कुल सक्रिय प्रतिबिंब गुणांक: Difference between revisions

From Vigyanwiki
No edit summary
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
गणित और भौतिकी प्रकीर्णन सिद्धांत के भीतर कुल [[सक्रिय प्रतिबिंब गुणांक]] (टीएआरसी), कुल घटना [[विद्युत शक्ति]] को N-संपर्क स्थल [[माइक्रोवेव घटक|सूक्ष्म तरंग घटक]] में कुल निर्गामी शक्ति से संबंधित करता है। टीएआरसी मुख्य रूप से विविध-निविष्टि विविध-निर्गत (एमआईएमओ) श्रृंगिका तंत्र और [[सरणी एंटेना|सरणी श्रृंगिका]] के लिए उपयोग किया जाता है, जहां निर्गामी शक्ति अवांछित परावर्तित शक्ति है। नाम सक्रिय प्रतिबिंब गुणांक के साथ समानता दिखाता है, जिसका उपयोग एकल तत्वों के लिए किया जाता है। TARC द्वारक पर सभी निर्गामी शक्तियों के योग का वर्गमूल है, जिसे N-संपर्क स्थल श्रृंगिका के द्वारक पर सभी घटना शक्तियों के योग से विभाजित किया जाता है। सक्रिय परावर्तन गुणांक के समान, TARC [[आवृत्ति]] का एक कार्य है, और यह क्रमवीक्षण कोण और क्रमसूक्ष्मण पर भी निर्भर करता है। इस परिभाषा के साथ हम विविध-संपर्क स्थल श्रृंगिका (रेडियो) की आवृत्ति [[बैंडविड्थ (सिग्नल प्रोसेसिंग)|बैंड विस्तार (संकेत संसाधन)]] और [[विकिरण]] प्रदर्शन को चिह्नित कर सकते हैं। जब एंटेना दोषरहित सामग्री से बने होते हैं, तो TARC की गणना सीधे प्रकीर्णी आव्यूह से की जा सकती है
गणित और भौतिकी प्रकीर्णन सिद्धांत के भीतर '''कुल [[सक्रिय प्रतिबिंब गुणांक]]''' ('''टीएआरसी'''), कुल घटना [[विद्युत शक्ति]] को N-संपर्क स्थल [[माइक्रोवेव घटक|सूक्ष्म तरंग घटक]] में कुल निर्गामी शक्ति से संबंधित करता है। टीएआरसी मुख्य रूप से विविध-निविष्टि विविध-निर्गत (एमआईएमओ) श्रृंगिका तंत्र और [[सरणी एंटेना|सरणी श्रृंगिका]] के लिए उपयोग किया जाता है, जहां निर्गामी शक्ति अवांछित परावर्तित शक्ति है। नाम सक्रिय प्रतिबिंब गुणांक के साथ समानता दिखाता है, जिसका उपयोग एकल तत्वों के लिए किया जाता है। टीएआरसी द्वारक पर सभी निर्गामी शक्तियों के योग का वर्गमूल है, जिसे N-संपर्क स्थल श्रृंगिका के द्वारक पर सभी घटना शक्तियों के योग से विभाजित किया जाता है। सक्रिय परावर्तन गुणांक के समान, टीएआरसी [[आवृत्ति]] का एक कार्य है, और यह क्रमवीक्षण कोण और क्रमसूक्ष्मण पर भी निर्भर करता है। इस परिभाषा के साथ हम विविध-संपर्क स्थल श्रृंगिका (रेडियो) की आवृत्ति [[बैंडविड्थ (सिग्नल प्रोसेसिंग)|बैंड विस्तार (संकेत संसाधन)]] और [[विकिरण]] प्रदर्शन को चिह्नित कर सकते हैं। जब एंटेना दोषरहित सामग्री से बने होते हैं, तो टीएआरसी की गणना सीधे प्रकीर्णी आव्यूह से की जा सकती है


:<math> \Gamma^t_a = \frac{\sqrt{\sum_{i=1}^N |b_i|^2}}{\sqrt{\sum_{i=1}^N |a_i|^2}}, </math>
:<math> \Gamma^t_a = \frac{\sqrt{\sum_{i=1}^N |b_i|^2}}{\sqrt{\sum_{i=1}^N |a_i|^2}}, </math>
जहाँ <math>[b]=[S][a] </math> <math>[S]</math> है। श्रृंगिका का प्रकीर्णन आव्यूह है, <math>[a]</math> उद्दीपन [[यूक्लिडियन वेक्टर|यूक्लिडियन सदिश]] है, और <math>[b]</math> प्रकीर्णी सदिश का प्रतिनिधित्व करता है। टीएआरसी शून्य और एक के बीच एक [[वास्तविक संख्या]] है, हालांकि इसे सामान्यतः [[डेसिबल स्केल|डेसिबेल मापनी]] में प्रस्तुत किया जाता है। जब TARC का मान शून्य के बराबर होता है, तो दी गई सारी शक्ति श्रृंगिका द्वारा स्वीकार कर ली जाती है और जब यह एक के बराबर होती है, तो दी गई सभी शक्ति बाहर जाने वाली शक्ति के रूप में वापस आ रही है (इस प्रकार सभी शक्ति परिलक्षित होती है, लेकिन जरूरी नहीं कि इसमें वही संपर्क स्थल)।
जहाँ <math>[b]=[S][a] </math> <math>[S]</math> है। श्रृंगिका का प्रकीर्णन आव्यूह है, <math>[a]</math> उद्दीपन [[यूक्लिडियन वेक्टर|यूक्लिडियन सदिश]] है, और <math>[b]</math> प्रकीर्णी सदिश का प्रतिनिधित्व करता है। टीएआरसी शून्य और एक के बीच एक [[वास्तविक संख्या]] है, हालांकि इसे सामान्यतः [[डेसिबल स्केल|डेसिबेल मापनी]] में प्रस्तुत किया जाता है। जब टीएआरसी का मान शून्य के बराबर होता है, तो दी गई सारी शक्ति श्रृंगिका द्वारा स्वीकार कर ली जाती है और जब यह एक के बराबर होती है, तो दी गई सभी शक्ति बाहर जाने वाली शक्ति के रूप में वापस आ रही है (इस प्रकार सभी शक्ति परिलक्षित होती है, लेकिन जरूरी नहीं कि इसमें वही संपर्क स्थल)।


सामान्यीकृत कुल स्वीकृत शक्ति <math> (1-|\Gamma^t_a|^2) </math> द्वारा दिया जाता है। चूंकि एंटेना में सामान्य रूप से विकिरण दक्षता <math> 0 \leq \epsilon \leq 1 </math> होती है, सामान्यीकृत कुल विकीर्ण शक्ति <math> \epsilon_l =  \epsilon (1-|\Gamma^t_a|^2) </math> द्वारा दिया जाता है। यदि श्रृंगिका सरणी की दिशा ज्ञात है, तो प्राप्त लाभ की गणना <math> \epsilon_l </math> गुणन द्वारा की जा सकती है। जैसा कि सभी प्रतिबिंब गुणांकों के साथ होता है, एक छोटा प्रतिबिंब गुणांक उच्च विकिरण दक्षता की प्रत्याभुति नहीं देता है क्योंकि छोटा परावर्तित संकेत हानि के कारण भी हो सकता है।
सामान्यीकृत कुल स्वीकृत शक्ति <math> (1-|\Gamma^t_a|^2) </math> द्वारा दिया जाता है। चूंकि एंटेना में सामान्य रूप से विकिरण दक्षता <math> 0 \leq \epsilon \leq 1 </math> होती है, सामान्यीकृत कुल विकीर्ण शक्ति <math> \epsilon_l =  \epsilon (1-|\Gamma^t_a|^2) </math> द्वारा दिया जाता है। यदि श्रृंगिका सरणी की दिशा ज्ञात है, तो प्राप्त लाभ की गणना <math> \epsilon_l </math> गुणन द्वारा की जा सकती है। जैसा कि सभी प्रतिबिंब गुणांकों के साथ होता है, एक छोटा प्रतिबिंब गुणांक उच्च विकिरण दक्षता की प्रत्याभुति नहीं देता है क्योंकि छोटा परावर्तित संकेत हानि के कारण भी हो सकता है।
Line 19: Line 19:
* {{cite book | author=जेड बी ज़ैनल-आबिदीन|chapter=मोबाइल हैंडसेट अनुप्रयोगों के लिए EBG सामग्री के साथ 2 x 2 U-आकार के MIMO स्लॉट एंटेना का डिज़ाइन |title=विद्युतचुंबकीय अनुसंधान संगोष्ठी की कार्यवाही में प्रगति | year=2011 |pages=1275–1278 |chapter-url=https://bradscholars.brad.ac.uk/bitstream/handle/10454/5467/100920121248%20Abidin%20.pdf?sequence=3&isAllowed=y|display-authors=etal |hdl=10454/5467 |isbn=978-1-934142-16-5}}
* {{cite book | author=जेड बी ज़ैनल-आबिदीन|chapter=मोबाइल हैंडसेट अनुप्रयोगों के लिए EBG सामग्री के साथ 2 x 2 U-आकार के MIMO स्लॉट एंटेना का डिज़ाइन |title=विद्युतचुंबकीय अनुसंधान संगोष्ठी की कार्यवाही में प्रगति | year=2011 |pages=1275–1278 |chapter-url=https://bradscholars.brad.ac.uk/bitstream/handle/10454/5467/100920121248%20Abidin%20.pdf?sequence=3&isAllowed=y|display-authors=etal |hdl=10454/5467 |isbn=978-1-934142-16-5}}
* {{cite journal |author1=ए आर मल्लाहजादेह |author2=एस एशघी |author3=ए अलीपुर  |name-list-style=amp |title=5.8&nbsp;GHz पर वायरलेस एप्लिकेशन के लिए IWO एल्गोरिथम का उपयोग करके ई-आकार वाले मिमो एंटीना का डिज़ाइन |journal=इलेक्ट्रोमैग्नेटिक रिसर्च में प्रगति |volume=90| year=2009 |pages=187–203 |url=http://www.jpier.org/PIER/pier90/13.08122704.pdf|doi=10.2528/PIER08122704 |doi-access=free }}
* {{cite journal |author1=ए आर मल्लाहजादेह |author2=एस एशघी |author3=ए अलीपुर  |name-list-style=amp |title=5.8&nbsp;GHz पर वायरलेस एप्लिकेशन के लिए IWO एल्गोरिथम का उपयोग करके ई-आकार वाले मिमो एंटीना का डिज़ाइन |journal=इलेक्ट्रोमैग्नेटिक रिसर्च में प्रगति |volume=90| year=2009 |pages=187–203 |url=http://www.jpier.org/PIER/pier90/13.08122704.pdf|doi=10.2528/PIER08122704 |doi-access=free }}
[[Category: बिखराव सिद्धांत]] [[Category: मैट्रिसेस]] [[Category: एंटेना (रेडियो)]]


 
[[Category:CS1 maint]]
 
[[Category: Machine Translated Page]]
[[Category:Created On 25/04/2023]]
[[Category:Created On 25/04/2023]]
[[Category:Vigyan Ready]]
[[Category:Machine Translated Page]]
[[Category:Templates Vigyan Ready]]
[[Category:एंटेना (रेडियो)]]
[[Category:बिखराव सिद्धांत]]
[[Category:मैट्रिसेस]]

Latest revision as of 12:37, 7 November 2023

गणित और भौतिकी प्रकीर्णन सिद्धांत के भीतर कुल सक्रिय प्रतिबिंब गुणांक (टीएआरसी), कुल घटना विद्युत शक्ति को N-संपर्क स्थल सूक्ष्म तरंग घटक में कुल निर्गामी शक्ति से संबंधित करता है। टीएआरसी मुख्य रूप से विविध-निविष्टि विविध-निर्गत (एमआईएमओ) श्रृंगिका तंत्र और सरणी श्रृंगिका के लिए उपयोग किया जाता है, जहां निर्गामी शक्ति अवांछित परावर्तित शक्ति है। नाम सक्रिय प्रतिबिंब गुणांक के साथ समानता दिखाता है, जिसका उपयोग एकल तत्वों के लिए किया जाता है। टीएआरसी द्वारक पर सभी निर्गामी शक्तियों के योग का वर्गमूल है, जिसे N-संपर्क स्थल श्रृंगिका के द्वारक पर सभी घटना शक्तियों के योग से विभाजित किया जाता है। सक्रिय परावर्तन गुणांक के समान, टीएआरसी आवृत्ति का एक कार्य है, और यह क्रमवीक्षण कोण और क्रमसूक्ष्मण पर भी निर्भर करता है। इस परिभाषा के साथ हम विविध-संपर्क स्थल श्रृंगिका (रेडियो) की आवृत्ति बैंड विस्तार (संकेत संसाधन) और विकिरण प्रदर्शन को चिह्नित कर सकते हैं। जब एंटेना दोषरहित सामग्री से बने होते हैं, तो टीएआरसी की गणना सीधे प्रकीर्णी आव्यूह से की जा सकती है

जहाँ है। श्रृंगिका का प्रकीर्णन आव्यूह है, उद्दीपन यूक्लिडियन सदिश है, और प्रकीर्णी सदिश का प्रतिनिधित्व करता है। टीएआरसी शून्य और एक के बीच एक वास्तविक संख्या है, हालांकि इसे सामान्यतः डेसिबेल मापनी में प्रस्तुत किया जाता है। जब टीएआरसी का मान शून्य के बराबर होता है, तो दी गई सारी शक्ति श्रृंगिका द्वारा स्वीकार कर ली जाती है और जब यह एक के बराबर होती है, तो दी गई सभी शक्ति बाहर जाने वाली शक्ति के रूप में वापस आ रही है (इस प्रकार सभी शक्ति परिलक्षित होती है, लेकिन जरूरी नहीं कि इसमें वही संपर्क स्थल)।

सामान्यीकृत कुल स्वीकृत शक्ति द्वारा दिया जाता है। चूंकि एंटेना में सामान्य रूप से विकिरण दक्षता होती है, सामान्यीकृत कुल विकीर्ण शक्ति द्वारा दिया जाता है। यदि श्रृंगिका सरणी की दिशा ज्ञात है, तो प्राप्त लाभ की गणना गुणन द्वारा की जा सकती है। जैसा कि सभी प्रतिबिंब गुणांकों के साथ होता है, एक छोटा प्रतिबिंब गुणांक उच्च विकिरण दक्षता की प्रत्याभुति नहीं देता है क्योंकि छोटा परावर्तित संकेत हानि के कारण भी हो सकता है।

यह भी देखें

संदर्भ