स्थिर अंतरिक्ष समय: Difference between revisions

From Vigyanwiki
No edit summary
 
(One intermediate revision by one other user not shown)
Line 35: Line 35:
==संदर्भ==
==संदर्भ==
<references/>
<references/>
[[Category: लोरेंट्ज़ियन कई गुना]]


[[Category: Machine Translated Page]]
[[Category:Created On 29/03/2023]]
[[Category:Created On 29/03/2023]]
[[Category:Vigyan Ready]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:लोरेंट्ज़ियन कई गुना]]

Latest revision as of 20:36, 16 May 2023

सामान्य सापेक्षता में, विशेष रूप से आइंस्टीन क्षेत्र समीकरणों में, एक स्पेसटाइम को स्थिर कहा जाता है यदि यह एक किलिंग वेक्टर को स्वीकार करता है जो स्पर्शोन्मुख वक्र समयबद्ध है।[1]


विवरण और विश्लेषण

एक स्थिर स्पेसटाइम में, मीट्रिक टेन्सर घटक, , चुना जा सकता है जिससे वे सभी समय समन्वय से स्वतंत्र हों। एक स्थिर स्पेसटाइम के लाइन तत्व का रूप होता है

जहाँ समय समन्वय है, तीन स्थानिक निर्देशांक हैं और 3-आयामी अंतरिक्ष का मीट्रिक टेंसर है। इस समन्वय प्रणाली में किलिंग वेक्टर क्षेत्र अवयव हैं . किलिंग वेक्टर के मानदंड का प्रतिनिधित्व करने वाला एक सकारात्मक अदिश है, अर्थात, , और एक 3-वेक्टर है, जिसे ट्विस्ट वेक्टर कहा जाता है, जो तब विलुप्त हो जाता है जब किलिंग वेक्टर हाइपरसरफेस ऑर्थोगोनल होता है। उत्तरार्द्ध ट्विस्ट 4-वेक्टर के स्थानिक घटकों के रूप में उत्पन्न होता है (देखें, उदाहरण के लिए,[2] पी। 163) जो कि किलिंग वेक्टर के लिए ऑर्थोगोनल है ,अर्थात् संतुष्ट करता है . ट्विस्ट वेक्टर उस सीमा को मापता है जिस तक किलिंग वेक्टर 3-सतहों के परिवार के लिए ऑर्थोगोनल होने में विफल रहता है। एक गैर-शून्य मोड़ स्पेसटाइम ज्यामिति में घूर्णन की उपस्थिति को इंगित करता है।

ऊपर वर्णित समन्वय प्रतिनिधित्व में एक दिलचस्प ज्यामितीय व्याख्या है।[3] समय अनुवाद किलिंग वेक्टर में गति का एक-पैरामीटर समूह उत्पन्न करता है स्पेसटाइम में एक विशेष प्रक्षेपवक्र (जिसे कक्षा भी कहा जाता है) पर स्थित स्पेसटाइम बिंदुओं की पहचान करके एक 3-आयामी स्थान प्राप्त होता है (किलिंग ट्रैजेक्टोरियों का कई गुना) भागफल स्थान। का प्रत्येक बिंदु स्पेसटाइम में एक प्रक्षेपवक्र का प्रतिनिधित्व करता है . यह पहचान, जिसे कैनोनिकल प्रोजेक्शन कहा जाता है, एक मानचित्रण है जो प्रत्येक प्रक्षेपवक्र को अंदर भेजता है और एक मीट्रिक प्रेरित करता है पर पुलबैक के माध्यम से। मात्राएँ , और सभी क्षेत्र चालू हैं और फलस्वरूप समय से स्वतंत्र हैं। इस प्रकार, एक स्थिर दिक्-काल की ज्यामिति समय के साथ नहीं बदलती है। विशेष स्थिति में स्पेसटाइम को स्थैतिक स्पेसटाइम कहा जाता है। परिभाषा के अनुसार, प्रत्येक स्थिर स्पेसटाइम स्थिर होता है, किंतु इसका विलोम सामान्यतः सत्य नहीं होता है, क्योंकि केर मीट्रिक एक प्रति उदाहरण प्रदान करता है।

निर्वात क्षेत्र समीकरण के लिए प्रारंभिक बिंदु के रूप में उपयोग करें

एक स्थिर स्पेसटाइम में वैक्यूम आइंस्टीन समीकरणों को संतुष्ट सूत्रों के बाहर, ट्विस्ट 4-वेक्टर कर्ल-मुक्त है,

और इसलिए स्थानीय रूप से एक अदिश का ग्रेडिएंट है (ट्विस्ट स्केलर कहा जाता है):

स्केलर्स के अतिरिक्त और दो हैनसेन क्षमता, द्रव्यमान और कोणीय गति क्षमता का उपयोग करना अधिक सुविधाजनक है, और , के रूप में परिभाषित है [4]

सामान्य सापेक्षता में द्रव्यमान क्षमता न्यूटोनियन गुरुत्वाकर्षण क्षमता की भूमिका निभाता है। एक गैर-तुच्छ कोणीय गति क्षमता घूर्णी गतिज ऊर्जा के कारण घूर्णन स्रोतों के लिए उत्पन्न होता है, जो द्रव्यमान-ऊर्जा तुल्यता के कारण गुरुत्वाकर्षण क्षेत्र के स्रोत के रूप में भी कार्य कर सकता है। स्थिति एक स्थिर विद्युत चुम्बकीय क्षेत्र के समान है जहां किसी के पास क्षमता, विद्युत और चुंबकीय के दो समूह होते हैं। सामान्य सापेक्षता में, घूर्णन स्रोत एक गुरुत्वचुम्बकीय क्षेत्र उत्पन्न करते हैं जिसका कोई न्यूटोनियन अनुरूप नहीं होता है।

एक स्थिर निर्वात मीट्रिक इस प्रकार हैनसेन क्षमता (, ) और 3-मीट्रिक . के संदर्भ में अभिव्यक्त होती है इन मात्राओं के संदर्भ में आइंस्टीन के निर्वात क्षेत्र समीकरणों को रूप में रखा जा सकता है[4]

जहाँ , और स्थानिक मीट्रिक का रिक्की टेन्सर है और संबंधित रिक्की स्केलर। ये समीकरण स्पष्ट स्थिर निर्वात आव्यूह की जांच के लिए प्रारंभिक बिंदु बनाते हैं।

यह भी देखें

  • स्थिर स्पेसटाइम
  • गोलाकार रूप से सममित स्पेसटाइम

संदर्भ

  1. Ludvigsen, M., General Relativity: A Geometric Approach, Cambridge University Press, 1999 ISBN 052163976X
  2. Wald, R.M., (1984). General Relativity, (U. Chicago Press)
  3. Geroch, R., (1971). J. Math. Phys. 12, 918
  4. 4.0 4.1 Hansen, R.O. (1974). J. Math. Phys. 15, 46.