संयोजन समूह सिद्धांत: Difference between revisions
No edit summary |
No edit summary |
||
(7 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
गणित में, संयोजक समूह सिद्धांत [[मुक्त समूह]] का सिद्धांत है और [[जनरेटर (गणित)]] और [[संबंध (गणित)]] द्वारा समूह की प्रस्तुति की अवधारणा है। यह [[ज्यामितीय टोपोलॉजी]] में बहुत अधिक उपयोग किया जाता है, | गणित में, संयोजक समूह सिद्धांत [[मुक्त समूह]] का सिद्धांत है और [[जनरेटर (गणित)]] और [[संबंध (गणित)]] द्वारा समूह की प्रस्तुति की अवधारणा है। यह [[ज्यामितीय टोपोलॉजी]] में बहुत अधिक उपयोग किया जाता है, प्राकृतिक और ज्यामितीय विधियों से ऐसी प्रस्तुति वाले साधारण परिसर का [[मौलिक समूह]]। बहुत ही निकट से संबंधित विषय [[ज्यामितीय समूह सिद्धांत]] है, जो आज बड़े पैमाने पर संयोजी समूह सिद्धांत को समाहित करता है, इसके अतिरिक्त बाहरी संयोजी प्रविधियों का उपयोग करता है। | ||
बहुत ही निकट से संबंधित विषय [[ज्यामितीय समूह सिद्धांत]] है, जो आज बड़े पैमाने पर संयोजी समूह सिद्धांत को समाहित करता है, इसके | |||
इसमें कई | इसमें कई एल्गोरिदम रूप से अघुलनशील समस्याएं भी सम्मलित हैं, विशेष रूप से [[समूहों के लिए शब्द समस्या]] और मौलिक [[बर्नसाइड समस्या|अग्नि क्षेत्र समस्या]] हैं। | ||
== इतिहास == | == इतिहास == | ||
संयोजन समूह सिद्धांत के विस्तृत इतिहास के लिए देखें ([[चांडलर और मैग्नस 1982]])। | |||
[[विलियम रोवन हैमिल्टन]] के 1856 के [[आइकोसियन कैलकुलस]] में | [[विलियम रोवन हैमिल्टन]] के 1856 के [[आइकोसियन कैलकुलस|आइकोसियन गणना]] में प्रोटो रूप पाया जाता है, जहां उन्होंने द्वादशफ़लक के किनारे ग्राफ के माध्यम से आईकोसाहेड्रल समरूपता [[समरूपता समूह]] का अध्ययन किया। | ||
संयोजन समूह सिद्धांत की नींव 1880 के दशक की प्रारंभिक में [[फेलिक्स क्लेन]] के छात्र [[वाल्थर वॉन डाइक]] द्वारा रखी गई थी, जिन्होंने जनरेटर और संबंधों द्वारा समूहों का पहला व्यवस्थित अध्ययन दिया था।<ref name="stillwell374">{{Citation | |||
| publisher = Springer | | publisher = Springer | ||
| isbn = 978-0-387-95336-6 | | isbn = 978-0-387-95336-6 | ||
Line 18: | Line 17: | ||
| page = [https://books.google.com/books?id=WNjRrqTm62QC&pg=PA374 374] | | page = [https://books.google.com/books?id=WNjRrqTm62QC&pg=PA374 374] | ||
}}</ref> | }}</ref> | ||
== संदर्भ == | == संदर्भ == | ||
{{reflist}} | {{reflist}} | ||
Line 34: | Line 31: | ||
}} | }} | ||
{{refend}} | {{refend}} | ||
[[Category:Created On 06/05/2023]] | [[Category:Created On 06/05/2023]] | ||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:कॉम्बिनेटरियल ग्रुप थ्योरी| कॉम्बिनेटरियल ग्रुप थ्योरी ]] |
Latest revision as of 20:29, 16 May 2023
गणित में, संयोजक समूह सिद्धांत मुक्त समूह का सिद्धांत है और जनरेटर (गणित) और संबंध (गणित) द्वारा समूह की प्रस्तुति की अवधारणा है। यह ज्यामितीय टोपोलॉजी में बहुत अधिक उपयोग किया जाता है, प्राकृतिक और ज्यामितीय विधियों से ऐसी प्रस्तुति वाले साधारण परिसर का मौलिक समूह। बहुत ही निकट से संबंधित विषय ज्यामितीय समूह सिद्धांत है, जो आज बड़े पैमाने पर संयोजी समूह सिद्धांत को समाहित करता है, इसके अतिरिक्त बाहरी संयोजी प्रविधियों का उपयोग करता है।
इसमें कई एल्गोरिदम रूप से अघुलनशील समस्याएं भी सम्मलित हैं, विशेष रूप से समूहों के लिए शब्द समस्या और मौलिक अग्नि क्षेत्र समस्या हैं।
इतिहास
संयोजन समूह सिद्धांत के विस्तृत इतिहास के लिए देखें (चांडलर और मैग्नस 1982)।
विलियम रोवन हैमिल्टन के 1856 के आइकोसियन गणना में प्रोटो रूप पाया जाता है, जहां उन्होंने द्वादशफ़लक के किनारे ग्राफ के माध्यम से आईकोसाहेड्रल समरूपता समरूपता समूह का अध्ययन किया।
संयोजन समूह सिद्धांत की नींव 1880 के दशक की प्रारंभिक में फेलिक्स क्लेन के छात्र वाल्थर वॉन डाइक द्वारा रखी गई थी, जिन्होंने जनरेटर और संबंधों द्वारा समूहों का पहला व्यवस्थित अध्ययन दिया था।[1]
संदर्भ
- ↑ Stillwell, John (2002), Mathematics and its history, Springer, p. 374, ISBN 978-0-387-95336-6
- Chandler, B.; Magnus, Wilhelm (December 1, 1982), The History of Combinatorial Group Theory: A Case Study in the History of Ideas, Studies in the History of Mathematics and Physical Sciences (1st ed.), Springer, p. 234, ISBN 978-0-387-90749-9