क्रियाधार तक पहुंचने से पहले ही एक गैस के लिए प्रतिवाद करता है।<ref>{{cite journal |last1=Rashidian Vaziri |first1=M. R. |last2=Hajiesmaeilbaigi |first2=F. |last3=Maleki |first3=M. H. |date=2011-08-24 |title=Monte Carlo simulation of the subsurface growth mode during pulsed laser deposition |journal=Journal of Applied Physics |volume=110 |issue=4 |pages= 043304|bibcode=2011JAP...110d3304R |doi=10.1063/1.3624768 }}</ref> कैथोडिक चाप निक्षेपण (एआरसी-पीवीडी/ARC-PVD) जो एक प्रकार का आयन बीम  निक्षेपण होता है और जहां एक विद्युत चाप बनाया जाता है जो कैथोड से आयन को सचमुच विस्फोट करता है। चाप में एक उच्च शक्ति घनत्व होता है जिसके परिणामस्वरूप उच्च स्तर का आयनीकरण (30-100%) होता है, जो आयनों, तटस्थ कणों, समूहों और मैक्रो-कणों (बूंदों) को गुणा किया जाता है। वाष्पीकरण प्रक्रिया के समय एक प्रतिक्रियाशील गैस का उपयोग किया जाता है, जिसके कारण आयन प्रवाह के साथ परस्पर प्रक्रिया के समय पृथक्करण, आयनीकरण और उत्तेजना हो सकती है और एक यौगिक फिल्म एकत्रित की जाती है।


इलेक्ट्रोहाइड्रोडायनामिक निक्षेपण (इलेक्ट्रोस्प्रे  निक्षेपण) पतली-फिल्म निक्षेपण की एक अपेक्षाकृत नई प्रक्रिया होती है। तरल जमा करने के लिए,और नैनोपार्टिकल समाधान के रूप में या बस एक समाधान के रूप में, एक छोटे केशिका नोजल (आमतौर पर धातु) को खिलाया जाता है जो एक उच्च वोल्टेज से जुड़ा होता है। जिस क्रियाधार पर फिल्म को जमा करना होता है, वह जमीन से जुड़ा हुआ होता है। विद्युत क्षेत्र के प्रभाव के माध्यम से, यह नोजल से निकलने वाला तरल एक शंक्वाकार आकार (टेलर शंकु) लेता है और शंकु के शीर्ष पर एक पतली जेट निकलती है जो रेले चार्ज सीमा के प्रभाव में बहुत ठीक और छोटे सकारात्मक रूप से चार्ज बूंदों में विघटित हो जाती है। यह बूंदें छोटी और छोटी होती रहती हैं और अंततः एक समान पतली परत के रूप में क्रियाधार पर जमा हो जाती हैं।
[[इलेक्ट्रोहाइड्रोगतिकी]] निक्षेपण (इलेक्ट्रोस्प्रे  निक्षेपण) पतली-फिल्म निक्षेपण की एक अपेक्षाकृत नई प्रक्रिया होती है। तरल जमा करने के लिए,और नैनोआण्विक समाधान के रूप में या बस एक समाधान के रूप में, एक छोटे केशिका नोजल (सामान्यतः धातु) को खिलाया जाता है जो एक उच्च वोल्टेज से जुड़ा होता है। जिस क्रियाधार पर फिल्म को जमा करना होता है, वह जमीन से जुड़ा हुआ होता है। विद्युत क्षेत्र के प्रभाव के माध्यम से, यह नोजल से निकलने वाला तरल एक शंक्वाकार आकार (टेलर शंकु) लेता है और शंकु के शीर्ष पर एक पतली जेट निकलती है जो रेले चार्ज सीमा के प्रभाव में बहुत ठीक और छोटे सकारात्मक रूप से आवेशित बूंदों में विघटित हो जाती है। यह बूंदें छोटी और छोटी होती रहती हैं और अंततः एक समान पतली परत के रूप में क्रियाधार पर एकत्रित हो जाती हैं।


=== विकास मोड ===
=== विकास मोड ===
Line 91: Line 91:
फ्रैंक वैन डेर मेर्वे ग्रोथ<ref>{{cite journal | last1 = Frank | first1 = Frederick Charles | last2 = van der Merwe | first2 = J. H. | date = 1949-08-15 | title = One-dimensional dislocations. I. Static theory | journal = Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences | volume = 198 | issue = 1053 | pages = 205–216 | bibcode = 1949RSPSA.198..205F | doi = 10.1098/rspa.1949.0095| jstor=98165| doi-access = free }}</ref><ref>{{cite journal | last1 = Frank | first1 = Frederick Charles | last2 = van der Merwe | first2 = J. H. | date = 1949-08-15 | title = One-Dimensional Dislocations. II. Misfitting Monolayers and Oriented Overgrowth | journal = Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences | volume = 198 | issue = 1053 | pages = 216–225 | bibcode = 1949RSPSA.198..216F | doi = 10.1098/rspa.1949.0096| jstor=98166| doi-access = free }}</ref><ref>{{cite journal | last1 = Frank | first1 = Frederick Charles | last2 = van der Merwe | first2 = J. H. | date = 1949-08-15 | title = One-Dimensional Dislocations. III. Influence of the Second Harmonic Term in the Potential Representation, on the Properties of the Model| journal = Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences | volume = 198 | issue = 1053 | pages = 125–134 | bibcode = 1949RSPSA.200..125F | doi = 10.1098/rspa.1949.0163 | jstor=98394| s2cid = 122413983 }}</ref> ("परत दर परत") इस वृद्धि मोड में अवशोषण सतह और अवशोषण अंतःक्रिया संतुलित होती है इस प्रकार की वृद्धि के लिए जाली मिलान की आवश्यकता होती है, और इसलिए इसे "आदर्श" विकास तंत्र माना जाता है।
फ्रैंक वैन डेर मेर्वे ग्रोथ<ref>{{cite journal | last1 = Frank | first1 = Frederick Charles | last2 = van der Merwe | first2 = J. H. | date = 1949-08-15 | title = One-dimensional dislocations. I. Static theory | journal = Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences | volume = 198 | issue = 1053 | pages = 205–216 | bibcode = 1949RSPSA.198..205F | doi = 10.1098/rspa.1949.0095| jstor=98165| doi-access = free }}</ref><ref>{{cite journal | last1 = Frank | first1 = Frederick Charles | last2 = van der Merwe | first2 = J. H. | date = 1949-08-15 | title = One-Dimensional Dislocations. II. Misfitting Monolayers and Oriented Overgrowth | journal = Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences | volume = 198 | issue = 1053 | pages = 216–225 | bibcode = 1949RSPSA.198..216F | doi = 10.1098/rspa.1949.0096| jstor=98166| doi-access = free }}</ref><ref>{{cite journal | last1 = Frank | first1 = Frederick Charles | last2 = van der Merwe | first2 = J. H. | date = 1949-08-15 | title = One-Dimensional Dislocations. III. Influence of the Second Harmonic Term in the Potential Representation, on the Properties of the Model| journal = Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences | volume = 198 | issue = 1053 | pages = 125–134 | bibcode = 1949RSPSA.200..125F | doi = 10.1098/rspa.1949.0163 | jstor=98394| s2cid = 122413983 }}</ref> ("परत दर परत") इस वृद्धि मोड में अवशोषण सतह और अवशोषण अंतःक्रिया संतुलित होती है इस प्रकार की वृद्धि के लिए जाली मिलान की आवश्यकता होती है, और इसलिए इसे "आदर्श" विकास तंत्र माना जाता है।


स्ट्रान्सकी क्रास्तानोव विकास<ref>{{cite journal |last1=Stranski |first1=I. N. |last2=Krastanov |first2=L. |date=1938-02-10 |title=Zur Theorie der orientierten Ausscheidung von Ionenkristallen aufeinander |journal=Monatshefte für Chemie und verwandte Teile anderer Wissenschaften |volume=146 |issue=1 |pages= 351–364 |doi=10.1007/BF01798103 |s2cid=93219029 |issn=0343-7329 }}</ref> ("संयुक्त द्वीप" या "परत प्लस द्वीप")। इस वृद्धि मोड में अवशोषण सतही अंतःक्रियाएं अधिशोष्य अधिशोष्य अंतःक्रियाओं की तुलना में अधिक मजबूत होती हैं।
स्ट्रान्सकी क्रास्तानोव विकास<ref>{{cite journal |last1=Stranski |first1=I. N. |last2=Krastanov |first2=L. |date=1938-02-10 |title=Zur Theorie der orientierten Ausscheidung von Ionenkristallen aufeinander |journal=Monatshefte für Chemie und verwandte Teile anderer Wissenschaften |volume=146 |issue=1 |pages= 351–364 |doi=10.1007/BF01798103 |s2cid=93219029 |issn=0343-7329 }}</ref> ("संयुक्त द्वीप" या "परत प्लस द्वीप")। इस वृद्धिकरण में अवशोषण सतही अंतःक्रियाएं अधिशोष्य अधिशोष्य अंतःक्रियाओं की तुलना में अधिक मजबूत होती हैं।


वोल्मर वेबर<ref>{{cite journal |last1=Volmer |first1=M. |last2=Weber |first2=A. |date=1926-01-01 |title=Keimbildung in übersättigten Gebilden |journal=Zeitschrift für Physikalische Chemie |volume=119U |issue=1 |pages=277–301 |doi=10.1515/zpch-1926-11927 |s2cid=100018452 |issn= 0942-9352 }}</ref> ("पृथक द्वीप")इस वृद्धि मोड में अवशोषण अधिशोष्य अंतःक्रियाएं अधिशोष्य सतह अंतःक्रियाओं की तुलना में अधिक मजबूत होती हैं, इसलिए "द्वीप" तुरंत बनते हैं।
वोल्मर वेबर<ref>{{cite journal |last1=Volmer |first1=M. |last2=Weber |first2=A. |date=1926-01-01 |title=Keimbildung in übersättigten Gebilden |journal=Zeitschrift für Physikalische Chemie |volume=119U |issue=1 |pages=277–301 |doi=10.1515/zpch-1926-11927 |s2cid=100018452 |issn= 0942-9352 }}</ref> ("पृथक द्वीप"), इस वृद्धि मोड में अवशोषण अधिशोष्य अंतःक्रियाएं अधिशोष्य सतह अंतःक्रियाओं की तुलना में अधिक मजबूत होती हैं, इसलिए "द्वीप" तुरंत बनते हैं।


=== अधिरोहण (अधिरोहण (एपिटैक्सी)) ===
=== अधिरोहण (एपिटैक्सी) ===
पतली फिल्म जमाव प्रक्रियाओं और अनुप्रयोगों का एक सबसेट सामग्री के तथाकथित एपिटैक्सियल विकास पर केंद्रित है, क्रियाधार की क्रिस्टलीय संरचना के बाद बढ़ने वाली क्रिस्टलीय पतली फिल्मों का जमाव '''अधिरोहण (एपिटैक्सी)''' शब्द ग्रीक मूल एपि (ἐπί) से आया है, जिसका अर्थ है "ऊपर", और टैक्सी (τάξις), जिसका अर्थ है "एक आदेशित तरीके" जिसका अर्थ है "व्यवस्थित करना" के रूप में किया जा सकता है।
पतली फिल्म जमाव प्रक्रियाओं और अनुप्रयोगों का एक उप-समूचय द्रव्य के तथाकथित अधिरोहित विकास पर केंद्रित है, क्रियाधार की क्रिस्टलीय संरचना के बाद बढ़ने वाली क्रिस्टलीय पतली फिल्मों का एकीकरण '''अधिरोहण (एपिटैक्सी)''' शब्द ग्रीक मूल एपि (ἐπί) से आया है, जिसका अर्थ है "ऊपर", और टैक्सी (taxis) (τάξις), जिसका अर्थ है "एक आदेशित तरीके" (ordered manner) जिसका अर्थ है "व्यवस्थित करना" के रूप में किया जा सकता है।


होमो अधिरोहण (एपिटैक्सी) शब्द विशिष्ट मामले को संदर्भित करता है जिसमें एक ही सामग्री की एक फिल्म एक क्रिस्टलीय क्रियाधार पर उगाई जाती है। उदाहरण के लिए, इस तकनीक का उपयोग एक ऐसी फिल्म को विकसित करने के लिए किया जाता है जो क्रियाधार से अधिक शुद्ध हो, जिसमें दोषों का घनत्व कम हो, और विभिन्न डोपिंग स्तरों वाली परतें बनाना। हेटेरोएपिटाक्सी मामले को संदर्भित करता है जिसमें जमा की जा रही फिल्म सबस्ट्रेट से अलग होती है।
होमो अधिरोहण (एपिटैक्सी) शब्द विशिष्ट मामले को संदर्भित करता है जिसमें एक ही द्रव्य की एक फिल्म एक क्रिस्टलीय क्रियाधार पर उगाई जाती है। उदाहरण के लिए, इस प्रवधि का उपयोग एक ऐसी फिल्म को विकसित करने के लिए किया जाता है जो क्रियाधार से अधिक शुद्ध हो, जिसमें दोषों का घनत्व कम हो, और विभिन्न डोपिंग स्तरों वाली परतें बनाना। हेटेरोएपिटाक्सी मामले को संदर्भित करता है जिसमें जमा की जा रही फिल्म क्रियाधार से अलग होती है।


पतली फिल्मों के अधिरोहित विकास के लिए उपयोग की जाने वाली तकनीकों में आणविक किरण अधिरोहण, रासायनिक वाष्प जमाव और स्पंदित लेजर जमाव शामिल हैं।<ref>{{cite journal |last1=Rashidian Vaziri |first1=M. R. |last2=Hajiesmaeilbaigi |first2=F. |last3=Maleki |first3=M. H. |date=2010-10-07 |title=Microscopic description of the thermalization process during pulsed laser deposition of aluminium in the presence of argon background gas |journal=Journal of Physics D: Applied Physics |volume=43 |issue=42 |pages= 425205|doi=10.1088/0022-3727/43/42/425205 |bibcode=2010JPhD...43P5205R |s2cid=120309363 |issn=1361-6463 }}</ref>
पतली फिल्मों के अधिरोहित विकास के लिए उपयोग की जाने वाली प्रवधि में आण्विक किरण अधिरोहण, रासायनिक वाष्प जमाव और स्पंदित लेजर एकीकरण शामिल हैं।<ref>{{cite journal |last1=Rashidian Vaziri |first1=M. R. |last2=Hajiesmaeilbaigi |first2=F. |last3=Maleki |first3=M. H. |date=2010-10-07 |title=Microscopic description of the thermalization process during pulsed laser deposition of aluminium in the presence of argon background gas |journal=Journal of Physics D: Applied Physics |volume=43 |issue=42 |pages= 425205|doi=10.1088/0022-3727/43/42/425205 |bibcode=2010JPhD...43P5205R |s2cid=120309363 |issn=1361-6463 }}</ref>


== तनाव और खिंचाव ==
== तनाव और खिंचाव ==
एक क्रियाधार के साथ उनके इंटरफेस से उत्पन्न तनावों के माध्यम से पतली फिल्मों को द्विअक्षीय रूप से लोड किया जा सकता है। एपिटैक्सियल पतली फिल्में फिल्म और क्रियाधार के सुसंगत जाली के बीच मिसफिट उपभेदों से तनाव का अनुभव कर सकती हैं। क्रियाधार के साथ थर्मल विस्तार गुणांक में अंतर के कारण ऊंचे तापमान पर उगाई जाने वाली पतली फिल्मों में थर्मल तनाव आम है।<ref name=":0">{{Cite journal|last=Murakami|first=Masanori|date=1991-07-01|title=Deformation in thin films by thermal strain|url=https://avs.scitation.org/doi/10.1116/1.577258|journal=Journal of Vacuum Science & Technology A|volume=9|issue=4|pages=2469–2476|doi=10.1116/1.577258|issn=0734-2101}}</ref> इंटरफेसियल एनर्जी में अंतर और अनाज की वृद्धि और सहसंयोजन पतली फिल्मों में आंतरिक तनाव में योगदान करते हैं। ये आंतरिक तनाव फिल्म की मोटाई का एक कार्य हो सकते हैं।ref>{{Cite book|last=Smith|first=Donald L.|url=https://books.google.com/books?id=kTVkwRWwxfYC|title=Thin-Film Deposition: Principles and Practice|date=1995-03-22|publisher=McGraw Hill Professional|isbn=978-0-07-058502-7|language=en}}<nowiki></ref></nowiki> <ref name=":1">{{Cite journal|last1=Abadias|first1=Grégory|last2=Chason|first2=Eric|last3=Keckes|first3=Jozef|last4=Sebastiani|first4=Marco|last5=Thompson|first5=Gregory B.|last6=Barthel|first6=Etienne|last7=Doll|first7=Gary L.|last8=Murray|first8=Conal E.|last9=Stoessel|first9=Chris H.|last10=Martinu|first10=Ludvik|date=2018-03-01|title=Review Article: Stress in thin films and coatings: Current status, challenges, and prospects|journal=Journal of Vacuum Science & Technology A|volume=36|issue=2|pages=020801|doi=10.1116/1.5011790|issn=0734-2101|doi-access=free}}</ref>
एक क्रियाधार के साथ उनके अंतराफलक से उत्पन्न तनावों के माध्यम से पतली फिल्मों को द्विअक्षीय रूप से लोड किया जा सकता है। अधिरोही पतली फिल्में फिल्म और क्रियाधार के सुसंगत जाली के बीच मिसफिट उपभेदों से तनाव का अनुभव कर सकती हैं। क्रियाधार के साथ ऊष्मीय विस्तार गुणांक में अंतर के कारण ऊंचे तापमान पर उगाई जाने वाली पतली फिल्मों में ऊष्मीय तनाव आम है।<ref name=":0">{{Cite journal|last=Murakami|first=Masanori|date=1991-07-01|title=Deformation in thin films by thermal strain|url=https://avs.scitation.org/doi/10.1116/1.577258|journal=Journal of Vacuum Science & Technology A|volume=9|issue=4|pages=2469–2476|doi=10.1116/1.577258|issn=0734-2101}}</ref> अंतरापृष्ठीय ऊर्जा में अंतर और अनाज की वृद्धि और सहसंयोजन पतली फिल्मों में आंतरिक तनाव में योगदान करते हैं। ये आंतरिक तनाव फिल्म की मोटाई का एक कार्य हो सकते हैं।ref>{{Cite book|last=Smith|first=Donald L.|url=https://books.google.com/books?id=kTVkwRWwxfYC|title=Thin-Film Deposition: Principles and Practice|date=1995-03-22|publisher=McGraw Hill Professional|isbn=978-0-07-058502-7|language=en}}<nowiki></ref></nowiki> <ref name=":1">{{Cite journal|last1=Abadias|first1=Grégory|last2=Chason|first2=Eric|last3=Keckes|first3=Jozef|last4=Sebastiani|first4=Marco|last5=Thompson|first5=Gregory B.|last6=Barthel|first6=Etienne|last7=Doll|first7=Gary L.|last8=Murray|first8=Conal E.|last9=Stoessel|first9=Chris H.|last10=Martinu|first10=Ludvik|date=2018-03-01|title=Review Article: Stress in thin films and coatings: Current status, challenges, and prospects|journal=Journal of Vacuum Science & Technology A|volume=36|issue=2|pages=020801|doi=10.1116/1.5011790|issn=0734-2101|doi-access=free}}</ref>


ये तनाव तन्य या संकुचित हो सकते हैं और तनाव में छूट के अन्य रूपों के बीच क्रैकिंग या बकलिंग का कारण बन सकते हैं। एपिटैक्सियल फिल्मों में, शुरू में जमा परमाणु परतों में क्रियाधार के साथ सुसंगत जाली वाले विमान हो सकते हैं। हालांकि, एक महत्वपूर्ण मोटाई मिसफिट अव्यवस्थाओं के बाद फिल्म में तनाव को कम करने के लिए अग्रणी होगा।<ref name=":0" /><ref>{{Cite journal|last1=Wcislo|first1=Tomasz|last2=Dabrowska-Szata|first2=Maria|last3=Gelczuk|first3=Lukasz|date=June 2010|title=Critical thickness of epitaxial thin films using Finite Element Method|url=https://ieeexplore.ieee.org/document/5714177|journal=2010 International Students and Young Scientists Workshop "Photonics and Microsystems"|pages=82–85|doi=10.1109/STYSW.2010.5714177|isbn=978-1-4244-8324-2 |s2cid=31642146 }}</ref>
ये तनाव तन्य या संकुचित हो सकते हैं और तनाव में छूट के अन्य रूपों के बीच क्रैकिंग या बकलिंग का कारण बन सकते हैं। अधिरोही फिल्मों में, शुरू में जमा परमाणु परतों में क्रियाधार के साथ सुसंगत जाली वाले विमान हो सकते हैं। हालांकि, एक महत्वपूर्ण मोटाई अनुपयुक्त अव्यवस्थाओं के बाद फिल्म में तनाव को कम करने के लिए अग्रणी होगा।<ref name=":0" /><ref>{{Cite journal|last1=Wcislo|first1=Tomasz|last2=Dabrowska-Szata|first2=Maria|last3=Gelczuk|first3=Lukasz|date=June 2010|title=Critical thickness of epitaxial thin films using Finite Element Method|url=https://ieeexplore.ieee.org/document/5714177|journal=2010 International Students and Young Scientists Workshop "Photonics and Microsystems"|pages=82–85|doi=10.1109/STYSW.2010.5714177|isbn=978-1-4244-8324-2 |s2cid=31642146 }}</ref>
=== माप और तनाव को मापना ===
=== माप और तनाव को मापना ===
फ्लैट सबस्ट्रेट्स पर जमा फिल्मों में तनाव जैसे वेफर्स को फिल्म द्वारा तनाव के कारण वेफर की वक्रता को मापकर मापा जा सकता है। लेजर एक ग्रिड पैटर्न और ग्रिड में विकृतियों में वेफर से परावर्तित होते हैं इनका उपयोग वक्रता की गणना के लिए किया जाता है। पतली फिल्मों में तनाव को एक्स-रे विवर्तन द्वारा या फिल्म के एक हिस्से को केंद्रित आयन किरण के माध्यम से और स्कैनिंग इलेक्ट्रॉन माइक्रोस्कोपी के माध्यम से मनाया गया विश्राम द्वारा भी मापा जा सकता है।<ref name=":1" />
समतल कार्याधार पर जमा परतों में तनाव जैसे वेफर्स को परत द्वारा तनाव के कारण वेफर की वक्रता को मापकर मापा जा सकता है। लेजर एक विद्युत् वितरण प्रतिरुप और विद्युत् वितरण तंत्र में विकृतियों में वेफर से परावर्तित होते हैं इनका उपयोग वक्रता की गणना के लिए किया जाता है। पतली फिल्मों में तनाव को एक्स-रे विवर्तन द्वारा या फिल्म के एक हिस्से को केंद्रित आयन किरण के माध्यम से और स्कैनिंग इलेक्ट्रॉन माइक्रोस्कोपी के माध्यम से मनाया गया विश्राम द्वारा भी मापा जा सकता है।<ref name=":1" />
=== स्ट्रेन इंजीनियरिंग ===
=== तनाव अभियांत्रिकी ===
फिल्मों में तनाव और तनाव में छूट फिल्म के भौतिक गुणों को प्रभावित कर सकती है, जैसे माइक्रोइलेक्ट्रॉनिक अनुप्रयोगों में बड़े पैमाने पर परिवहन।  इसलिए ऐसे तनावों को कम करने या उत्पन्न करने के लिए सावधानी बरती जाती है; उदाहरण के लिए क्रियाधार और फिल्म के बीच एक बफर परत जमा की जा सकती है।<ref name=":1" />पतली फिल्मों में विभिन्न चरण और डोमेन संरचनाओं का निर्माण करने के लिए तनाव इंजीनियरिंग का भी उपयोग किया जाता है जैसे कि फेरोइलेक्ट्रिक लेड जिरकोनेट टाइटेनेट (PZT) की डोमेन संरचना में।<ref>{{Cite journal|last1=Pandya|first1=Shishir|last2=Velarde|first2=Gabriel A.|last3=Gao|first3=Ran|last4=Everhardt|first4=Arnoud S.|last5=Wilbur|first5=Joshua D.|last6=Xu|first6=Ruijuan|last7=Maher|first7=Josh T.|last8=Agar|first8=Joshua C.|last9=Dames|first9=Chris|last10=Martin|first10=Lane W.|date=2019|title=Understanding the Role of Ferroelastic Domains on the Pyroelectric and Electrocaloric Effects in Ferroelectric Thin Films|journal=Advanced Materials|language=en|volume=31|issue=5|pages=1803312|doi=10.1002/adma.201803312|pmid=30515861 |issn=1521-4095|doi-access=free}}</ref>
फिल्मों में तनाव और तनाव में छूट फिल्म के भौतिक गुणों को प्रभावित कर सकती है, जैसे सूक्ष्म इलेक्ट्रॉनिकी अनुप्रयोगों में बड़े पैमाने पर परिवहन।  इसलिए ऐसे तनावों को कम करने या उत्पन्न करने के लिए सावधानी बरती जाती है; उदाहरण के लिए क्रियाधार और फिल्म के बीच एक बफर परत जमा की जा सकती है।<ref name=":1" /> पतली फिल्मों में विभिन्न चरण और डोमेन संरचनाओं का निर्माण करने के लिए तनाव अभियांत्रिकी का भी उपयोग किया जाता है जैसे कि फेरोइलेक्ट्रिक लेड जिरकोनेट टाइटेनेट (पीजेडटी - PZT) की डोमेन संरचना में।<ref>{{Cite journal|last1=Pandya|first1=Shishir|last2=Velarde|first2=Gabriel A.|last3=Gao|first3=Ran|last4=Everhardt|first4=Arnoud S.|last5=Wilbur|first5=Joshua D.|last6=Xu|first6=Ruijuan|last7=Maher|first7=Josh T.|last8=Agar|first8=Joshua C.|last9=Dames|first9=Chris|last10=Martin|first10=Lane W.|date=2019|title=Understanding the Role of Ferroelastic Domains on the Pyroelectric and Electrocaloric Effects in Ferroelectric Thin Films|journal=Advanced Materials|language=en|volume=31|issue=5|pages=1803312|doi=10.1002/adma.201803312|pmid=30515861 |issn=1521-4095|doi-access=free}}</ref>
== अनुप्रयोग ==
== अनुप्रयोग ==


=== सजावटी कोटिंग्स ===
=== सजावटी लेपन ===
सजावटी कोटिंग्स के लिए पतली फिल्मों का उपयोग संभवतः उनके सबसे पुराने अनुप्रयोग का प्रतिनिधित्व करता है। इसमें सीए शामिल है। 100 एनएम पतले सोने के पत्ते जो 5000 साल से भी पहले प्राचीन भारत में उपयोग किए जाते थे। इसे पेंटिंग के किसी भी रूप के रूप में भी समझा जा सकता है, हालांकि इस तरह के काम को आम तौर पर एक इंजीनियरिंग या वैज्ञानिक अनुशासन के बजाय एक कला शिल्प के रूप में माना जाता है। आज, चर मोटाई और उच्च अपवर्तक सूचकांक की पतली फिल्म सामग्री उदाहरण के लिए, टाइटेनियम डाइऑक्साइड को अक्सर कांच पर सजावटी कोटिंग्स के लिए लगाया जाता है, जिससे पानी पर तेल की तरह इंद्रधनुषी रंग दिखाई देता है। इसके अलावा, पारदर्शी सोने के रंग की सतहों को या तो सोने या टाइटेनियम नाइट्राइड के कणक्षेपण द्वारा तैयार किया जा सकता है।
'''सजावटी लेपन''' के लिए पतली फिल्मों का उपयोग संभवतः उनके सबसे पुराने अनुप्रयोग का प्रतिनिधित्व करता है। इसमें सीए (ca) शामिल है। 100 नैनोमीटर पतले सोने के पत्ते जो 5000 साल से भी पहले प्राचीन भारत में उपयोग किए जाते थे। इसे चित्रकारी के किसी भी रूप के रूप में भी समझा जा सकता है, हालांकि इस तरह के काम को आम तौर पर एक अभियांत्रिक या वैज्ञानिक अनुशासन के बजाय एक कला शिल्प के रूप में माना जाता है। आज, चर मोटाई और उच्च अपवर्तक सूचकांक की पतली फिल्म द्रव्य उदाहरण के लिए, टाइटेनियम डाइऑक्साइड को अक्सर कांच पर सजावटी लेपन के लिए लगाया जाता है, जिससे पानी पर तेल की तरह इंद्रधनुषी रंग दिखाई देता है। इसके अलावा, पारदर्शी सोने के रंग की सतहों को या तो सोने या टाइटेनियम नाइट्राइड के कणक्षेपण द्वारा तैयार किया जा सकता है।


=== प्रकाशिकी कोटिंग्स ===
=== प्रकाशिकी लेपन ===
ये परतें परावर्तक और अपवर्तक दोनों प्रणालियों में काम करती हैं। 19वीं शताब्दी के दौरान बड़े क्षेत्र (चिंतनशील) दर्पण उपलब्ध हो गए और कांच पर धातु चांदी या एल्यूमीनियम के कणक्षेपण द्वारा उत्पादित किए गए थे। कैमरे और सूक्ष्मदर्शी जैसे  प्रकाशिकी उपकरणों के लिए अपवर्तक लेंस आमतौर पर विपथन प्रदर्शित करते हैं, यानी गैर आदर्श अपवर्तक व्यवहार। जबकि लेंस के बड़े सेट को पहले प्रकाशिकी पथ के साथ पंक्तिबद्ध करना पड़ता था, आजकल, टाइटेनियम डाइऑक्साइड, सिलिकॉन नाइट्राइड या सिलिकॉन ऑक्साइड आदि की पारदर्शी बहुपरत के साथ प्रकाशिकी लेंस की कोटिंग इन विपथन को{{Dubious|Optical coating correcting aberrations?|date=November 2021}} ठीक कर सकती है। पतली फिल्म प्रौद्योगिकी द्वारा प्रकाशिकी सिस्टम में प्रगति के लिए एक प्रसिद्ध उदाहरण स्मार्ट फोन कैमरों में केवल कुछ मिमी चौड़े लेंस द्वारा दर्शाया गया है। अन्य उदाहरण चश्मे या सौर पैनलों पर विरोधी-प्रतिबिंब कोटिंग्स द्वारा दिए गए हैं।
ये परतें परावर्तक और अपवर्तक दोनों प्रणालियों में काम करती हैं। 19वीं शताब्दी के दौरान बड़े क्षेत्र (चिंतनशील) दर्पण उपलब्ध हो गए और कांच पर धातु चांदी या एल्यूमीनियम के कणक्षेपण द्वारा उत्पादित किए गए थे। कैमरे और सूक्ष्मदर्शी जैसे  प्रकाशिकी उपकरणों के लिए अपवर्तक लेंस सामान्यतः विपथन प्रदर्शित करते हैं, यानी गैर आदर्श अपवर्तक व्यवहार। जबकि लेंस के बड़े सेट को पहले प्रकाशिकी पथ के साथ पंक्तिबद्ध करना पड़ता था, आजकल, टाइटेनियम डाइऑक्साइड, सिलिकॉन नाइट्राइड या सिलिकॉन ऑक्साइड आदि की पारदर्शी एकल परत के साथ प्रकाशिकी लेंस के लेपन इन विपथन को{{Dubious|Optical coating correcting aberrations?|date=November 2021}} ठीक कर सकती है। पतली फिल्म प्रौद्योगिकी द्वारा प्रकाशिकी निकाय में प्रगति के लिए एक प्रसिद्ध उदाहरण स्मार्ट फोन कैमरों में केवल कुछ मिमी चौड़े लेंस द्वारा दर्शाया गया है। अन्य उदाहरण चश्मे या सौर पैनलों पर विरोधी-प्रतिबिंब लेपन द्वारा दिए गए हैं।


=== सुरक्षात्मक कोटिंग्स ===
=== सुरक्षात्मक लेपन ===
बाहरी प्रभावों से अंतर्निहित काम के टुकड़े की रक्षा के लिए पतली फिल्मों को अक्सर जमा किया जाता है। माध्यम से वर्कपीस तक या इसके विपरीत प्रसार को कम करने के लिए बाहरी माध्यम के साथ संपर्क को कम करके सुरक्षा संचालित हो सकती है। उदाहरण के लिए, प्लास्टिक नींबू पानी की बोतलों को सीओ 2 के बाहर प्रसार से बचने के लिए अक्सर प्रसार विरोधी परतों द्वारा लेपित किया जाता है, जिसमें कार्बोनिक एसिड विघटित हो जाता है जिसे उच्च दबाव में पेय में पेश किया गया था। एक अन्य उदाहरण माइक्रोइलेक्ट्रॉनिक चिप्स में पतली TiN फिल्मों द्वारा दर्शाया गया है, जो Al2O3 के गठन को दबाने के लिए एम्बेडिंग इंसुलेटर SiO2 से विद्युत रूप से संचालित एल्यूमीनियम लाइनों को अलग करता है। अक्सर, पतली फिल्में यंत्रवत् गतिमान भागों के बीच घर्षण से सुरक्षा का काम करती हैं। बाद के अनुप्रयोगों के उदाहरण कार इंजन में उपयोग की जाने वाली कार्बन (DLC - डीएलसी) परतों की तरह हीरे या नैनोकम्पोजिट्स से बनी पतली फिल्में हैं।
बाहरी प्रभावों से अंतर्निहित काम के टुकड़े की रक्षा के लिए पतली फिल्मों को सामान्यतः जमा किया जाता है। माध्यम से वर्कपीस तक या इसके विपरीत प्रसार को कम करने के लिए बाहरी माध्यम के साथ संपर्क को कम करके सुरक्षा संचालित हो सकती है। उदाहरण के लिए, प्लास्टिक नींबू पानी की बोतलों को CO<sub>2</sub> के बाहर प्रसार से बचने के लिए अक्सर प्रसार विरोधी परतों द्वारा लेपित किया जाता है, जिसमें कार्बोनिक एसिड विघटित हो जाता है जिसे उच्च दबाव में पेय में पेश किया गया था। एक अन्य उदाहरण सूक्ष्म इलेक्ट्रॉनिकी चिप्स में पतली टिन (TiN) फिल्मों द्वारा दर्शाया गया है, जो Al2O3 के गठन को दबाने के लिए एम्बेडिंग इंसुलेटर SiO2 से विद्युत रूप से संचालित एल्यूमीनियम लाइनों को अलग करता है। सामान्यतः पतली फिल्में यंत्रवत गतिमान भागों के बीच घर्षण से सुरक्षा का काम करती हैं। बाद के अनुप्रयोगों के उदाहरण कार इंजन में उपयोग की जाने वाली कार्बन (DLC - डीएलसी) परतों की तरह हीरे या नैनोकम्पोजिट्स से बनी पतली फिल्में हैं।


=== विद्युत ऑपरेटिंग कोटिंग्स ===
=== विद्युत ऑपरेटिंग लेपन ===
[[File:MxSnake.png|upright|thumb|right|बाद में एक एकीकृत परिपथ की संरचित धातु परत<ref name="SCT2010">{{cite journal |last1=Birkholz |first1=M. |last2=Ehwald |first2=K.-E. |last3=Wolansky |first3=D. |last4=Costina |first4=I. |last5=Baristiran-Kaynak |first5=C. |last6=Fröhlich |first6=M. |last7=Beyer |first7=H. |last8=Kapp |first8=A. |last9=Lisdat |first9=F. |date=2010-03-15 |title=Corrosion-resistant metal layers from a CMOS process for bioelectronic applications |journal=Surface and Coatings Technology |volume=204 |issue=12–13 |pages=2055–2059 |doi=10.1016/j.surfcoat.2009.09.075 |issn=0257-8972}}</ref>]]
[[File:MxSnake.png|upright|thumb|right|बाद में एक एकीकृत परिपथ की संरचित धातु परत<ref name="SCT2010">{{cite journal |last1=Birkholz |first1=M. |last2=Ehwald |first2=K.-E. |last3=Wolansky |first3=D. |last4=Costina |first4=I. |last5=Baristiran-Kaynak |first5=C. |last6=Fröhlich |first6=M. |last7=Beyer |first7=H. |last8=Kapp |first8=A. |last9=Lisdat |first9=F. |date=2010-03-15 |title=Corrosion-resistant metal layers from a CMOS process for bioelectronic applications |journal=Surface and Coatings Technology |volume=204 |issue=12–13 |pages=2055–2059 |doi=10.1016/j.surfcoat.2009.09.075 |issn=0257-8972}}</ref>]]
तांबा, एल्युमिनियम, सोना या चांदी आदि मौलिक धातुओं की पतली परतें और मिश्र धातुओं ने विद्युत उपकरणों में कई अनुप्रयोग पाए हैं। उनकी उच्च विद्युत चालकता के कारण वे विद्युत धाराओं या आपूर्ति वोल्टेज को परिवहन करने में सक्षम हैं। पतली धातु की परतें पारंपरिक विद्युत प्रणाली में काम करती हैं, उदाहरण के लिए, मुद्रित परिपथ बोर्डों पर Cu परतें, समाक्षीय केबलों में बाहरी ग्राउंड कंडक्टर के रूप में और विभिन्न अन्य रूपों जैसे सेंसर आदि।<ref>{{cite book |last=Korotcenkov |first=Ghenadii |date=2013-09-18 |chapter=Thin metal films |title=Handbook of Gas Sensor Materials: Properties, Advantages and Shortcomings for Applications |series=Integrated Analytical Systems |publisher=Springer |pages=153–166 |isbn=978-1461471646 }}</ref> अनुप्रयोग का एक प्रमुख क्षेत्र एकीकृत निष्क्रिय उपकरणों और एकीकृत परिपथों में उनका उपयोग बन गया, जहां ट्रांजिस्टर और कैपेसिटर आदि जैसे सक्रिय और निष्क्रिय उपकरणों के बीच विद्युत नेटवर्क। यह पतली Al या Cu परतों से निर्मित होता है। ये परतें कुछ 100 एनएम से लेकर कुछ µm तक की मोटाई का निपटान करती हैं, और वे अक्सर कुछ एनएम पतली टाइटेनियम नाइट्राइड परतों में एम्बेडेड होते हैं ताकि आसपास के ढांकता हुआ SiO2 के साथ रासायनिक प्रतिक्रिया को अवरुद्ध किया जा सके। यह आंकड़ा एक माइक्रोइलेक्ट्रॉनिक चिप में पार्श्व रूप से संरचित TiN/Al/TiN धातु स्टैक का एक माइक्रोग्राफ दिखाता है।<ref name="SCT2010" />
तांबा, एल्युमिनियम, सोना या चांदी आदि मौलिक धातुओं की पतली परतें और मिश्र धातुओं ने विद्युत उपकरणों में कई अनुप्रयोग पाए हैं। उनकी उच्च विद्युत चालकता के कारण वे विद्युत धाराओं या आपूर्ति वोल्टेज को परिवहन करने में सक्षम हैं। पतली धातु की परतें पारंपरिक विद्युत प्रणाली में काम करती हैं, उदाहरण के लिए, मुद्रित परिपथ बोर्डों पर Cu की परतें, समाक्षीय केबलों में बाहरी आधार सुचालक के रूप में और विभिन्न अन्य रूपों जैसे संसूचक आदि।<ref>{{cite book |last=Korotcenkov |first=Ghenadii |date=2013-09-18 |chapter=Thin metal films |title=Handbook of Gas Sensor Materials: Properties, Advantages and Shortcomings for Applications |series=Integrated Analytical Systems |publisher=Springer |pages=153–166 |isbn=978-1461471646 }}</ref> अनुप्रयोग का एक प्रमुख क्षेत्र एकीकृत निष्क्रिय उपकरणों और एकीकृत परिपथों में उनका उपयोग बन गया, जहां ट्रांजिस्टर और संधारित्र आदि जैसे सक्रिय और निष्क्रिय उपकरणों के बीच विद्युत नेटवर्क। यह पतली Al या Cu परतों से निर्मित होता है। ये परतें कुछ 100 एनएम से लेकर कुछ µm तक की मोटाई का निपटान करती हैं, और वे अक्सर कुछ एनएम पतली टाइटेनियम नाइट्राइड परतों में अंतर्निहित होते हैं ताकि आसपास के ढांकता हुआ SiO2 के साथ रासायनिक प्रतिक्रिया को अवरुद्ध किया जा सके। यह आंकड़ा एक सूक्ष्म इलेक्ट्रॉनिकी चिप में पार्श्व रूप से संरचित TiN/Al/TiN धातु के ढेर का एक सूक्ष्मछवि दिखाता है।<ref name="SCT2010" />


गैलियम नाइट्राइड और इसी तरह के अर्धचालकों के हेटरोस्ट्रक्चर इलेक्ट्रॉनों को एक उप नैनोमेट्रिक परत से बांध सकते हैं, प्रभावी रूप से दो आयामी इलेक्ट्रॉन गैस के रूप में व्यवहार कर सकते हैं। ऐसी पतली फिल्मों में क्वांटम प्रभाव बल्क क्रिस्टल की तुलना में इलेक्ट्रॉन गतिशीलता को काफी बढ़ा सकते हैं, जो उच्च इलेक्ट्रॉन गतिशीलता ट्रांजिस्टर में कार्यरत है
गैलियम नाइट्राइड और इसी तरह के अर्धचालकों के विषम संरचना वाले इलेक्ट्रॉनों को एक उप नैनोमेट्रिक परत से बांध सकते हैं, प्रभावी रूप से दो आयामी इलेक्ट्रॉन गैस के रूप में व्यवहार कर सकते हैं। ऐसी पतली परतों में क्वांटम प्रभाव बल्क क्रिस्टल की तुलना में इलेक्ट्रॉन गतिशीलता को काफी बढ़ा सकते हैं, जो उच्च इलेक्ट्रॉन गतिशीलता ट्रांजिस्टर में कार्यरत है।


=== बायोसेंसर और प्लास्मोनिक डिवाइस ===
=== बायोसेंसर और निष्काम उपकरण ===
नोबेल धातु पतली फिल्मों का उपयोग प्लास्मोनिक संरचनाओं में किया जाता है जैसे सतह प्लास्मोन प्रतिध्वनि (एसपीआर) सेंसर। सतही प्लास्मोन पोलरिटोन प्रकाशिकी शासन में सतह तरंगें हैं जो धातु ढांकता हुआ इंटरफेस के बीच में फैलता है; एसपीआर (SPR) संवेदक के लिए क्रेस्ट्सचमन्न रऐथेर (Kretschmann Raether) संरूपण में, एक प्रिज्म को वाष्पीकरण के माध्यम से एक धातु की फिल्म के साथ लेपित किया जाता है। धातु की फिल्मों, जर्मेनियम, टाइटेनियम या क्रोमियम फिल्मों की खराब चिपकने वाली विशेषताओं के कारण उन्हें मजबूत आसंजन को बढ़ावा देने के लिए मध्यवर्ती परतों के रूप में उपयोग किया जाता है।<ref>{{cite journal |last1=Serrano |first1=A. |last2=Rodríguez de la Fuente |first2=O. |last3=García |first3=M. A. |title=Extended and localized surface plasmons in annealed Au films on glass substrates |journal=[[Journal of Applied Physics]] |date=2010 |volume=108 |issue=7 |page=074303 |doi=10.1063/1.3485825|hdl=10261/87212 |hdl-access=free }}</ref><ref>{{cite journal |last1=Foley IV |first1=Jonathan J. |last2=Harutyunyan |first2=Hayk |last3=Rosenmann |first3=Daniel |last4=Divan |first4=Ralu |last5=Wiederrecht |first5=Gary P. |last6=Gray |first6=Stephen K. |title=When are Surface Plasmon Polaritons Excited in the Kretschmann-Raether Configuration? |journal=[[Scientific Reports]] |date=2015 |volume=5 |page=9929 |doi=10.1038/srep09929 |pmid=25905685 |pmc=4407725|doi-access=free }}</ref><ref>{{cite journal |last1=Todeschini |first1=Matteo |last2=Bastos da Silva Fanta |first2=Alice |last3=Jensen |first3=Flemming |last4=Wagner |first4=Jakob Birkedal |last5=Han |first5=Anpan |title=Influence of Ti and Cr Adhesion Layers on Ultrathin Au Films |journal=[[ACS Applied Materials & Interfaces]] |date=2017 |volume=9 |issue=42 |pages=37374–37385 |doi=10.1021/acsami.7b10136|pmid=28967257 |url=https://backend.orbit.dtu.dk/ws/files/138543837/Untitled.pdf }}</ref> धातु पतली फिल्मों का उपयोग प्लास्मोनिक वेवगाइड डिजाइनों में भी किया जाता है।<ref>{{cite journal |last1=Liu |first1=Liu |last2=Han |first2=Zhanghua |last3=He |first3=Sailing |title=Novel surface plasmon waveguide for high integration |journal=[[Optics Express]] |date=2005 |volume=13 |issue=17 |pages=6645–6650 |doi=10.1364/OPEX.13.006645|pmid=19498679 |doi-access=free }}</ref><ref>{{cite journal |last1=Liu |first1=Xiaoyong |last2=Feng |first2=Yijun |last3=Chen |first3=Ke |last4=Zhu |first4=Bo |last5=Zhao |first5=Junming |last6=Jiang |first6=Tian |title=Planar surface plasmonic waveguide devices based on symmetric corrugated thin film structures |journal=[[Optics Express]] |date=2014 |volume=22 |issue=17 |pages=20107–20116 |doi=10.1364/OE.22.020107|pmid=25321220 |doi-access=free }}</ref>
नोबेल धातु पतली फिल्मों का उपयोग निष्काम संरचनाओं में किया जाता है जैसे सतह प्लास्मोन प्रतिध्वनि (एसपीआर) सेंसर। सतही प्लास्मोन पोलरिटोन प्रकाशिकी शासन में सतह तरंगें हैं जो धातु ढांकता हुआ अंतराफलक के बीच में फैलता है; एसपीआर (SPR) संवेदक के लिए क्रेस्ट्सचमन्न रऐथेर (Kretschmann Raether) संरूपण में, एक वर्णक्रम को वाष्पीकरण के माध्यम से एक धातु की फिल्म के साथ लेपित किया जाता है। धातु की फिल्मों, जर्मेनियम, टाइटेनियम या क्रोमियम फिल्मों की खराब चिपकने वाली विशेषताओं के कारण उन्हें मजबूत आसंजन को बढ़ावा देने के लिए मध्यवर्ती परतों के रूप में उपयोग किया जाता है।<ref>{{cite journal |last1=Serrano |first1=A. |last2=Rodríguez de la Fuente |first2=O. |last3=García |first3=M. A. |title=Extended and localized surface plasmons in annealed Au films on glass substrates |journal=[[Journal of Applied Physics]] |date=2010 |volume=108 |issue=7 |page=074303 |doi=10.1063/1.3485825|hdl=10261/87212 |hdl-access=free }}</ref><ref>{{cite journal |last1=Foley IV |first1=Jonathan J. |last2=Harutyunyan |first2=Hayk |last3=Rosenmann |first3=Daniel |last4=Divan |first4=Ralu |last5=Wiederrecht |first5=Gary P. |last6=Gray |first6=Stephen K. |title=When are Surface Plasmon Polaritons Excited in the Kretschmann-Raether Configuration? |journal=[[Scientific Reports]] |date=2015 |volume=5 |page=9929 |doi=10.1038/srep09929 |pmid=25905685 |pmc=4407725|doi-access=free }}</ref><ref>{{cite journal |last1=Todeschini |first1=Matteo |last2=Bastos da Silva Fanta |first2=Alice |last3=Jensen |first3=Flemming |last4=Wagner |first4=Jakob Birkedal |last5=Han |first5=Anpan |title=Influence of Ti and Cr Adhesion Layers on Ultrathin Au Films |journal=[[ACS Applied Materials & Interfaces]] |date=2017 |volume=9 |issue=42 |pages=37374–37385 |doi=10.1021/acsami.7b10136|pmid=28967257 |url=https://backend.orbit.dtu.dk/ws/files/138543837/Untitled.pdf }}</ref> धातु पतली फिल्मों का उपयोग प्लास्मोनिक वेवगाइड आकृतियों में भी किया जाता है।<ref>{{cite journal |last1=Liu |first1=Liu |last2=Han |first2=Zhanghua |last3=He |first3=Sailing |title=Novel surface plasmon waveguide for high integration |journal=[[Optics Express]] |date=2005 |volume=13 |issue=17 |pages=6645–6650 |doi=10.1364/OPEX.13.006645|pmid=19498679 |doi-access=free }}</ref><ref>{{cite journal |last1=Liu |first1=Xiaoyong |last2=Feng |first2=Yijun |last3=Chen |first3=Ke |last4=Zhu |first4=Bo |last5=Zhao |first5=Junming |last6=Jiang |first6=Tian |title=Planar surface plasmonic waveguide devices based on symmetric corrugated thin film structures |journal=[[Optics Express]] |date=2014 |volume=22 |issue=17 |pages=20107–20116 |doi=10.1364/OE.22.020107|pmid=25321220 |doi-access=free }}</ref>
=== पतली-फिल्म फोटोवोल्टिक कोशिकाएं ===
=== पतली-फिल्म फोटोवोल्टिक कोशिकाएं ===
सौर कोशिकाओं की लागत को काफी हद तक कम करने के साधन के रूप में पतली फिल्म प्रौद्योगिकियों को भी विकसित किया जा रहा है। इसका कारण यह है कि पतली फिल्म सौर सेल कम सामग्री लागत, ऊर्जा लागत, हैंडलिंग लागत और पूंजीगत लागत के कारण निर्माण के लिए सस्ती हैं। यह विशेष रूप से मुद्रित इलेक्ट्रॉनिक्स (रोल टू रोल) प्रक्रियाओं के उपयोग में दर्शाया गया है। अन्य पतली फिल्म प्रौद्योगिकियां, जो अभी भी चल रहे अनुसंधान के प्रारंभिक चरण में हैं या सीमित व्यावसायिक उपलब्धता के साथ हैं, इन्हें अक्सर उभरती या तीसरी पीढ़ी के फोटोवोल्टिक कोशिकाओं के रूप में वर्गीकृत किया जाता है और इसमें शामिल हैं, कार्बनिक, डाई संवेदी, और बहुलक सौर सेल, साथ ही क्वांटम डॉट<ref>{{Cite journal|last1=Chen|first1=Wei|last2=Zhong|first2=Jialin|last3=Li|first3=Junzi|last4=Saxena|first4=Nitin|last5=Kreuzer|first5=Lucas P.|last6=Liu|first6=Haochen|last7=Song|first7=Lin|last8=Su|first8=Bo|last9=Yang|first9=Dan|last10=Wang|first10=Kun|last11=Schlipf|first11=Johannes|date=2019-05-02|title=Structure and Charge Carrier Dynamics in Colloidal PbS Quantum Dot Solids|url=https://pubs.acs.org/doi/10.1021/acs.jpclett.9b00869|journal=The Journal of Physical Chemistry Letters|language=en|volume=10|issue=9|pages=2058–2065|doi=10.1021/acs.jpclett.9b00869|pmid=30964305 |s2cid=104297006 |issn=1948-7185}}</ref>, कॉपर जिंक टिन सल्फाइड, नैनोक्रिस्टल और पेरोसाइट सौर सेल।<ref>{{Cite journal|last1=Zou|first1=Yuqin|last2=Guo|first2=Renjun|last3=Buyruk|first3=Ali|last4=Chen|first4=Wei|last5=Xiao|first5=Tianxiao|last6=Yin|first6=Shanshan|last7=Jiang|first7=Xinyu|last8=Kreuzer|first8=Lucas P.|last9=Mu|first9=Cheng|last10=Ameri|first10=Tayebeh|last11=Schwartzkopf|first11=Matthias|date=2020-11-25|title=Sodium Dodecylbenzene Sulfonate Interface Modification of Methylammonium Lead Iodide for Surface Passivation of Perovskite Solar Cells|url=https://pubs.acs.org/doi/10.1021/acsami.0c14732|journal=ACS Applied Materials & Interfaces|language=en|volume=12|issue=47|pages=52643–52651|doi=10.1021/acsami.0c14732|pmid=33190484 |s2cid=226973268 |issn=1944-8244}}</ref><ref>{{Cite journal|last1=Chen|first1=Wei|last2=Guo|first2=Renjun|last3=Tang|first3=Haodong|last4=Wienhold|first4=Kerstin S.|last5=Li|first5=Nian|last6=Jiang|first6=Zhengyan|last7=Tang|first7=Jun|last8=Jiang|first8=Xinyu|last9=Kreuzer|first9=Lucas P.|last10=Liu|first10=Haochen|last11=Schwartzkopf|first11=Matthias|date=2021|title=Operando structure degradation study of PbS quantum dot solar cells|url=http://xlink.rsc.org/?DOI=D1EE00832C|journal=Energy & Environmental Science|language=en|volume=14|issue=6|pages=3420–3429|doi=10.1039/D1EE00832C|s2cid=235510269 |issn=1754-5692}}</ref>
सौर कोशिकाओं की लागत को काफी हद तक कम करने के साधन के रूप में पतली फिल्म प्रौद्योगिकियों को भी विकसित किया जा रहा है। इसका कारण यह है कि पतली फिल्म सौर सेल कम द्रव्य लागत, ऊर्जा लागत, संचालन लागत और पूंजीगत लागत के कारण निर्माण के लिए सस्ती हैं। यह विशेष रूप से मुद्रित इलेक्ट्रॉनिक्स (रोल टू रोल) प्रक्रियाओं के उपयोग में दर्शाया गया है। अन्य पतली फिल्म प्रौद्योगिकियां, जो अभी भी चल रहे अनुसंधान के प्रारंभिक चरण में हैं या सीमित व्यावसायिक उपलब्धता के साथ हैं, इन्हें अक्सर उभरती या तीसरी पीढ़ी के '''फोटोवोल्टिक कोशिकाओं''' के रूप में वर्गीकृत किया जाता है और इसमें कार्बनिक, डाई संवेदी, और बहुलक सौर सेल, साथ ही क्वांटम डॉट<ref>{{Cite journal|last1=Chen|first1=Wei|last2=Zhong|first2=Jialin|last3=Li|first3=Junzi|last4=Saxena|first4=Nitin|last5=Kreuzer|first5=Lucas P.|last6=Liu|first6=Haochen|last7=Song|first7=Lin|last8=Su|first8=Bo|last9=Yang|first9=Dan|last10=Wang|first10=Kun|last11=Schlipf|first11=Johannes|date=2019-05-02|title=Structure and Charge Carrier Dynamics in Colloidal PbS Quantum Dot Solids|url=https://pubs.acs.org/doi/10.1021/acs.jpclett.9b00869|journal=The Journal of Physical Chemistry Letters|language=en|volume=10|issue=9|pages=2058–2065|doi=10.1021/acs.jpclett.9b00869|pmid=30964305 |s2cid=104297006 |issn=1948-7185}}</ref>, कॉपर जिंक टिन सल्फाइड, नैनोक्रिस्टल और पेरोसाइट सौर सेल शामिल हैं।<ref>{{Cite journal|last1=Zou|first1=Yuqin|last2=Guo|first2=Renjun|last3=Buyruk|first3=Ali|last4=Chen|first4=Wei|last5=Xiao|first5=Tianxiao|last6=Yin|first6=Shanshan|last7=Jiang|first7=Xinyu|last8=Kreuzer|first8=Lucas P.|last9=Mu|first9=Cheng|last10=Ameri|first10=Tayebeh|last11=Schwartzkopf|first11=Matthias|date=2020-11-25|title=Sodium Dodecylbenzene Sulfonate Interface Modification of Methylammonium Lead Iodide for Surface Passivation of Perovskite Solar Cells|url=https://pubs.acs.org/doi/10.1021/acsami.0c14732|journal=ACS Applied Materials & Interfaces|language=en|volume=12|issue=47|pages=52643–52651|doi=10.1021/acsami.0c14732|pmid=33190484 |s2cid=226973268 |issn=1944-8244}}</ref><ref>{{Cite journal|last1=Chen|first1=Wei|last2=Guo|first2=Renjun|last3=Tang|first3=Haodong|last4=Wienhold|first4=Kerstin S.|last5=Li|first5=Nian|last6=Jiang|first6=Zhengyan|last7=Tang|first7=Jun|last8=Jiang|first8=Xinyu|last9=Kreuzer|first9=Lucas P.|last10=Liu|first10=Haochen|last11=Schwartzkopf|first11=Matthias|date=2021|title=Operando structure degradation study of PbS quantum dot solar cells|url=http://xlink.rsc.org/?DOI=D1EE00832C|journal=Energy & Environmental Science|language=en|volume=14|issue=6|pages=3420–3429|doi=10.1039/D1EE00832C|s2cid=235510269 |issn=1754-5692}}</ref>
=== पतली-फिल्म बैटरी ===
=== पतली-फिल्म बैटरी ===
विशेष अनुप्रयोगों के लिए अद्वितीय बैटरी बनाने के लिए विभिन्न प्रकार के क्रियाधार में ठोस स्थिति लिथियम पॉलिमर लागू करने के लिए पतली फिल्म प्रिंटिंग तकनीक का उपयोग किया जा रहा है। पतली फिल्म बैटरी को किसी भी आकार या आकार में सीधे चिप्स या चिप पैकेज पर जमा किया जा सकता है। लचीली बैटरियों को प्लास्टिक, पतली धातु की पन्नी या कागज पर प्रिंट करके बनाया जा सकता है।<ref>{{cite web |url=https://www.mpoweruk.com/cell_construction.htm#flexible |title=Cell Mechanical Construction - Thin Film Batteries |author=<!--Not stated--> |website=mpoweruk.com |publisher=Woodbank Communications Ltd |access-date=2019-10-03 }}</ref>
विशेष अनुप्रयोगों के लिए अद्वितीय [[बैटरी आवेशक|बैटरी]] बनाने के लिए विभिन्न प्रकार के क्रियाधार में ठोस स्थिति लिथियम पॉलिमर लागू करने के लिए पतली फिल्म प्रिंटिंग प्रवधि का उपयोग किया जा रहा है। पतली फिल्म बैटरी को किसी भी आकार या आकार में सीधे चिप्स या चिप पैकेज पर जमा किया जा सकता है। लचीली बैटरियों को प्लास्टिक, पतली धातु की पन्नी या कागज पर प्रिंट करके बनाया जा सकता है।<ref>{{cite web |url=https://www.mpoweruk.com/cell_construction.htm#flexible |title=Cell Mechanical Construction - Thin Film Batteries |author=<!--Not stated--> |website=mpoweruk.com |publisher=Woodbank Communications Ltd |access-date=2019-10-03 }}</ref>
=== पतली-फिल्म थोक ध्वनिक तरंग प्रतिध्वनि (TFBARS/FBARS) ===
=== पतली-फिल्म थोक ध्वनिक तरंग प्रतिध्वनि (टीएफबार्स/एफबार्स - TFBARS/FBARS) ===


'''पीजोइलेक्ट्रिक क्रिस्टल''' की अनुनाद आवृत्ति के लघुकरण और अधिक सटीक नियंत्रण के लिए पतली फिल्म थोक ध्वनिक अनुनादक टीएफबीएआर/एफबीएआर (TFBARS/FBARS) दोलन, दूरसंचार निस्पंदन और द्विपथी (डुप्लेक्सर्स), और संवेदक अनुप्रयोगों के लिए विकसित किए गए हैं।
'''पीजोइलेक्ट्रिक क्रिस्टल''' की प्रतिध्वनि आवृत्ति के लघुकरण और अधिक सटीक नियंत्रण के लिए पतली फिल्म थोक ध्वनिक अनुनादक टीएफबीएआर/एफबीएआर (TFBARS/FBARS) दोलन, दूरसंचार निस्पंदन और द्विपथी (डुप्लेक्सर्स), और संवेदक अनुप्रयोगों के लिए विकसित किए गए हैं।


== यह भी देखें ==
== यह भी देखें ==
Line 146: Line 146:
*लैंगमुइर -ब्लोडगेट फिल्म
*लैंगमुइर -ब्लोडगेट फिल्म
*परत दर परत
*परत दर परत
*Microfabrication
*सूक्ष्म निर्माण
*ऑर्गेनिक एलईडी
*ऑर्गेनिक एलईडी
*SARFUS
*SARFUS
Line 174: Line 174:


{{Authority control}}
{{Authority control}}
[[Category: कृत्रिम सामग्री]]
[[Category: सामग्री विज्ञान]]
[[Category: नैनोटेक्नोलॉजी]]]
[[Category: पतली फिल्में | पतली फिल्में ]]




[[Category: Machine Translated Page]]
]
 
[[Category:AC with 0 elements]]
[[Category:All accuracy disputes]]
[[Category:Articles with disputed statements from November 2021]]
[[Category:Articles with invalid date parameter in template]]
[[Category:CS1 English-language sources (en)]]
[[Category:CS1 maint]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates used by AutoWikiBrowser|Cite web]]
[[Category:Templates using TemplateData]]
[[Category:कृत्रिम सामग्री]]
[[Category:नैनोटेक्नोलॉजी]]
[[Category:पतली फिल्में| पतली फिल्में ]]
[[Category:सामग्री विज्ञान]]

Latest revision as of 16:34, 10 October 2022

पतली फिल्म द्रव्य की परत होती है जो एक नैनोमीटर (एकल परत) के अंश से लेकर मोटाई में कई माइक्रोमीटर तक हो सकती हैं। पतली फिल्मों के रूप में द्रव्य का नियंत्रित संश्लेषण (एक प्रक्रिया जिसे निक्षेपण कहा जाता है) कई अनुप्रयोगों में एक मौलिक उपाय हो सकता है। इसका एक परिचित उदाहरण घरों में प्रयोग किए जाने वाला दर्पण है, जिसमें सामान्यतः एक परावर्तक अंतरपृष्‍ठ बनाने के लिए कांच के पृष्ठ के पीछे एक पतली धातु का लेप लगा होता है। धातु के लेपन की प्रक्रिया का प्रयोग सामान्यतः दर्पण बनाने के लिए किया जाता था, लेकिन वर्तमान में जो प्रयास धातु की परत का कणक्षेपण करने में सहायक है उसका प्रयोग एकत्रित करने के लिए किया जाने लगा हैं। 20वीं शताब्दी में पतली फिल्म की निक्षेपण प्रयासों में हुई प्रगति ने कई क्षेत्रों में व्यापक श्रेणियों के प्रयासों में सफलताओं को संभव बनाया है जैसे चुंबकीय अभिलेकन संचार माध्यम, इलेक्ट्रॉनिक अर्धचालक उपकरण, एकीकृत निष्क्रिय उपकरण, एलईडी (LED), प्रकाशिकी लेपन (जैसे कि अपरावर्ती लेपन), काटने के उपकरण पर कठोर लेपन, ऊर्जा उत्पादन (जैसे पतली-फिल्म सौर सेल) और ऊर्जा भंडारण (पतली-फिल्म) दोनों के लिए बैटरी) इत्यादि। आधुनिक समय में पतली फिल्म का प्रयोग दवा वितरण के माध्यम से औषधीय चीजों को बनाने में भी किया जाने लगा हैं। पतली फिल्मों के एकत्रित संगठन को एकल परत कहा जाता है।

निम्नवत अलग अलग रूचि के कारण, पतली फिल्में अपने नए और अनूठे गुणों के कारण द्रव्य पदार्थ के विकास और अध्ययन में महत्वपूर्ण भूमिका निभाती हैं। बहुलौहिक द्रव्य, और अतिजालक इस प्रमाणित घटना के कुछ उदाहरण हैं जो इसके अध्ययन में सहायता प्रदान करते हैं।

केंद्रक (न्यूक्लिएशन)

केंद्रक (न्यूक्लिएशन) वृद्धि करने की दिशा में एक महत्वपूर्ण कदम है जो एक पतली फिल्म की अंतिम संरचना को निर्धारित करने में मदद करता है। कई विकसित विधियां हैं जो केंद्रक नियंत्रण पर निर्भर करती हैं जैसे कि परमाणु परत अधिरोहण ( जिसे परमाणु परत जमाव भी कहते हैं)। केंद्रक को अवशोषण, निक्षेपण, और सतह प्रसार की सतह प्रक्रिया को चिह्नित करके तैयार किया जा सकता है।[1]

अवशोषण और विशोषण

अवशोषण एक क्रियाधार सतह है जो वाष्पित परमाणु या अणुओं के साथ मिलकर पारस्परिक क्रिया बनाती है। पारस्परिक क्रिया से संलग्न हुए गुणांक की विशेषता के रूप में देखा जा सकता है, और आने वाली प्रजातियों का अंश सतह के साथ ताप संतुलित की अवस्था बनाता है। विशोषण, अवशोषण का व्युत्क्रम होता है जहां पहले से अधिशोषित अणु सीमांकन ऊर्जा पर अधिकार प्राप्त कर लेते है और क्रियाधार सतह को छोड़ देते है।

दो प्रकार के अवशोषण जिन्हें भौतिक अधिशोषण और रासायनिक अधिशोषण कहा जाता है परमाणु अंतःक्रियाओं के लिए शक्ति प्रदान करने में प्रतिष्ठित हैं। भौतिक अधिशोषण एक फैला हुआ या मुड़ा हुआ अणु है और अवशोषण ऊर्जा द्वारा विशेषतयः सतह के बीच वैन डर वाल्स के बंधन का वर्णन करता है। वाष्पित अणु तेजी से गतिज ऊर्जा को खो देते हैं और सतह के परमाणुओं के साथ बंधन करके अपनी मुक्त ऊर्जा को कम कर देते हैं। रासायनिक अधिशोषण अणु के मजबूत इलेक्ट्रॉन हस्तांतरण (आयनिक या सहसंयोजक बंधन) का वर्णन करते हैं जिसमें क्रियाधार परमाणुओं के साथ अवशोषण ऊर्जा होती है। इस दूरी को एक कार्य के रूप में संभावित ऊर्जा द्वारा भौतिक और रसायन विज्ञान की प्रक्रिया की कल्पना करने में उपयोग में लाया जाता हैं। भौतिक अधिशोषण के लिए संतुलन दूरी रसायन अधिशोषण की दूरी की अपेक्षा सतह से अधिक होती है। भौतिक अधिशोषण से रासायनिक अधिशोषण अवस्थाओं में संक्रमण प्रभावी ऊर्जा अवरोध द्वारा नियंत्रित होती हैं।[1]

क्रिस्टलीय सतहों में बड़े मान वाली विशिष्ट बंधन साइटें होती हैं जो समग्र मुक्त ऊर्जा को कम करने के लिए अधिमानतः वाष्पित अणुओं द्वारा स्वतंत्र किये जाते हैं। ये स्थिर स्थान सामान्यतः किनारों पर, रिक्तियों पर और पेंच अव्यवस्थाओं पर पाए जाते हैं। सबसे स्थिर साइटों के भर जाने के बाद, अधिपरमाणुओं (वाष्पित अणु) में परस्पर क्रियाएं और अधिक महत्वपूर्ण हो जाती हैं।[2]

केंद्रक प्रतिरूप (न्यूक्लिएशन मॉडल)

केंद्रक गतिकी को केवल अवशोषण और विशोषण पर विचार करके तैयार किया जा सकता है। पहले इस समस्या पर विचार करें जिस पर कोई पारस्परिक अनुकूलन परस्पर क्रियाएं नहीं होता हैं, कोई गुच्छन (क्लस्टरिंग) या चरण किनारों के साथ परस्पर क्रियाएं नहीं करता हैं।

अधिपरमाणु सतह घनत्व के परिवर्तन की दर होती हैं, जहाँ पर शुद्ध प्रवाह है, विशोषण से पहले सतह की सतह का जीवनकाल है और चिपका हुआ गुणांक है:

अधिशोषण को विभिन्न समतापी द्वारा भी प्रतिरूपित किया जा सकता है जैसे लैंगमुइर प्रतिरूप और बीईटी (BET) प्रतिरूप। लैंगमुइर प्रतिरूप क्रियाधार सतह पर रिक्ति के साथ वाष्प अधिपरमाणु की अवशोषण प्रतिक्रिया के आधार पर एक संतुलन स्थिरांक प्राप्त करता है। बीईटी प्रतिरूप आगे फैलता है और परमाणुओं के आसन्न ढेर के बीच परस्पर क्रिया किये बिना पहले से अधिशोषित अधिपरमाणु पर अधिपरमाणु निक्षेपण करने की अनुमति देता है। परिणामी व्युत्पन्न सतह आवृत्त क्षेत्र संतुलन वाष्प दबाव और लागू दबाव के संदर्भ में होते हैं।

लैंगमुइर प्रतिरूप जहां अधिशोषित अधिपरमाणु का वाष्प दबाव है:

बीईटी प्रतिरूप जहां अधिशोषित अधिपरमाणु का संतुलन वाष्पित दबाव है और अधिशोषित अधिपरमाणु का लागू वाष्पित दबाव है:

एक महत्वपूर्ण संदेश, सतह स्फटिक रूप-विधा (क्रिस्टलोग्राफी) हैं और सतह पर टूटे हुए बंधन के कारण समग्र मुक्त इलेक्ट्रॉनिक और बंधन ऊर्जा को कम करने के लिए थोक से भिन्न होता है। यह एक नई संतुलन स्थिति का परिणाम है जिसे "सेल्वेडेज" के रूप में जाना जाता है, जहां समानांतर थोक जाली समरूपता के रूप में संरक्षित होती है। यह घटना केंद्रक के सैद्धांतिक गणना से विचलित होने का कारण बन सकती है।[1]

सतह प्रसार

सतह प्रसार क्रियाधार सतह पर ऊर्जा मिनिमा के बीच चलते हुए अधिशोषित परमाणुओं की पार्श्व गति का वर्णन करता है। प्रसार सबसे आसानी से सबसे कम हस्तक्षेप करने वाली संभावित बाधाओं के साथ कई अतिरिक्त स्थितियों के बीच हो सकता है। सतह के प्रसार को ग्लेंसिंग-कोण आयन द्वारा बिखेर कर मापा जा सकता है। घटनाओं के बीच औसत समय का वर्णन भी किया जा सकता है:[1]

अधिपरमाणु स्थानांतरण के अतिरिक्त, अधिपरमाणु के कोयलेस समूह को व्यय किया जा सकता हैं। प्रक्रियाओं के माध्यम से ये सहसंयोजक समूह, जैसे कि ओस्टवल्ड रेपिनिंग और सिंटरिंग की क्रिया, निकाय की कुल सतह ऊर्जा को कम करने के प्रत्युत्तर है। ओस्टवल्ड रेपिनिंग उस प्रक्रिया का वर्णन करता है जिसमें विभिन्न आकारों के अनुकूलन द्वीप छोटे लोगों की कीमतों की तुलना में बड़े लोगों में बढ़ते हैं। सिंटरिंग सहसंयोजन तंत्र तब होता है जब द्वीप परस्पर क्रिया करते हैं और आपस में जुड़ते हैं।[1]

निक्षेप

पतली फिल्म को एक सतह पर लागू करने का कार्य ही पतली-फिल्म का निक्षेपण है, एक क्रियाधार पर और पहले से जमा की गई परतों पर द्रव्य की एक पतली फिल्म जमा करने के लिए कोई भी प्रवधि प्रयोग में लाई जा सकती हैं। पतला एक सापेक्ष शब्द है, लेकिन अधिकांश निक्षेपण प्रवधि कुछ दसियों नैनोमीटर के भीतर परत की मोटाई को नियंत्रित करती हैं। आण्विक किरण अधिरोहण द लैंगमुइर-ब्लोडगेट परत आदि हैं। लैंगमुइर ब्लोडगेट विधि, परमाणु परत के एकीकरण और आण्विक परत के निक्षेपण परमाणुओं और अणुओं की एक ही परत को एक समय में जमा करने की अनुमति देता है।

यह प्रकाशिकी के निर्माण में उपयोगी होता हैं (उदाहरण के लिए, परावर्तक, विरोधी चिंतनशील लेपन या स्वयं द्वारा ग्लास की सफाई के लिए), इलेक्ट्रॉनिक्स (रोधक, अर्धचालक की परतें, और सुचालक एकीकृत परिपथ बनाते हैं), संकुलन (यानी, एल्यूमीनियम-लेपित पीईटी फिल्म ), और समकालीन कला में (लैरी बेल का काम देखें)। इसी तरह की प्रक्रियाओं का उपयोग कभी-कभी किया जाता है जहां मोटाई महत्वपूर्ण नहीं होती है: उदाहरण के लिए, विद्युत आवरण द्वारा तांबे की शुद्धि, और गैस-चरण प्रसंस्करण के बाद सीवीडी जैसी प्रक्रिया द्वारा सिलिकॉन और समृद्ध यूरेनियम का एकत्रित होना।

निक्षेपण प्रवधि दो व्यापक श्रेणियों में आती है,और यह इस बात पर निर्भर करती है कि प्रक्रियाएं मुख्य रूप से रासायनिक और भौतिक है या नहीं है।[3]

रासायनिक निक्षेपण

यहां, एक द्रव अग्रदूत ठोस सतह पर रासायनिक परिवर्तन करता है, जो एक ठोस परत को छोड़ता है। इसका एक दैनिक उदाहरण एक ठंडी वस्तु पर कालिख का बनना है और एसा तब होता हैं जब इस वस्तु को एक लौ के अंदर रखा जाता है। चूंकि द्रव ठोस वस्तु को घेरता है, इसलिए हर सतह पर निक्षेपण होता है, दिशा के बारे में सोचे बिना, रासायनिक निक्षेपण प्रवधिों की पतली फिल्में दिशात्मक होने के बजाय अनुरूपित हो जाती हैं।

रासायनिक निक्षेपण को आगे अग्रगामी चरण द्वारा वर्गीकृत किया गया है:

चढ़ाना तरल अग्रदूतों पर निर्भर करता है, सामान्यतः धातु के नमक के साथ पानी का एक विलयन बना लिया जाता है। कुछ चढ़ाना प्रक्रियाएं समाधान में अभिकर्मकों द्वारा पूरी तरह से संचालित होती हैं (सामान्यतः महान धातुओं के लिए), लेकिन अब तक सबसे व्यावसायिक रूप से महत्वपूर्ण प्रक्रिया विद्युत आवरण है। सुचालक निर्माण में, विद्युत रसायन निक्षेप के रूप में जाना जाने वाला विद्युत आवरण का एक उन्नत रूप अब उन्नत चिप्स में तांबे के प्रवाहकीय तारों को बनाने के लिए उपयोग किया जाता है, और यह एल्यूमीनियम तारों के लिए पिछली चिप पीढ़ियों के लिए उपयोग की जाने वाली रासायनिक और भौतिक एकीकरण प्रक्रियाओं की जगह ले रहा है।[4]

रासायनिक समाधान बयान (सीएसडी-CSD) या रासायनिक स्नान बयान (सीबीडी-CBD) एक तरल अग्रदूत का उपयोग करता है, जो सामान्यतः एक कार्बनिक विलायक में घुले हुए कार्बन धात्विक पाउडर का घोल होता है। यह अपेक्षाकृत सस्ती, सरल पतली फिल्म प्रक्रिया है जो उचित तत्वानुपातकीय रूप से सटीक क्रिस्टलीय चरणों का उत्पादन करता है। इस प्रवधि को सोल जेल विधि के रूप में भी जाना जाता है क्योंकि 'विलयन' धीरे-धीरे एक जैल के निर्माण की दिशा में विकसित होता है, जिसका एक उदाहरण द्विध्रुवीय प्रणाली हैं।

लैंगमुइर ब्लोडेट विधि एक जलीय उप-चरण के शीर्ष पर तैरने वाले अणुओं का उपयोग करती है। अणुओं के संकुलित घनत्व को नियंत्रित किया जाता है, और संकुल किए गए एकल परत को उपचरण द्वारा ठोस क्रियाधार की नियंत्रित निकासी के रूप में एक ठोस क्रियाधार पर स्थानांतरित किया जाता है। यह विभिन्न अणुओं की पतली फिल्म बनाने की अनुमति देता है जैसे नैनोकण, पॉलिमर और लिपिड नियंत्रित कण पैकिंग घनत्व और परत मोटाई।[5]

चक्रण प्रक्षेप, एक तरल अग्रदूत का उपयोग करता है, या एक चिकनी, सपाट क्रियाधार पर जमा सोल जेल अग्रदूत का उपयोग करता है जो बाद में क्रियाधार पर घोल को केन्द्र से हटते हुए फैलाने के लिए उच्च वेग से काता जाता है। जिस गति से घोल काता जाता है और सोल की चिपचिपाहट जमा फिल्म की अंतिम मोटाई निर्धारित करती है। वांछित के रूप में फिल्मों की मोटाई बढ़ाने के लिए बार-बार जमा किए जा सकते हैं। अनाकार चक्रण लेपित फिल्म को क्रिस्टलीकृत करने के लिए अक्सर उष्मीय उपचार किया जाता है। ऐसी पारदर्शी फिल्में एकल पारदर्शी क्रियाधार पर पारदर्शिता के बाद कुछ सदृश झुकाव प्रदर्शित कर सकती हैं।[6]

यह जब डूब जाता है या फिर नियंत्रित परिस्थितियों में वापस ले लिया जाता है तब वापस की गयी गति को नियंत्रित करके, उसे वाष्पीकरण की स्थिति (मुख्य रूप से आर्द्रता, तापमान) और विलायक की अस्थिरता/चिपचिपाहट, फिल्म की मोटाई, समरूपता और नैनोस्कोपिक आकृति विज्ञान को नियंत्रित किया जाता है। दो वाष्पीकरण व्यवस्थाएं होती हैं: केशिकाओं के क्षेत्र में बहुत कम वापसी की गति पर, और तेजी से वाष्पीकरण गति पर जल निकासी क्षेत्र होते है।[7] रासायनिक वाष्प जमाव (सीवीडी) आम तौर पर एक गैस-चरण अग्रदूत का उपयोग करता है,अक्सर तत्व के एक हलाइड और हाइड्राइड को जमा किया जाता है। एमओसीवीडी (MOCVD) के मामले में, एक कार्बधात्विक गैस का उपयोग किया जाता है। वाणिज्यिक प्रवधि अक्सर अग्रदूत गैस के बहुत कम दबाव का उपयोग करती है।

प्लाविका वर्धित सीवीडी (पीईसीवीडी) एक अग्रदूत के रूप में एक आयनित वाष्प, या प्लाविका का उपयोग करता है। उपरोक्त कालिख उदाहरण के विपरीत, वाणिज्यिक पीईसीवीडी एक प्लावक (प्लाविका) का उत्पादन करने के लिए, रासायनिक-प्रतिक्रिया के बजाय विद्युत चुम्बकीय साधनों (विद्युत प्रवाह, माइक्रोवेव उत्तेजना) पर निर्भर करता है।

परमाणु परत जमाव (एएलडी - ALD), और इसकी सह प्रवधि आण्विक परत एकीकरण (एमएलडी - MLD), एक समय में एक परत को एक परत एकत्रित करने के लिए गैसीय अग्रदूत का उपयोग करती है। प्रक्रिया को दो आधी प्रतिक्रियाओं में विभाजित किया जाता है, और इसे अनुक्रम में चलाया जाता है और प्रत्येक परत के लिए इसे दोहराया जाता है, जिसके कारण अगली परत शुरू करने से पहले कुल परत संतृप्ति सुनिश्चित हो सके। इसलिए एक अभिकारक को पहले एकत्रित करके फिर दूसरा अभिकारक एकत्रित किया जाता है, इस तरह से क्रियाधार पर रासायनिक प्रतिक्रियाएं होती है, जिससे वांछित रचना बनती है। चरणगत होने के परिणामस्वरूप, प्रक्रिया सीवीडी की तुलना में धीमी होती है, हालांकि इस सीवीडी के विपरीत, कम तापमान पर इसे चलाया जा सकता है।

भौतिक निक्षेपण

भौतिक निक्षेपण यांत्रिकी, विद्युत या उष्मागतिकी का उपयोग करके एक ठोस पतली फिल्म का निर्माण करता है। इसका एक उदाहरण ठंड का गठन है। चूंकि अधिकांश अभियांत्रिक द्रव्य अपेक्षाकृत उच्च ऊर्जाओं द्वारा एक साथ आयोजित की जाती हैं, और इन ऊर्जाओं को संग्रहित करने के लिए रासायनिक प्रतिक्रियाओं का उपयोग नहीं किया जाता है, वाणिज्यिक भौतिक निक्षेपण प्रणालियों का ठीक से काम करने के लिए कम दबाव वाले वाष्पित वातावरण की आवश्यकता होती है, इस प्रकार अधिकांश को भौतिक वाष्प एकीकरण (पीवीडी PVD) के रूप में वर्गीकृत किया जा सकता है।

एकीकृत की जाने वाली द्रव्य को एक ऊर्जावान, एन्ट्रोपिक वातावरण में रखा जाता है, जिससे द्रव्य के कण इसकी सतह से बच जाएं। इस स्रोत का सामना करना एक ठंडी सतह से सामना करने जैसा है जो इनसे आने वाले कणों से ऊर्जा खींचता है, जिसकी सहायता से उन्हें एक ठोस परत बनाने की अनुमति मिलती है। पूरे निकाय को एक निर्वात निक्षेपण कक्षिका में रखा जाता है, जिससे कणों को यथासंभव स्वतंत्र रूप से यात्रा करने की अनुमति मिल सके। चूंकि कण एक सीधे रास्ते का पालन करते हैं, इसलिए इसके अनुरूप की जगह भौतिक साधनों द्वारा जमा की गई फिल्में सामान्यतः दिशात्मक होती हैं।

भौतिक निक्षेपण के उदाहरणों में शामिल हैं:

चांदी के एक-परमाणु-मोटी द्वीपों को ऊष्मीय वाष्पीकरण द्वारा पैलेडियम की सतह पर जमा किया जाता है।टनलिंग माइक्रोस्कोपी (एसटीएम) का उपयोग करके एक पूर्ण मोनोलेयर को पूरा करने के लिए आवश्यक समय को ट्रैक करके सतह के कवरेज का अंशांकन प्राप्त किया गया था और क्वांटम-अच्छी तरह से राज्यों के उद्भव से कोण-संकल्पित फोटोमिशन स्पेक्ट्रोस्कोपी में सिल्वर फिल्म की मोटाई की विशेषता है।।छवि का आकार 250 एनएम से 250 एनएम है।[8]

एक उष्मीय वाष्पीकरणकर्ता जो द्रव्य को पिघलाने और एक उपयोगी सीमा तक अपने वाष्प दबाव को बढ़ाने के लिए एक विद्युत प्रतिरोध हीटर का उपयोग करता है। यह एक उच्च निर्वात में किया जाता है, दोनों वाष्प को कक्ष में अन्य गैसीय-चरणों में परमाणुओं के विपरीत प्रतिक्रियाओं या बिखरने के बिना क्रियाधार तक पहुंचने की अनुमति मिल जाती है, और निर्वात कक्ष में अवशिष्ट गैस से अशुद्धियों के समावेश को कम कर देती हैं। इससे यह पता चलता है कि प्रतिदीप्त तत्व की तुलना में बहुत अधिक वाष्प दबाव वाली द्रव्य को फिल्म के संदूषण के बिना एकत्रित किया जा सकता है। आण्विक किरण अधिरोहण (एपिटैक्सी) ऊष्मीय वाष्पीकरण का एक विशेष रूप से परिष्कृत रूप है।

एक इलेक्ट्रॉन किरण का प्रयोग करके वाष्पीकरणकर्ता द्रव्य के एक छोटे से स्थान को उबालने के लिए एक इलेक्ट्रॉन बंदूक से एक उच्च-ऊर्जा किरण की सहायता लेकर उस स्थान को प्रतिदीप्त कर देता है, चूंकि प्रतिदीप्त एक समान नहीं है, इसलिए कम वाष्पित दबाव द्रव्य जमा की जा सकती है। किरण सामान्यतः 270° के कोण के माध्यम से मुड़ा हुआ है ताकि यह सुनिश्चित किया जा सके कि बंदूक फिलामेंट सीधे वाष्पीकृत प्रवाह के संपर्क में नहीं है। इलेक्ट्रॉन किरण वाष्पीकरण के लिए विशिष्ट निक्षेपण दर 1 से 10 नैनोमीटर प्रति सेकंड तक का प्रयाग करती है।

आण्विक किरण अधिरोहण (एपिटैक्सी) (एमबीई - MBE) में, एक तत्व की धीमी धाराओं को क्रियाधार पर निर्देशित किया जा सकता है, ताकि द्रव्य एक समय में एक परमाणु परत जमा करती है। गैलियम आर्सेनाइड जैसे यौगिकों को सामान्यतः एक तत्व (यानी, गैलियम) की एक परत को बार -बार लागू करके जमा किया जाता है, फिर दूसरे की एक परत (यानी, आर्सेनिक), ताकि प्रक्रिया रासायनिक हो, साथ ही भौतिक भी हो, यह परमाणु परत के निक्षेपण के रूप में भी जाना जाता है। यदि उपयोग में अग्रदूत कार्बनिक हैं, तो प्रवधि को आण्विक परत एकीकरण कहा जाता है। द्रव्य की किरण को या तो भौतिक साधनों (यानी, एक भट्ठी द्वारा) या एक रासायनिक प्रतिक्रिया (रासायनिक किरण अधिरोहण (एपिटैक्सी)) द्वारा उत्पन्न किया जा सकता है।

कणक्षेपण एक प्लाविका (सामान्यतः एक महान गैस, जैसे आर्गन) पर निर्भर करता है, एक समय में कुछ परमाणुओं को लक्ष्य से दस्तक देता है। लक्ष्य को अपेक्षाकृत कम तापमान पर रखा जा सकता है, क्योंकि यह प्रक्रिया वाष्पीकरण में से एक नहीं है, जिससे यह सबसे लचीली निक्षेपण प्रविधि में से एक है। यह विशेष रूप से यौगिकों या मिश्रणों के लिए उपयोगी है, जहां विभिन्न घटक अन्यथा अलग-अलग दरों पर वाष्पित हो जाते हैं। ध्यान दें, कणक्षेपण की ओर यह कदम कवरेज को कम या ज्यादा अनुरूपित कर देता है। यह प्रकाशिकी मीडिया में भी व्यापक रूप से उपयोग किया जाता है। सीडी (CD), डीवीडी (DVD) और बीडी (BD) के सभी प्रारूपों का निर्माण इस प्रविधि की मदद से किया जाता है। यह एक तेज प्रवधि है और एक अच्छी मोटाई नियंत्रण भी प्रदान करती है। वर्तमान में, नाइट्रोजन और ऑक्सीजन गैसों का उपयोग कणक्षेपण में भी किया जा रहा है।

स्पंदित लेजर निक्षेपण प्रणाली एक अपक्षरण प्रक्रिया द्वारा काम करते हैं। इसमें लक्ष्य द्रव्य की सतह को वाष्पीकृत किया जाता है और इसे प्लाविका में बदल दिया जाता है; यह प्लावक (प्लाविका) सामान्यतः क्रियाधार तक पहुंचने से पहले ही एक गैस के लिए प्रतिवाद करता है।[9] कैथोडिक चाप निक्षेपण (एआरसी-पीवीडी/ARC-PVD) जो एक प्रकार का आयन बीम निक्षेपण होता है और जहां एक विद्युत चाप बनाया जाता है जो कैथोड से आयन को सचमुच विस्फोट करता है। चाप में एक उच्च शक्ति घनत्व होता है जिसके परिणामस्वरूप उच्च स्तर का आयनीकरण (30-100%) होता है, जो आयनों, तटस्थ कणों, समूहों और मैक्रो-कणों (बूंदों) को गुणा किया जाता है। वाष्पीकरण प्रक्रिया के समय एक प्रतिक्रियाशील गैस का उपयोग किया जाता है, जिसके कारण आयन प्रवाह के साथ परस्पर प्रक्रिया के समय पृथक्करण, आयनीकरण और उत्तेजना हो सकती है और एक यौगिक फिल्म एकत्रित की जाती है।

इलेक्ट्रोहाइड्रोगतिकी निक्षेपण (इलेक्ट्रोस्प्रे निक्षेपण) पतली-फिल्म निक्षेपण की एक अपेक्षाकृत नई प्रक्रिया होती है। तरल जमा करने के लिए,और नैनोआण्विक समाधान के रूप में या बस एक समाधान के रूप में, एक छोटे केशिका नोजल (सामान्यतः धातु) को खिलाया जाता है जो एक उच्च वोल्टेज से जुड़ा होता है। जिस क्रियाधार पर फिल्म को जमा करना होता है, वह जमीन से जुड़ा हुआ होता है। विद्युत क्षेत्र के प्रभाव के माध्यम से, यह नोजल से निकलने वाला तरल एक शंक्वाकार आकार (टेलर शंकु) लेता है और शंकु के शीर्ष पर एक पतली जेट निकलती है जो रेले चार्ज सीमा के प्रभाव में बहुत ठीक और छोटे सकारात्मक रूप से आवेशित बूंदों में विघटित हो जाती है। यह बूंदें छोटी और छोटी होती रहती हैं और अंततः एक समान पतली परत के रूप में क्रियाधार पर एकत्रित हो जाती हैं।

विकास मोड

फ्रैंक-वैन-डेर-मेरवे फैशन
साइड -करस्टन फैशन
वोल्मर - वेबर मोड

फ्रैंक वैन डेर मेर्वे ग्रोथ[10][11][12] ("परत दर परत") इस वृद्धि मोड में अवशोषण सतह और अवशोषण अंतःक्रिया संतुलित होती है इस प्रकार की वृद्धि के लिए जाली मिलान की आवश्यकता होती है, और इसलिए इसे "आदर्श" विकास तंत्र माना जाता है।

स्ट्रान्सकी क्रास्तानोव विकास[13] ("संयुक्त द्वीप" या "परत प्लस द्वीप")। इस वृद्धिकरण में अवशोषण सतही अंतःक्रियाएं अधिशोष्य अधिशोष्य अंतःक्रियाओं की तुलना में अधिक मजबूत होती हैं।

वोल्मर वेबर[14] ("पृथक द्वीप"), इस वृद्धि मोड में अवशोषण अधिशोष्य अंतःक्रियाएं अधिशोष्य सतह अंतःक्रियाओं की तुलना में अधिक मजबूत होती हैं, इसलिए "द्वीप" तुरंत बनते हैं।

अधिरोहण (एपिटैक्सी)

पतली फिल्म जमाव प्रक्रियाओं और अनुप्रयोगों का एक उप-समूचय द्रव्य के तथाकथित अधिरोहित विकास पर केंद्रित है, क्रियाधार की क्रिस्टलीय संरचना के बाद बढ़ने वाली क्रिस्टलीय पतली फिल्मों का एकीकरण अधिरोहण (एपिटैक्सी) शब्द ग्रीक मूल एपि (ἐπί) से आया है, जिसका अर्थ है "ऊपर", और टैक्सी (taxis) (τάξις), जिसका अर्थ है "एक आदेशित तरीके" (ordered manner) जिसका अर्थ है "व्यवस्थित करना" के रूप में किया जा सकता है।

होमो अधिरोहण (एपिटैक्सी) शब्द विशिष्ट मामले को संदर्भित करता है जिसमें एक ही द्रव्य की एक फिल्म एक क्रिस्टलीय क्रियाधार पर उगाई जाती है। उदाहरण के लिए, इस प्रवधि का उपयोग एक ऐसी फिल्म को विकसित करने के लिए किया जाता है जो क्रियाधार से अधिक शुद्ध हो, जिसमें दोषों का घनत्व कम हो, और विभिन्न डोपिंग स्तरों वाली परतें बनाना। हेटेरोएपिटाक्सी मामले को संदर्भित करता है जिसमें जमा की जा रही फिल्म क्रियाधार से अलग होती है।

पतली फिल्मों के अधिरोहित विकास के लिए उपयोग की जाने वाली प्रवधि में आण्विक किरण अधिरोहण, रासायनिक वाष्प जमाव और स्पंदित लेजर एकीकरण शामिल हैं।[15]

तनाव और खिंचाव

एक क्रियाधार के साथ उनके अंतराफलक से उत्पन्न तनावों के माध्यम से पतली फिल्मों को द्विअक्षीय रूप से लोड किया जा सकता है। अधिरोही पतली फिल्में फिल्म और क्रियाधार के सुसंगत जाली के बीच मिसफिट उपभेदों से तनाव का अनुभव कर सकती हैं। क्रियाधार के साथ ऊष्मीय विस्तार गुणांक में अंतर के कारण ऊंचे तापमान पर उगाई जाने वाली पतली फिल्मों में ऊष्मीय तनाव आम है।[16] अंतरापृष्ठीय ऊर्जा में अंतर और अनाज की वृद्धि और सहसंयोजन पतली फिल्मों में आंतरिक तनाव में योगदान करते हैं। ये आंतरिक तनाव फिल्म की मोटाई का एक कार्य हो सकते हैं।ref>Smith, Donald L. (1995-03-22). Thin-Film Deposition: Principles and Practice (in English). McGraw Hill Professional. ISBN 978-0-07-058502-7.</ref> [17]

ये तनाव तन्य या संकुचित हो सकते हैं और तनाव में छूट के अन्य रूपों के बीच क्रैकिंग या बकलिंग का कारण बन सकते हैं। अधिरोही फिल्मों में, शुरू में जमा परमाणु परतों में क्रियाधार के साथ सुसंगत जाली वाले विमान हो सकते हैं। हालांकि, एक महत्वपूर्ण मोटाई अनुपयुक्त अव्यवस्थाओं के बाद फिल्म में तनाव को कम करने के लिए अग्रणी होगा।[16][18]

माप और तनाव को मापना

समतल कार्याधार पर जमा परतों में तनाव जैसे वेफर्स को परत द्वारा तनाव के कारण वेफर की वक्रता को मापकर मापा जा सकता है। लेजर एक विद्युत् वितरण प्रतिरुप और विद्युत् वितरण तंत्र में विकृतियों में वेफर से परावर्तित होते हैं इनका उपयोग वक्रता की गणना के लिए किया जाता है। पतली फिल्मों में तनाव को एक्स-रे विवर्तन द्वारा या फिल्म के एक हिस्से को केंद्रित आयन किरण के माध्यम से और स्कैनिंग इलेक्ट्रॉन माइक्रोस्कोपी के माध्यम से मनाया गया विश्राम द्वारा भी मापा जा सकता है।[17]

तनाव अभियांत्रिकी

फिल्मों में तनाव और तनाव में छूट फिल्म के भौतिक गुणों को प्रभावित कर सकती है, जैसे सूक्ष्म इलेक्ट्रॉनिकी अनुप्रयोगों में बड़े पैमाने पर परिवहन। इसलिए ऐसे तनावों को कम करने या उत्पन्न करने के लिए सावधानी बरती जाती है; उदाहरण के लिए क्रियाधार और फिल्म के बीच एक बफर परत जमा की जा सकती है।[17] पतली फिल्मों में विभिन्न चरण और डोमेन संरचनाओं का निर्माण करने के लिए तनाव अभियांत्रिकी का भी उपयोग किया जाता है जैसे कि फेरोइलेक्ट्रिक लेड जिरकोनेट टाइटेनेट (पीजेडटी - PZT) की डोमेन संरचना में।[19]

अनुप्रयोग

सजावटी लेपन

सजावटी लेपन के लिए पतली फिल्मों का उपयोग संभवतः उनके सबसे पुराने अनुप्रयोग का प्रतिनिधित्व करता है। इसमें सीए (ca) शामिल है। 100 नैनोमीटर पतले सोने के पत्ते जो 5000 साल से भी पहले प्राचीन भारत में उपयोग किए जाते थे। इसे चित्रकारी के किसी भी रूप के रूप में भी समझा जा सकता है, हालांकि इस तरह के काम को आम तौर पर एक अभियांत्रिक या वैज्ञानिक अनुशासन के बजाय एक कला शिल्प के रूप में माना जाता है। आज, चर मोटाई और उच्च अपवर्तक सूचकांक की पतली फिल्म द्रव्य उदाहरण के लिए, टाइटेनियम डाइऑक्साइड को अक्सर कांच पर सजावटी लेपन के लिए लगाया जाता है, जिससे पानी पर तेल की तरह इंद्रधनुषी रंग दिखाई देता है। इसके अलावा, पारदर्शी सोने के रंग की सतहों को या तो सोने या टाइटेनियम नाइट्राइड के कणक्षेपण द्वारा तैयार किया जा सकता है।

प्रकाशिकी लेपन

ये परतें परावर्तक और अपवर्तक दोनों प्रणालियों में काम करती हैं। 19वीं शताब्दी के दौरान बड़े क्षेत्र (चिंतनशील) दर्पण उपलब्ध हो गए और कांच पर धातु चांदी या एल्यूमीनियम के कणक्षेपण द्वारा उत्पादित किए गए थे। कैमरे और सूक्ष्मदर्शी जैसे प्रकाशिकी उपकरणों के लिए अपवर्तक लेंस सामान्यतः विपथन प्रदर्शित करते हैं, यानी गैर आदर्श अपवर्तक व्यवहार। जबकि लेंस के बड़े सेट को पहले प्रकाशिकी पथ के साथ पंक्तिबद्ध करना पड़ता था, आजकल, टाइटेनियम डाइऑक्साइड, सिलिकॉन नाइट्राइड या सिलिकॉन ऑक्साइड आदि की पारदर्शी एकल परत के साथ प्रकाशिकी लेंस के लेपन इन विपथन को[dubious ] ठीक कर सकती है। पतली फिल्म प्रौद्योगिकी द्वारा प्रकाशिकी निकाय में प्रगति के लिए एक प्रसिद्ध उदाहरण स्मार्ट फोन कैमरों में केवल कुछ मिमी चौड़े लेंस द्वारा दर्शाया गया है। अन्य उदाहरण चश्मे या सौर पैनलों पर विरोधी-प्रतिबिंब लेपन द्वारा दिए गए हैं।

सुरक्षात्मक लेपन

बाहरी प्रभावों से अंतर्निहित काम के टुकड़े की रक्षा के लिए पतली फिल्मों को सामान्यतः जमा किया जाता है। माध्यम से वर्कपीस तक या इसके विपरीत प्रसार को कम करने के लिए बाहरी माध्यम के साथ संपर्क को कम करके सुरक्षा संचालित हो सकती है। उदाहरण के लिए, प्लास्टिक नींबू पानी की बोतलों को CO2 के बाहर प्रसार से बचने के लिए अक्सर प्रसार विरोधी परतों द्वारा लेपित किया जाता है, जिसमें कार्बोनिक एसिड विघटित हो जाता है जिसे उच्च दबाव में पेय में पेश किया गया था। एक अन्य उदाहरण सूक्ष्म इलेक्ट्रॉनिकी चिप्स में पतली टिन (TiN) फिल्मों द्वारा दर्शाया गया है, जो Al2O3 के गठन को दबाने के लिए एम्बेडिंग इंसुलेटर SiO2 से विद्युत रूप से संचालित एल्यूमीनियम लाइनों को अलग करता है। सामान्यतः पतली फिल्में यंत्रवत गतिमान भागों के बीच घर्षण से सुरक्षा का काम करती हैं। बाद के अनुप्रयोगों के उदाहरण कार इंजन में उपयोग की जाने वाली कार्बन (DLC - डीएलसी) परतों की तरह हीरे या नैनोकम्पोजिट्स से बनी पतली फिल्में हैं।

विद्युत ऑपरेटिंग लेपन

बाद में एक एकीकृत परिपथ की संरचित धातु परत[20]

तांबा, एल्युमिनियम, सोना या चांदी आदि मौलिक धातुओं की पतली परतें और मिश्र धातुओं ने विद्युत उपकरणों में कई अनुप्रयोग पाए हैं। उनकी उच्च विद्युत चालकता के कारण वे विद्युत धाराओं या आपूर्ति वोल्टेज को परिवहन करने में सक्षम हैं। पतली धातु की परतें पारंपरिक विद्युत प्रणाली में काम करती हैं, उदाहरण के लिए, मुद्रित परिपथ बोर्डों पर Cu की परतें, समाक्षीय केबलों में बाहरी आधार सुचालक के रूप में और विभिन्न अन्य रूपों जैसे संसूचक आदि।[21] अनुप्रयोग का एक प्रमुख क्षेत्र एकीकृत निष्क्रिय उपकरणों और एकीकृत परिपथों में उनका उपयोग बन गया, जहां ट्रांजिस्टर और संधारित्र आदि जैसे सक्रिय और निष्क्रिय उपकरणों के बीच विद्युत नेटवर्क। यह पतली Al या Cu परतों से निर्मित होता है। ये परतें कुछ 100 एनएम से लेकर कुछ µm तक की मोटाई का निपटान करती हैं, और वे अक्सर कुछ एनएम पतली टाइटेनियम नाइट्राइड परतों में अंतर्निहित होते हैं ताकि आसपास के ढांकता हुआ SiO2 के साथ रासायनिक प्रतिक्रिया को अवरुद्ध किया जा सके। यह आंकड़ा एक सूक्ष्म इलेक्ट्रॉनिकी चिप में पार्श्व रूप से संरचित TiN/Al/TiN धातु के ढेर का एक सूक्ष्मछवि दिखाता है।[20]

गैलियम नाइट्राइड और इसी तरह के अर्धचालकों के विषम संरचना वाले इलेक्ट्रॉनों को एक उप नैनोमेट्रिक परत से बांध सकते हैं, प्रभावी रूप से दो आयामी इलेक्ट्रॉन गैस के रूप में व्यवहार कर सकते हैं। ऐसी पतली परतों में क्वांटम प्रभाव बल्क क्रिस्टल की तुलना में इलेक्ट्रॉन गतिशीलता को काफी बढ़ा सकते हैं, जो उच्च इलेक्ट्रॉन गतिशीलता ट्रांजिस्टर में कार्यरत है।

बायोसेंसर और निष्काम उपकरण

नोबेल धातु पतली फिल्मों का उपयोग निष्काम संरचनाओं में किया जाता है जैसे सतह प्लास्मोन प्रतिध्वनि (एसपीआर) सेंसर। सतही प्लास्मोन पोलरिटोन प्रकाशिकी शासन में सतह तरंगें हैं जो धातु ढांकता हुआ अंतराफलक के बीच में फैलता है; एसपीआर (SPR) संवेदक के लिए क्रेस्ट्सचमन्न रऐथेर (Kretschmann Raether) संरूपण में, एक वर्णक्रम को वाष्पीकरण के माध्यम से एक धातु की फिल्म के साथ लेपित किया जाता है। धातु की फिल्मों, जर्मेनियम, टाइटेनियम या क्रोमियम फिल्मों की खराब चिपकने वाली विशेषताओं के कारण उन्हें मजबूत आसंजन को बढ़ावा देने के लिए मध्यवर्ती परतों के रूप में उपयोग किया जाता है।[22][23][24] धातु पतली फिल्मों का उपयोग प्लास्मोनिक वेवगाइड आकृतियों में भी किया जाता है।[25][26]

पतली-फिल्म फोटोवोल्टिक कोशिकाएं

सौर कोशिकाओं की लागत को काफी हद तक कम करने के साधन के रूप में पतली फिल्म प्रौद्योगिकियों को भी विकसित किया जा रहा है। इसका कारण यह है कि पतली फिल्म सौर सेल कम द्रव्य लागत, ऊर्जा लागत, संचालन लागत और पूंजीगत लागत के कारण निर्माण के लिए सस्ती हैं। यह विशेष रूप से मुद्रित इलेक्ट्रॉनिक्स (रोल टू रोल) प्रक्रियाओं के उपयोग में दर्शाया गया है। अन्य पतली फिल्म प्रौद्योगिकियां, जो अभी भी चल रहे अनुसंधान के प्रारंभिक चरण में हैं या सीमित व्यावसायिक उपलब्धता के साथ हैं, इन्हें अक्सर उभरती या तीसरी पीढ़ी के फोटोवोल्टिक कोशिकाओं के रूप में वर्गीकृत किया जाता है और इसमें कार्बनिक, डाई संवेदी, और बहुलक सौर सेल, साथ ही क्वांटम डॉट[27], कॉपर जिंक टिन सल्फाइड, नैनोक्रिस्टल और पेरोसाइट सौर सेल शामिल हैं।[28][29]

पतली-फिल्म बैटरी

विशेष अनुप्रयोगों के लिए अद्वितीय बैटरी बनाने के लिए विभिन्न प्रकार के क्रियाधार में ठोस स्थिति लिथियम पॉलिमर लागू करने के लिए पतली फिल्म प्रिंटिंग प्रवधि का उपयोग किया जा रहा है। पतली फिल्म बैटरी को किसी भी आकार या आकार में सीधे चिप्स या चिप पैकेज पर जमा किया जा सकता है। लचीली बैटरियों को प्लास्टिक, पतली धातु की पन्नी या कागज पर प्रिंट करके बनाया जा सकता है।[30]

पतली-फिल्म थोक ध्वनिक तरंग प्रतिध्वनि (टीएफबार्स/एफबार्स - TFBARS/FBARS)

पीजोइलेक्ट्रिक क्रिस्टल की प्रतिध्वनि आवृत्ति के लघुकरण और अधिक सटीक नियंत्रण के लिए पतली फिल्म थोक ध्वनिक अनुनादक टीएफबीएआर/एफबीएआर (TFBARS/FBARS) दोलन, दूरसंचार निस्पंदन और द्विपथी (डुप्लेक्सर्स), और संवेदक अनुप्रयोगों के लिए विकसित किए गए हैं।

यह भी देखें

  • परत
  • दोहरे ध्रुवीकरण इंटरफेरोमेट्री
  • एलिप्सोमेट्री
  • हाइड्रोजेनोग्राफी
  • केल्विन जांच बल माइक्रोस्कोप
  • लैंगमुइर -ब्लोडगेट फिल्म
  • परत दर परत
  • सूक्ष्म निर्माण
  • ऑर्गेनिक एलईडी
  • SARFUS
  • पतली-फिल्म हस्तक्षेप
  • पतली-फिल्म प्रकाशिकी
  • पतली-फिल्म सौर सेल
  • पतली-फिल्म थोक ध्वनिक गुंजयमानकर्ता


संदर्भ

  1. 1.0 1.1 1.2 1.3 1.4 Ohring, Milton (2002). Materials science of thin films : deposition and structure (2nd ed.). San Diego, CA: Academic Press. ISBN 9780125249751.
  2. Venables, John A. (2000-08-31). Introduction to Surface and Thin Film Processes (1 ed.). Cambridge University Press. doi:10.1017/cbo9780511755651. ISBN 978-0-521-78500-6.
  3. Knoll, Wolfgang Knoll; Advincula, Rigoberto C., eds. (2011-06-07). Functional Polymer Films, 2 Volume Set 1st Edition. Wiley-VCH. ISBN 978-3527321902.
  4. "One big wire change in '97 still helping chips achieve tiny scale". IBM Research Blog (in English). 2017-11-15. Retrieved 2021-04-20.
  5. Ariga, Katsuhiko; Yamauchi, Yusuke; Mori, Taizo; Hill, Jonathan P. (2013). "25th Anniversary Article: What Can Be Done with the Langmuir-Blodgett Method? Recent Developments and its Critical Role in Materials Science". Advanced Materials. Deerfield Beach FL USA: VCH Publishers (published 2013-10-08). 25 (45): 6477–6512. doi:10.1002/adma.201302283. ISSN 1521-4095. PMID 24302266. S2CID 205251007.
  6. Hanaor, D.A.H.; Triani, G.; Sorrell, C.C. (2011-03-15). "Morphology and photocatalytic activity of highly oriented mixed phase titanium dioxide thin films". Surface and Coatings Technology. 205 (12): 3658–3664. arXiv:1303.2741. doi:10.1016/j.surfcoat.2011.01.007. S2CID 96130259.
  7. Faustini, Marco; Drisko, Glenna L; Boissiere, Cedric; Grosso, David (2014-03-01). "Liquid deposition approaches to self-assembled periodic nanomasks". Scripta Materialia. 74: 13–18. doi:10.1016/j.scriptamat.2013.07.029.
  8. Trontl, V. Mikšić; Pletikosić, I.; Milun, M.; Pervan, P.; Lazić, P.; Šokčević, D.; Brako, R. (2005-12-16). "Experimental and ab initio study of the structural and electronic properties of subnanometer thick Ag films on Pd(111)". Physical Review B. 72 (23): 235418. Bibcode:2005PhRvB..72w5418T. doi:10.1103/PhysRevB.72.235418.
  9. Rashidian Vaziri, M. R.; Hajiesmaeilbaigi, F.; Maleki, M. H. (2011-08-24). "Monte Carlo simulation of the subsurface growth mode during pulsed laser deposition". Journal of Applied Physics. 110 (4): 043304. Bibcode:2011JAP...110d3304R. doi:10.1063/1.3624768.
  10. Frank, Frederick Charles; van der Merwe, J. H. (1949-08-15). "One-dimensional dislocations. I. Static theory". Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences. 198 (1053): 205–216. Bibcode:1949RSPSA.198..205F. doi:10.1098/rspa.1949.0095. JSTOR 98165.
  11. Frank, Frederick Charles; van der Merwe, J. H. (1949-08-15). "One-Dimensional Dislocations. II. Misfitting Monolayers and Oriented Overgrowth". Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences. 198 (1053): 216–225. Bibcode:1949RSPSA.198..216F. doi:10.1098/rspa.1949.0096. JSTOR 98166.
  12. Frank, Frederick Charles; van der Merwe, J. H. (1949-08-15). "One-Dimensional Dislocations. III. Influence of the Second Harmonic Term in the Potential Representation, on the Properties of the Model". Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences. 198 (1053): 125–134. Bibcode:1949RSPSA.200..125F. doi:10.1098/rspa.1949.0163. JSTOR 98394. S2CID 122413983.
  13. Stranski, I. N.; Krastanov, L. (1938-02-10). "Zur Theorie der orientierten Ausscheidung von Ionenkristallen aufeinander". Monatshefte für Chemie und verwandte Teile anderer Wissenschaften. 146 (1): 351–364. doi:10.1007/BF01798103. ISSN 0343-7329. S2CID 93219029.
  14. Volmer, M.; Weber, A. (1926-01-01). "Keimbildung in übersättigten Gebilden". Zeitschrift für Physikalische Chemie. 119U (1): 277–301. doi:10.1515/zpch-1926-11927. ISSN 0942-9352. S2CID 100018452.
  15. Rashidian Vaziri, M. R.; Hajiesmaeilbaigi, F.; Maleki, M. H. (2010-10-07). "Microscopic description of the thermalization process during pulsed laser deposition of aluminium in the presence of argon background gas". Journal of Physics D: Applied Physics. 43 (42): 425205. Bibcode:2010JPhD...43P5205R. doi:10.1088/0022-3727/43/42/425205. ISSN 1361-6463. S2CID 120309363.
  16. 16.0 16.1 Murakami, Masanori (1991-07-01). "Deformation in thin films by thermal strain". Journal of Vacuum Science & Technology A. 9 (4): 2469–2476. doi:10.1116/1.577258. ISSN 0734-2101.
  17. 17.0 17.1 17.2 Abadias, Grégory; Chason, Eric; Keckes, Jozef; Sebastiani, Marco; Thompson, Gregory B.; Barthel, Etienne; Doll, Gary L.; Murray, Conal E.; Stoessel, Chris H.; Martinu, Ludvik (2018-03-01). "Review Article: Stress in thin films and coatings: Current status, challenges, and prospects". Journal of Vacuum Science & Technology A. 36 (2): 020801. doi:10.1116/1.5011790. ISSN 0734-2101.
  18. Wcislo, Tomasz; Dabrowska-Szata, Maria; Gelczuk, Lukasz (June 2010). "Critical thickness of epitaxial thin films using Finite Element Method". 2010 International Students and Young Scientists Workshop "Photonics and Microsystems": 82–85. doi:10.1109/STYSW.2010.5714177. ISBN 978-1-4244-8324-2. S2CID 31642146.
  19. Pandya, Shishir; Velarde, Gabriel A.; Gao, Ran; Everhardt, Arnoud S.; Wilbur, Joshua D.; Xu, Ruijuan; Maher, Josh T.; Agar, Joshua C.; Dames, Chris; Martin, Lane W. (2019). "Understanding the Role of Ferroelastic Domains on the Pyroelectric and Electrocaloric Effects in Ferroelectric Thin Films". Advanced Materials (in English). 31 (5): 1803312. doi:10.1002/adma.201803312. ISSN 1521-4095. PMID 30515861.
  20. 20.0 20.1 Birkholz, M.; Ehwald, K.-E.; Wolansky, D.; Costina, I.; Baristiran-Kaynak, C.; Fröhlich, M.; Beyer, H.; Kapp, A.; Lisdat, F. (2010-03-15). "Corrosion-resistant metal layers from a CMOS process for bioelectronic applications". Surface and Coatings Technology. 204 (12–13): 2055–2059. doi:10.1016/j.surfcoat.2009.09.075. ISSN 0257-8972.
  21. Korotcenkov, Ghenadii (2013-09-18). "Thin metal films". Handbook of Gas Sensor Materials: Properties, Advantages and Shortcomings for Applications. Integrated Analytical Systems. Springer. pp. 153–166. ISBN 978-1461471646.
  22. Serrano, A.; Rodríguez de la Fuente, O.; García, M. A. (2010). "Extended and localized surface plasmons in annealed Au films on glass substrates". Journal of Applied Physics. 108 (7): 074303. doi:10.1063/1.3485825. hdl:10261/87212.
  23. Foley IV, Jonathan J.; Harutyunyan, Hayk; Rosenmann, Daniel; Divan, Ralu; Wiederrecht, Gary P.; Gray, Stephen K. (2015). "When are Surface Plasmon Polaritons Excited in the Kretschmann-Raether Configuration?". Scientific Reports. 5: 9929. doi:10.1038/srep09929. PMC 4407725. PMID 25905685.
  24. Todeschini, Matteo; Bastos da Silva Fanta, Alice; Jensen, Flemming; Wagner, Jakob Birkedal; Han, Anpan (2017). "Influence of Ti and Cr Adhesion Layers on Ultrathin Au Films" (PDF). ACS Applied Materials & Interfaces. 9 (42): 37374–37385. doi:10.1021/acsami.7b10136. PMID 28967257.
  25. Liu, Liu; Han, Zhanghua; He, Sailing (2005). "Novel surface plasmon waveguide for high integration". Optics Express. 13 (17): 6645–6650. doi:10.1364/OPEX.13.006645. PMID 19498679.
  26. Liu, Xiaoyong; Feng, Yijun; Chen, Ke; Zhu, Bo; Zhao, Junming; Jiang, Tian (2014). "Planar surface plasmonic waveguide devices based on symmetric corrugated thin film structures". Optics Express. 22 (17): 20107–20116. doi:10.1364/OE.22.020107. PMID 25321220.
  27. Chen, Wei; Zhong, Jialin; Li, Junzi; Saxena, Nitin; Kreuzer, Lucas P.; Liu, Haochen; Song, Lin; Su, Bo; Yang, Dan; Wang, Kun; Schlipf, Johannes (2019-05-02). "Structure and Charge Carrier Dynamics in Colloidal PbS Quantum Dot Solids". The Journal of Physical Chemistry Letters (in English). 10 (9): 2058–2065. doi:10.1021/acs.jpclett.9b00869. ISSN 1948-7185. PMID 30964305. S2CID 104297006.
  28. Zou, Yuqin; Guo, Renjun; Buyruk, Ali; Chen, Wei; Xiao, Tianxiao; Yin, Shanshan; Jiang, Xinyu; Kreuzer, Lucas P.; Mu, Cheng; Ameri, Tayebeh; Schwartzkopf, Matthias (2020-11-25). "Sodium Dodecylbenzene Sulfonate Interface Modification of Methylammonium Lead Iodide for Surface Passivation of Perovskite Solar Cells". ACS Applied Materials & Interfaces (in English). 12 (47): 52643–52651. doi:10.1021/acsami.0c14732. ISSN 1944-8244. PMID 33190484. S2CID 226973268.
  29. Chen, Wei; Guo, Renjun; Tang, Haodong; Wienhold, Kerstin S.; Li, Nian; Jiang, Zhengyan; Tang, Jun; Jiang, Xinyu; Kreuzer, Lucas P.; Liu, Haochen; Schwartzkopf, Matthias (2021). "Operando structure degradation study of PbS quantum dot solar cells". Energy & Environmental Science (in English). 14 (6): 3420–3429. doi:10.1039/D1EE00832C. ISSN 1754-5692. S2CID 235510269.
  30. "Cell Mechanical Construction - Thin Film Batteries". mpoweruk.com. Woodbank Communications Ltd. Retrieved 2019-10-03.


अग्रिम पठन

Textbooks
Historical
  • Mattox, Donald M (2004-01-14). The Foundations of Vacuum Coating Technology. William Andrew Publishing. ISBN 978-0815514954.


]