अनुरूप समरूपता: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(3 intermediate revisions by 3 users not shown)
Line 46: Line 46:


=== अनुरूप क्षेत्र सिद्धांत ===
=== अनुरूप क्षेत्र सिद्धांत ===
{{Main|Conformal field theory}}
{{Main|अनुरूप क्षेत्र सिद्धांत}}


सापेक्षतावादी [[क्वांटम क्षेत्र सिद्धांत]] में उचित मान्यताओं के तहत कोलमैन-मंडुला प्रमेय द्वारा समरूपता की संभावना सख्ती से प्रतिबंधित है। गैर-[[सुपरसिमेट्री]] [[मौलिक बातचीत]] क्वांटम फील्ड थ्योरी का सबसे बड़ा संभव वैश्विक [[समरूपता समूह]] [[आंतरिक समूह]] के अनुरूप समूह के [[समूहों का प्रत्यक्ष उत्पाद]] है।<ref>{{Cite journal
सापेक्षतावादी [[क्वांटम क्षेत्र सिद्धांत]] में उचित मान्यताओं के तहत कोलमैन-मंडुला प्रमेय द्वारा समरूपता की संभावना सख्ती से प्रतिबंधित है। गैर-[[सुपरसिमेट्री]] [[मौलिक बातचीत]] क्वांटम फील्ड थ्योरी का सबसे बड़ा संभव वैश्विक [[समरूपता समूह]] [[आंतरिक समूह]] के अनुरूप समूह के [[समूहों का प्रत्यक्ष उत्पाद]] है।<ref>{{Cite journal
Line 64: Line 64:


=== दूसरे क्रम के चरण संक्रमण ===
=== दूसरे क्रम के चरण संक्रमण ===
{{main|phase transitions}}
{{main|चरण संक्रमण}}


एक विशेष अनुप्रयोग स्थानीय अंतःक्रियाओं वाली प्रणालियों में महत्वपूर्ण परिघटनाओं के लिए है। उतार चढ़ाव ऐसी प्रणालियों में महत्वपूर्ण बिंदु पर अनुरूप रूप से अपरिवर्तनीय हैं। यह अनुरूप क्षेत्र सिद्धांत के संदर्भ में चरण संक्रमणों की सार्वभौमिकता वर्गों के वर्गीकरण की अनुमति देता हैI
एक विशेष अनुप्रयोग स्थानीय अंतःक्रियाओं वाली प्रणालियों में महत्वपूर्ण परिघटनाओं के लिए है। उतार चढ़ाव ऐसी प्रणालियों में महत्वपूर्ण बिंदु पर अनुरूप रूप से अपरिवर्तनीय हैं। यह अनुरूप क्षेत्र सिद्धांत के संदर्भ में चरण संक्रमणों की सार्वभौमिकता वर्गों के वर्गीकरण की अनुमति देता हैI
Line 97: Line 97:
{{DEFAULTSORT:Conformal Symmetry}}
{{DEFAULTSORT:Conformal Symmetry}}


[[Category: Machine Translated Page]]
[[Category:CS1 English-language sources (en)|Conformal Symmetry]]
[[Category:Created On 18/04/2023]]
[[Category:Created On 18/04/2023|Conformal Symmetry]]
[[Category:Lua-based templates|Conformal Symmetry]]
[[Category:Machine Translated Page|Conformal Symmetry]]
[[Category:Pages with script errors|Conformal Symmetry]]
[[Category:Templates Vigyan Ready|Conformal Symmetry]]
[[Category:Templates that add a tracking category|Conformal Symmetry]]
[[Category:Templates that generate short descriptions|Conformal Symmetry]]
[[Category:Templates using TemplateData|Conformal Symmetry]]

Latest revision as of 16:40, 17 May 2023

गणितीय भौतिकी में स्पेसटाइम की अनुरूप समरूपता समूह के विस्तार द्वारा व्यक्त की जाती है जिसे अनुरूप समूह के रूप में जाना जाता है। विस्तार में विशेष अनुरूप परिवर्तन और विस्तार शामिल है। तीन स्थानिक के आयामों में अनुरूप समरूपता में भौतिकी और रसायन विज्ञान 15 डिग्री की होती हैI पोंकारे समूह के लिए दस विशेष अनुरूप चार परिवर्तनों के लिए और एक विस्तार से संबंधित हैI

हैरी बेटमैन और एबेनेज़र कनिंघम मैक्सवेल के समीकरणों की अनुरूप समरूपता का अध्ययन करने वाले पहले व्यक्ति थे। उन्होंने अनुरूप समरूपता की एक सामान्य अभिव्यक्ति को गोलाकार तरंग परिवर्तन का नाम दिया थाI दो स्पेसटाइम आयामों में सामान्य सापेक्षता भी अनुरूप समरूपता को प्रस्तुत करती है।[1]

जेनरेटर

अनुरूप समूह से संबधित बीजगणित में निम्नलिखित समूह का प्रतिनिधित्व इस प्रकार हैI[2]

लोरेंत्ज़ समूह से संबंधित जनरेटिंग सेट हैI अनुवाद भौतिकी प्रतिक्रिया उत्पन्न करता हैI स्केलिंग परिवर्तन उत्पन्न करता हैI विशेष अनुरूप परिवर्तन उत्पन्न करता है।

रूपान्तरण संबंध

कम्यूटेटर संबंध इस प्रकार हैं:[2]

अन्य कम्यूटेटर गायब हो जाते हैं। यहाँ Minkowski मेट्रिक टेन्सर है।

इसके अतिरिक्त, एक अदिश राशि है और लोरेंत्ज़ परिवर्तनों के तहत एक सहसंयोजक वेक्टर है।

विशेष अनुरूप परिवर्तनों द्वारा दिया जाता है[3]

जहाँ परिवर्तन का वर्णन करने वाला एक पैरामीटर है। इस विशेष अनुरूप परिवर्तन को इस रूप में भी लिखा जा सकता है , कहाँ

जो दिखाता है कि इसमें एक उलटा होता है, उसके बाद अनुवाद होता है, उसके बाद दूसरा उलटा होता है।
एक विशेष अनुरूप परिवर्तन से पहले एक समन्वय ग्रिड
एक विशेष अनुरूप परिवर्तन के बाद वही ग्रिड

दो आयामी स्पेसटाइम में अनुरूप समूह के परिवर्तन अनुरूप ज्यामिति हैं। अनुरूप क्षेत्र सिद्धांत हैं # उनमें से दो आयाम हैं।

दो से अधिक आयामों में यूक्लिडियन अंतरिक्ष अनुरूप परिवर्तन और हाइपरस्फीयर को सीधी रेखा के साथ हाइपरस्फीयर वृत्त और हाइपरप्लेन को हाइपरसर्कल माना जाता है।

दो से अधिक मिन्कोव्स्की रिक्त स्थान में अनुरूप परिवर्तन अशक्त किरणों और प्रकाश शंकुओं के साथ अशक्त हाइपरप्लेन के साथ प्रकाश शंकु के रूप में मैप करते हैं।

अनुप्रयोग

अनुरूप क्षेत्र सिद्धांत

सापेक्षतावादी क्वांटम क्षेत्र सिद्धांत में उचित मान्यताओं के तहत कोलमैन-मंडुला प्रमेय द्वारा समरूपता की संभावना सख्ती से प्रतिबंधित है। गैर-सुपरसिमेट्री मौलिक बातचीत क्वांटम फील्ड थ्योरी का सबसे बड़ा संभव वैश्विक समरूपता समूह आंतरिक समूह के अनुरूप समूह के समूहों का प्रत्यक्ष उत्पाद है।[4] ऐसे सिद्धांतों को अनुरूप क्षेत्र सिद्धांत के रूप में जाना जाता है।

दूसरे क्रम के चरण संक्रमण

एक विशेष अनुप्रयोग स्थानीय अंतःक्रियाओं वाली प्रणालियों में महत्वपूर्ण परिघटनाओं के लिए है। उतार चढ़ाव ऐसी प्रणालियों में महत्वपूर्ण बिंदु पर अनुरूप रूप से अपरिवर्तनीय हैं। यह अनुरूप क्षेत्र सिद्धांत के संदर्भ में चरण संक्रमणों की सार्वभौमिकता वर्गों के वर्गीकरण की अनुमति देता हैI

उच्च रेनॉल्ड्स संख्या में द्वि-आयामी अशांति में अनुरूप आक्रमण भी मौजूद है।

उच्च-ऊर्जा भौतिकी

उच्च-ऊर्जा भौतिकी में अध्ययन किए गए कई सिद्धांत अनुरूप समरूपता को स्वीकार करते हैं क्योंकि यह आम तौर पर स्थानीय पैमाने पर अपरिवर्तनीयता से निहित होता हैI इस प्रासंगिकता के कारण प्रसिद्ध उदाहरण डी = 4, एन = 4 सुपरसिमेट्रिक यांग-मिल्स सिद्धांत, एन = 4 सुपरसिमेट्रिक यांग-मिल्स सिद्धांत मुख्य तौर पर शामिल है। इसके अलावा स्ट्रिंग सिद्धांत में द्वि-आयामी अनुरूप क्षेत्र सिद्धांत द्वारा द्वि-आयामी गुरुत्वाकर्षण के साथ वर्णित किया गया है।

जाली मॉडल में अनुरूप आविष्कार के गणितीय प्रमाण

भौतिकविदों ने पाया है कि कई जाली मॉडल महत्वपूर्ण सीमा में अनुरूप रूप से अपरिवर्तनीय हो जाते हैं। हालाँकि इन परिणामों के गणितीय प्रमाण बहुत बाद में और केवल कुछ मामलों में ही सामने आए हैं।

2010 में, गणितज्ञ स्टानिस्लाव स्मिरनोव को रिसाव सिद्धांत के अनुरूप रूप से अपरिवर्तनीय और सांख्यिकीय भौतिकी में प्लानर आइसिंग मॉडल के प्रमाण के लिए फील्ड मेडल से सम्मानित किया गया था।[5]

2020 में, गणितज्ञ ह्यूग डुमिनिल-कोपिन और उनके सहयोगियों ने साबित किया कि कई भौतिक प्रणालियों में चरणों के बीच की सीमा पर घूर्णी आक्रमण मौजूद है।

यह भी देखें

संदर्भ

  1. "gravity - What makes General Relativity conformal variant?". Physics Stack Exchange. Retrieved 2020-05-01.
  2. 2.0 2.1 Di Francesco, Mathieu & Sénéchal 1997, p. 98.
  3. Di Francesco, Mathieu & Sénéchal 1997, p. 97.
  4. Juan Maldacena; Alexander Zhiboedov (2013). "Constraining conformal field theories with a higher spin symmetry". Journal of Physics A: Mathematical and Theoretical. 46 (21): 214011. arXiv:1112.1016. Bibcode:2013JPhA...46u4011M. doi:10.1088/1751-8113/46/21/214011. S2CID 56398780.
  5. Rehmeyer, Julie (19 August 2010). "स्टानिस्लाव स्मिरनोव प्रोफ़ाइल" (PDF). International Congress of Mathematicians. Retrieved 19 August 2010.

स्रोत