सममित टेंसर: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
Line 1: Line 1:
{{Short description|Tensor invariant under permutations of vectors it acts on}}
{{Short description|Tensor invariant under permutations of vectors it acts on}}
गणित में, सममित [[ टेन्सर |टेन्सर]] होता है, जो स्वयं सदिश तर्कों के क्रम [[परिवर्तन]] के अनुसार अपरिवर्तनीय होता है।
गणित में, '''सममित टेन्सर''' होता है, जो स्वयं सदिश तर्कों के क्रम [[परिवर्तन]] के अनुसार अपरिवर्तनीय होता है।


:<math>T(v_1,v_2,\ldots,v_r) = T(v_{\sigma 1},v_{\sigma 2},\ldots,v_{\sigma r})</math>
:<math>T(v_1,v_2,\ldots,v_r) = T(v_{\sigma 1},v_{\sigma 2},\ldots,v_{\sigma r})</math>

Latest revision as of 15:16, 30 October 2023

गणित में, सममित टेन्सर होता है, जो स्वयं सदिश तर्कों के क्रम परिवर्तन के अनुसार अपरिवर्तनीय होता है।

प्रतीकों {1, 2, ..., r}.के प्रत्येक क्रमचय σ के लिए वैकल्पिक रूप से, r सूचकांकों के साथ मात्रा के रूप में निर्देशांक में दर्शाए गए क्रम r का सममित टेन्सर संतुष्ट करता है।

परिमित-आयामी सदिश स्थान V पर क्रम r के सममित टेंसरों का स्थान V पर डिग्री r के सजातीय बहुपदों के स्थान के दोहरे के लिए प्राकृतिक समरूपता है। विशेषता शून्य के क्षेत्र (गणित) पर, सभी सममित का श्रेणीबद्ध सदिश स्थल दसियों को V पर सममित बीजगणित के साथ स्वाभाविक रूप से पहचाना जा सकता है। संबंधित अवधारणा एंटीसिमेट्रिक टेंसर या वैकल्पिक रूप की है। अभियांत्रिकी, भौतिकी एवं गणित में सममित टेन्सर व्यापक रूप से पाए जाते हैं।

परिभाषा

मान लीजिए कि V सदिश समष्टि है एवं

आदेश का टेंसर k। तब T सममित टेंसर है, यदि

प्रतीकों {1,2,...,k} पर प्रत्येक क्रमचय σ से संबंधित ब्रेडिंग मानचित्रों के लिए (या समतुल्य रूप से इन प्रतीकों पर प्रत्येक स्थानान्तरण (गणित) के लिए) है।

V के आधार {ei} को देखते हुए, रैंक k के किसी भी सममित टेन्सर T को इस रूप में लिखा जा सकता है।

गुणांक की कुछ अनूठी सूची (आधार में टेंसर के घटक) जो सूचकांकों पर सममित हैं। अर्थात,

प्रत्येक क्रमचय के लिए σ

V पर परिभाषित क्रम k के सभी सममित टेंसरों का स्थान प्रायः Sk(V) या Symk(V) द्वारा निरूपित किया जाता है। यह स्वयं सदिश समष्टि है, एवं यदि V का आयाम N है, तो Symk(V) का आयाम द्विपद गुणांक है।

तत्पश्चात स्वयं = 0,1,2,... के लिए Sym(V) के प्रत्यक्ष योग के रूप में Symk(V) का निर्माण करते हैं।


उदाहरण

सममित टेन्सर के कई उदाहरण हैं। कुछ में, मीट्रिक टेंसर, , आइंस्टीन टेंसर, एवं रिक्की टेंसर, सम्मिलित होते है।

भौतिकी एवं इंजीनियरिंग में उपयोग किए जाने वाले कई भौतिक गुणों एवं क्षेत्र (भौतिकी) को सममित टेंसर क्षेत्र के रूप में प्रदर्शित किया जा सकता है, उदाहरण के लिए तनाव (भौतिकी), तनाव टेन्सर, एवं एनिस्ट्रोपिक विद्युत प्रतिरोधकता एवं चालकता होते है। इसके अतिरिक्त, प्रसार एमआरआई (MRI) में मस्तिष्क या शरीर के अन्य भागों में प्रसार का वर्णन करने के लिए प्रायः सममित टेंसर का उपयोग किया जाता है।

दीर्घवृत्त बीजगणितीय प्रकारो के उदाहरण हैं, एवं इसलिए, सामान्य रैंक के लिए, सजातीय बहुपदों की आश्रय में सममित टेंसरों का उपयोग अनुमानित प्रकारो को परिभाषित करने के लिए किया जाता है, एवं प्रायः इस प्रकार अध्ययन किया जाता है।

रिमेंनियन कई गुना दिया गया इसके लेवी-सिविता कनेक्शन से लैस है , रीमैन सहपरिवर्ती वक्रता टेंसर सदिश स्थान पर सममित क्रम 2 टेन्सर है अंतर 2-रूपों का होता है। यह इस तथ्य से मेल खाता है कि, देखना , हमारे पास समरूपता है। प्रत्येक जोड़ी के अंदर एंटीसिमेट्री के अतिरिक्त तर्कों के प्रथम एवं दूसरे जोड़े के मध्य है।[1]


टेंसर का सममित भाग

कल्पना करना विशेषता (बीजगणित) 0 के क्षेत्र पर सदिश स्थान है। यदि TVk क्रम का टेन्सर है , का सममित भाग द्वारा परिभाषित सममित टेंसर है।

कश्मीर प्रतीकों पर सममित समूह पर विस्तार योग आधार के संदर्भ में, एवं आइंस्टीन योग सम्मेलन को नियोजित करते हुए, यदि

तब

दाई ओर दिखाई देने वाले टेन्सर के घटकों को प्राय: किसके द्वारा निरूपित किया जाता है?

कोष्ठकों के साथ () सूचकांकों को सममित किया जा रहा है। स्क्वायर ब्रैकेट [] का उपयोग एंटी-सममितीकरण को इंगित करने के लिए किया जाता है।

सममित उत्पाद

यदि T साधारण टेंसर है, जिसे शुद्ध टेन्सर उत्पाद के रूप में दिया गया है।

तब T का सममित भाग कारकों का सममित उत्पाद होता है।

सामान्यतः हम क्रमविनिमेय एवं साहचर्य गुणनफल ⊙ को परिभाषित करके Sym(V) को बीजगणित में परिवर्तित कर सकते हैं।[2] दो टेंसर T1 ∈ Symk1(V) एवं T2 ∈ Symk2(V) दिए गए हैं। हम सममितीकरण ऑपरेटर का उपयोग परिभाषित करने के लिए करते हैं।

इसे सत्यापित किया जा सकता है (जैसा कि कोस्ट्रिकिन एवं मैनिन ने किया है[2] परिणामी उत्पाद वास्तव में क्रमविनिमेय एवं साहचर्य है। कुछ स्थितियों जैसे T1T2 = T1T2 में ऑपरेटर को त्याग दिया जाता है। .

कुछ स्थितियों में घातीय संकेतन v का उपयोग किया जाता है।

जहाँ v सदिश राशि है। कुछ स्थिति में ⊙ को त्याग दिया जाता है।


अपघटन

सममित मैट्रिक्स के सिद्धांत के अनुरूप, क्रम 2 के (वास्तविक) सममित टेंसर को विकर्ण किया जा सकता है। अधिक स्थिरता से, किसी टेन्सर T ∈ Sym2(V) के लिए पूर्णांक r गैर-शून्य इकाई सदिश v1,...,vrV एवं वजन λ1,...,λr ऐसा है कि

न्यूनतम संख्या r जिसके लिए इस प्रकार का अपघटन संभव है, T का (सममित) रैंक है। इस न्यूनतम अभिव्यक्ति में दिखाई देने वाले सदिश टेन्सर के प्रधान अक्ष प्रमेय हैं, एवं सामान्यतः महत्वपूर्ण भौतिक अर्थ है। उदाहरण के लिए, जड़ता टेंसर के प्रमुख अक्ष जड़ता के क्षण का प्रतिनिधित्व करने वाले पॉइन्सॉट के दीर्घवृत्त को परिभाषित करते हैं। सिल्वेस्टर का जड़त्व का नियम भी देखें।

मनमाना क्रम k के सममित टेंसरों के लिए, अपघटन

भी संभव हैं। न्यूनतम संख्या r जिसके लिए इस प्रकार का अपघटन संभव है, सममित टेंसर (आंतरिक परिभाषा) T का टेंसर रैंक है।[3] इस न्यूनतम अपघटन को वारिंग अपघटन कहा जाता है। यह टेंसर रैंक अपघटन का सममित रूप है। दूसरे क्रम के टेंसरों के लिए यह किसी भी आधार पर टेंसर का प्रतिनिधित्व करने वाले मैट्रिक्स के रैंक से मेल खाता है, एवं यह सर्वविदित है कि अधिकतम रैंक अंतर्निहित सदिश स्थान के आयाम के समान है। चूंकि, उच्च आदेश के लिए यह जरूरी नहीं है: रैंक अंतर्निहित सदिश अंतरिक्ष में आयामों की संख्या से अधिक हो सकती है। इसके अतिरिक्त, सममित टेंसर की रैंक एवं सममित रैंक भिन्न हो सकती है।[4]


यह भी देखें

टिप्पणियाँ

  1. Carmo, Manfredo Perdigão do (1992). रिमानियन ज्यामिति. Francis J. Flaherty. Boston: Birkhäuser. ISBN 0-8176-3490-8. OCLC 24667701.
  2. 2.0 2.1 Kostrikin, Alexei I.; Manin, Iurii Ivanovich (1997). Linear algebra and geometry. Algebra, Logic and Applications. Vol. 1. Gordon and Breach. pp. 276–279. ISBN 9056990497.
  3. Comon, P.; Golub, G.; Lim, L. H.; Mourrain, B. (2008). "सममित टेंसर और सममित टेंसर रैंक". SIAM Journal on Matrix Analysis and Applications. 30 (3): 1254. arXiv:0802.1681. doi:10.1137/060661569. S2CID 5676548.
  4. Shitov, Yaroslav (2018). "कॉमन के अनुमान का एक प्रति उदाहरण". SIAM Journal on Applied Algebra and Geometry (in English). 2 (3): 428–443. arXiv:1705.08740. doi:10.1137/17m1131970. ISSN 2470-6566. S2CID 119717133.


संदर्भ


बाहरी संबंध