दीर्घवृत्त समन्वय प्रणाली: Difference between revisions
No edit summary |
|||
(6 intermediate revisions by 5 users not shown) | |||
Line 2: | Line 2: | ||
{{distinguish|क्रांतिवृत्त समन्वय प्रणाली}} | {{distinguish|क्रांतिवृत्त समन्वय प्रणाली}} | ||
[[ज्यामिति]] में, दीर्घवृत्त समन्वय प्रणाली एक द्वि-आयामी [[ऑर्थोगोनल निर्देशांक|ऑर्थोगोनल]] समन्वय प्रणाली है जिसमें समन्वय रेखाएँ कॉन्फोकल दीर्घवृत्त और अतिशयोक्ति हैं। कार्टेशियन निर्देशांक प्रणाली के <math>x</math>-अक्ष पर क्रमशः दो <math>F_{1}</math>और <math>F_{2}</math> को क्रमशः <math>-a</math> और <math>+a</math> पर निश्चित करने के लिए लिया जाता है।[[Image:Elliptical coordinates grid.svg|thumb|right|352px|दीर्घवृत्त समन्वय प्रणाली]] | [[ज्यामिति]] में, '''दीर्घवृत्त समन्वय प्रणाली''' एक द्वि-आयामी [[ऑर्थोगोनल निर्देशांक|ऑर्थोगोनल]] समन्वय प्रणाली है जिसमें समन्वय रेखाएँ कॉन्फोकल दीर्घवृत्त और अतिशयोक्ति हैं। कार्टेशियन निर्देशांक प्रणाली के <math>x</math>-अक्ष पर क्रमशः दो <math>F_{1}</math>और <math>F_{2}</math> को क्रमशः <math>-a</math> और <math>+a</math> पर निश्चित करने के लिए लिया जाता है।[[Image:Elliptical coordinates grid.svg|thumb|right|352px|दीर्घवृत्त समन्वय प्रणाली]] | ||
== मूल परिभाषा == | == मूल परिभाषा == | ||
Line 23: | Line 23: | ||
दिखाता है कि निरंतर <math>\nu</math> के वक्र अतिपरवलय बनाते हैं। | दिखाता है कि निरंतर <math>\nu</math> के वक्र अतिपरवलय बनाते हैं। | ||
=== | === माप गुणक === | ||
एक [[ऑर्थोगोनल समन्वय प्रणाली]] में, आधार सदिशों की लंबाई को | एक [[ऑर्थोगोनल समन्वय प्रणाली]] में, आधार सदिशों की लंबाई को माप गुणक कहा जाता है। दीर्घवृत्तीय निर्देशांकों <math>(\mu, \nu)</math> के लिए माप गुणक बराबर हैं | ||
:<math>h_{\mu} = h_{\nu} = a\sqrt{\sinh^{2}\mu + \sin^{2}\nu} = a\sqrt{\cosh^{2}\mu - \cos^{2}\nu}.</math> | :<math>h_{\mu} = h_{\nu} = a\sqrt{\sinh^{2}\mu + \sin^{2}\nu} = a\sqrt{\cosh^{2}\mu - \cos^{2}\nu}.</math> | ||
अतिपरवलयिक फलन और त्रिकोणमितीय फलन के लिए दोहरे तर्क पहचान का उपयोग करके, पैमाने के कारकों को समान रूप से व्यक्त किया जा सकता है | |||
:<math>h_{\mu} = h_{\nu} = a\sqrt{\frac{1}{2} (\cosh2\mu - \cos2\nu)}.</math> | :<math>h_{\mu} = h_{\nu} = a\sqrt{\frac{1}{2} (\cosh2\mu - \cos2\nu)}.</math> | ||
Line 46: | Line 46: | ||
&= \frac{2}{a^{2} \left( \cosh 2 \mu - \cos 2 \nu \right)} \left( \frac{\partial^{2} \Phi}{\partial \mu^{2}} + \frac{\partial^{2} \Phi}{\partial \nu^{2}} \right) | &= \frac{2}{a^{2} \left( \cosh 2 \mu - \cos 2 \nu \right)} \left( \frac{\partial^{2} \Phi}{\partial \mu^{2}} + \frac{\partial^{2} \Phi}{\partial \nu^{2}} \right) | ||
\end{align}</math> | \end{align}</math> | ||
अन्य अवकल संकारक जैसे <math>\nabla \cdot \mathbf{F}</math> और <math>\nabla \times \mathbf{F}</math> को निर्देशांक <math>(\mu, \nu)</math> में | अन्य अवकल संकारक जैसे <math>\nabla \cdot \mathbf{F}</math> और <math>\nabla \times \mathbf{F}</math> को निर्देशांक <math>(\mu, \nu)</math> में माप गुणकों को ओर्थोगोनल निर्देशांक में पाए गए सामान्य सूत्रों में प्रतिस्थापित करके व्यक्त किया जा सकता है। | ||
== वैकल्पिक परिभाषा == | == वैकल्पिक परिभाषा == | ||
दीर्घवृत्तीय निर्देशांक <math>(\sigma, \tau)</math> का एक वैकल्पिक और ज्यामितीय रूप से सहज सेट कभी-कभी उपयोग किया जाता है, जहां <math>\sigma = \cosh \mu</math> और <math>\tau = \cos \nu</math> इसलिए, स्थिर <math>\sigma</math> के वक्र दीर्घवृत्त होते हैं, जबकि स्थिर <math>\tau</math> के वक्र अतिपरवलय होते हैं। निर्देशांक <math>\tau</math> अंतराल [-1, 1] का होना चाहिए, जबकि <math>\sigma</math> निर्देशांक एक से अधिक या उसके बराबर होना चाहिए। | |||
निर्देशांक <math>(\sigma, \tau)</math> का फोसि (foci) <math>F_{1}</math>और <math>F_{2}</math> से दूरियों के साथ एक सरल संबंध है। समतल में किसी भी बिंदु के लिए, फोसि के लिए इसकी दूरियों का योग <math>d_{1}+d_{2}</math> <math>2a\sigma</math> के बराबर होता है, जबकि उनका अंतर <math>d_{1}-d_{2}</math> बराबर <math>2a\tau</math> है। इस प्रकार, <math>F_{1}</math>की दूरी <math>a(\sigma+\tau)</math> है, जबकि <math>F_{2}</math> की दूरी <math>a(\sigma-\tau)</math> है। (याद रखें कि <math>F_{1}</math>और <math>F_{2}</math> क्रमशः <math>x=-a</math> और <math>x=+a</math> पर स्थित हैं।) | निर्देशांक <math>(\sigma, \tau)</math> का फोसि (foci) <math>F_{1}</math>और <math>F_{2}</math> से दूरियों के साथ एक सरल संबंध है। समतल में किसी भी बिंदु के लिए, फोसि के लिए इसकी दूरियों का योग <math>d_{1}+d_{2}</math> <math>2a\sigma</math> के बराबर होता है, जबकि उनका अंतर <math>d_{1}-d_{2}</math> बराबर <math>2a\tau</math> है। इस प्रकार, <math>F_{1}</math>की दूरी <math>a(\sigma+\tau)</math> है, जबकि <math>F_{2}</math> की दूरी <math>a(\sigma-\tau)</math> है। (याद रखें कि <math>F_{1}</math>और <math>F_{2}</math> क्रमशः <math>x=-a</math> और <math>x=+a</math> पर स्थित हैं।) | ||
Line 89: | Line 89: | ||
\right]. | \right]. | ||
</math> | </math> | ||
<math>\nabla \cdot \mathbf{F}</math> और <math>\nabla \times \mathbf{F}</math> जैसे अवकल संकारकों को ओर्थोगोनल निर्देशांकों में पाए जाने वाले सामान्य सूत्रों में | <math>\nabla \cdot \mathbf{F}</math> और <math>\nabla \times \mathbf{F}</math> जैसे अवकल संकारकों को ओर्थोगोनल निर्देशांकों में पाए जाने वाले सामान्य सूत्रों में माप गुणकों को प्रतिस्थापित करके निर्देशांकों <math>(\sigma, \tau)</math> में व्यक्त किया जा सकता है I | ||
== उच्च आयामों के लिए बहिर्वेशन == | == उच्च आयामों के लिए बहिर्वेशन == | ||
Line 95: | Line 95: | ||
दीर्घवृत्त निर्देशांक त्रि-आयामी ऑर्थोगोनल निर्देशांक के कई सेटों के लिए आधार बनाते हैं: | दीर्घवृत्त निर्देशांक त्रि-आयामी ऑर्थोगोनल निर्देशांक के कई सेटों के लिए आधार बनाते हैं: | ||
#दीर्घवृत्त बेलनाकार निर्देशांक <math>z</math>- दिशा में प्रक्षेपित करके निर्मित होते हैं। | #दीर्घवृत्त बेलनाकार निर्देशांक <math>z</math>- दिशा में प्रक्षेपित करके निर्मित होते हैं। | ||
#प्रोलेट स्फेरोइडल निर्देशांक <math>x</math>-अक्ष के बारे में | #प्रोलेट स्फेरोइडल निर्देशांक <math>x</math>-अक्ष के बारे में दीर्घवृत्तीय निर्देशांक को घुमाकर उत्पादित किया जाता है, यानी, फॉसी को जोड़ने वाली धुरी, जबकि दीर्घवृत्तीय गोलाकार निर्देशांक <math>y</math>-अक्ष के बारे में दीर्घवृत्तीय निर्देशांक घूर्णन करके उत्पादित होते हैं, यानी धुरी को अलग करने वाली धुरी होती है। . | ||
#दीर्घवृत्तीय निर्देशांक 3 आयामों में दीर्घवृत्तीय निर्देशांकों का एक औपचारिक विस्तार है, जो कन्फोकल दीर्घवृत्तों पर आधारित हैं, और एक और दो शीटों के अतिपरवलय हैं। | #दीर्घवृत्तीय निर्देशांक 3 आयामों में दीर्घवृत्तीय निर्देशांकों का एक औपचारिक विस्तार है, जो कन्फोकल दीर्घवृत्तों पर आधारित हैं, और एक और दो शीटों के अतिपरवलय हैं। | ||
== अनुप्रयोग == | == अनुप्रयोग == | ||
दीर्घवृत्त निर्देशांकों के क्लासिक अनुप्रयोग [[आंशिक अंतर समीकरण|आंशिक अंतर]] समीकरणों को हल करने में हैं, उदाहरण के लिए, लाप्लास के समीकरण या [[हेल्महोल्ट्ज़ समीकरण]], जिसके लिए दीर्घवृत्त निर्देशांक एक प्रणाली का एक प्राकृतिक विवरण है, इस प्रकार आंशिक अंतर समीकरणों में चर के पृथक्करण की अनुमति देता है। कुछ पारंपरिक उदाहरण हल करने वाली प्रणालियाँ हैं जैसे इलेक्ट्रॉन एक अणु या ग्रहों की कक्षाओं की परिक्रमा करते हैं जिनका | दीर्घवृत्त निर्देशांकों के क्लासिक अनुप्रयोग [[आंशिक अंतर समीकरण|आंशिक अंतर]] समीकरणों को हल करने में हैं, उदाहरण के लिए, लाप्लास के समीकरण या [[हेल्महोल्ट्ज़ समीकरण]], जिसके लिए दीर्घवृत्त निर्देशांक एक प्रणाली का एक प्राकृतिक विवरण है, इस प्रकार आंशिक अंतर समीकरणों में चर के पृथक्करण की अनुमति देता है। कुछ पारंपरिक उदाहरण हल करने वाली प्रणालियाँ हैं जैसे इलेक्ट्रॉन एक अणु या ग्रहों की कक्षाओं की परिक्रमा करते हैं जिनका दीर्घवृत्तीय आकार होता है। | ||
दीर्घवृत्तीय निर्देशांकों के ज्यामितीय गुण भी उपयोगी हो सकते हैं। एक विशिष्ट उदाहरण में सदिश <math>\mathbf{p}</math> और <math>\mathbf{q}</math> के सभी युग्मों पर एकीकरण सम्मिलित हो सकता है जो एक निश्चित सदिश <math>\mathbf{r} = \mathbf{p} + \mathbf{q}</math> का योग है, जहाँ समाकलन सदिश लंबाई का एक फलन था <math>\left| \mathbf{p} \right|</math>और <math>\left| \mathbf{q} \right|</math>(ऐसी स्थिति में, कोई <math>\mathbf{r}</math> को दो फोसि के बीच और <math>x</math>-अक्ष के साथ संरेखित करेगा, यानी, <math>\mathbf{r} = 2a \mathbf{\hat{x}}</math> संक्षिप्तता के लिए, <math>\mathbf{r}</math>, <math>\mathbf{p}</math> और <math>\mathbf{q}</math> क्रमशः एक कण और उसके अपघटन उत्पादों के संवेग का प्रतिनिधित्व कर सकते हैं, और समाकलन में कण की गतिज ऊर्जा सम्मिलित हो सकती है। उत्पाद (जो संवेग के वर्ग लंबाई के समानुपाती होते हैं)। | दीर्घवृत्तीय निर्देशांकों के ज्यामितीय गुण भी उपयोगी हो सकते हैं। एक विशिष्ट उदाहरण में सदिश <math>\mathbf{p}</math> और <math>\mathbf{q}</math> के सभी युग्मों पर एकीकरण सम्मिलित हो सकता है जो एक निश्चित सदिश <math>\mathbf{r} = \mathbf{p} + \mathbf{q}</math> का योग है, जहाँ समाकलन सदिश लंबाई का एक फलन था <math>\left| \mathbf{p} \right|</math>और <math>\left| \mathbf{q} \right|</math>(ऐसी स्थिति में, कोई <math>\mathbf{r}</math> को दो फोसि के बीच और <math>x</math>-अक्ष के साथ संरेखित करेगा, यानी, <math>\mathbf{r} = 2a \mathbf{\hat{x}}</math> संक्षिप्तता के लिए, <math>\mathbf{r}</math>, <math>\mathbf{p}</math> और <math>\mathbf{q}</math> क्रमशः एक कण और उसके अपघटन उत्पादों के संवेग का प्रतिनिधित्व कर सकते हैं, और समाकलन में कण की गतिज ऊर्जा सम्मिलित हो सकती है। उत्पाद (जो संवेग के वर्ग लंबाई के समानुपाती होते हैं)। | ||
Line 113: | Line 113: | ||
* Korn GA and [[Theresa M. Korn|Korn TM]]. (1961) ''Mathematical Handbook for Scientists and Engineers'', McGraw-Hill. | * Korn GA and [[Theresa M. Korn|Korn TM]]. (1961) ''Mathematical Handbook for Scientists and Engineers'', McGraw-Hill. | ||
* Weisstein, Eric W. "Elliptic Cylindrical Coordinates." From MathWorld — A Wolfram Web Resource. http://mathworld.wolfram.com/EllipticCylindricalCoordinates.html | * Weisstein, Eric W. "Elliptic Cylindrical Coordinates." From MathWorld — A Wolfram Web Resource. http://mathworld.wolfram.com/EllipticCylindricalCoordinates.html | ||
[[Category:Articles with hatnote templates targeting a nonexistent page]] | [[Category:Articles with hatnote templates targeting a nonexistent page]] | ||
[[Category:Collapse templates]] | [[Category:Collapse templates]] | ||
[[Category:Created On 10/04/2023]] | [[Category:Created On 10/04/2023]] | ||
[[Category:Lua-based templates]] | |||
[[Category:Machine Translated Page]] | [[Category:Machine Translated Page]] | ||
[[Category:Navigational boxes| ]] | [[Category:Navigational boxes| ]] | ||
Line 126: | Line 125: | ||
[[Category:Sidebars with styles needing conversion]] | [[Category:Sidebars with styles needing conversion]] | ||
[[Category:Template documentation pages|Documentation/doc]] | [[Category:Template documentation pages|Documentation/doc]] | ||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] |
Latest revision as of 15:06, 5 September 2023
ज्यामिति में, दीर्घवृत्त समन्वय प्रणाली एक द्वि-आयामी ऑर्थोगोनल समन्वय प्रणाली है जिसमें समन्वय रेखाएँ कॉन्फोकल दीर्घवृत्त और अतिशयोक्ति हैं। कार्टेशियन निर्देशांक प्रणाली के -अक्ष पर क्रमशः दो और को क्रमशः और पर निश्चित करने के लिए लिया जाता है।
मूल परिभाषा
दीर्घवृत्तीय निर्देशांक की सबसे साधारण परिभाषा है
जहाँ एक अऋणात्मक वास्तविक संख्या है और
जटिल तल पर, एक तुल्यता संबंध होता है
ये परिभाषाएँ दीर्घवृत्त और अतिपरवलय के अनुरूप हैं। त्रिकोणमितीय सर्वसमिका
दिखाता है कि स्थिर के वक्र दीर्घवृत्त बनाते हैं, जबकि अतिपरवलयिक त्रिकोणमितीय पहचान
दिखाता है कि निरंतर के वक्र अतिपरवलय बनाते हैं।
माप गुणक
एक ऑर्थोगोनल समन्वय प्रणाली में, आधार सदिशों की लंबाई को माप गुणक कहा जाता है। दीर्घवृत्तीय निर्देशांकों के लिए माप गुणक बराबर हैं
अतिपरवलयिक फलन और त्रिकोणमितीय फलन के लिए दोहरे तर्क पहचान का उपयोग करके, पैमाने के कारकों को समान रूप से व्यक्त किया जा सकता है
फलस्वरूप, क्षेत्र का एक परिमित अवयव बराबर है
और लाप्लासियन पढ़ता है
अन्य अवकल संकारक जैसे और को निर्देशांक में माप गुणकों को ओर्थोगोनल निर्देशांक में पाए गए सामान्य सूत्रों में प्रतिस्थापित करके व्यक्त किया जा सकता है।
वैकल्पिक परिभाषा
दीर्घवृत्तीय निर्देशांक का एक वैकल्पिक और ज्यामितीय रूप से सहज सेट कभी-कभी उपयोग किया जाता है, जहां और इसलिए, स्थिर के वक्र दीर्घवृत्त होते हैं, जबकि स्थिर के वक्र अतिपरवलय होते हैं। निर्देशांक अंतराल [-1, 1] का होना चाहिए, जबकि निर्देशांक एक से अधिक या उसके बराबर होना चाहिए।
निर्देशांक का फोसि (foci) और से दूरियों के साथ एक सरल संबंध है। समतल में किसी भी बिंदु के लिए, फोसि के लिए इसकी दूरियों का योग के बराबर होता है, जबकि उनका अंतर बराबर है। इस प्रकार, की दूरी है, जबकि की दूरी है। (याद रखें कि और क्रमशः और पर स्थित हैं।)
इन निर्देशांकों का एक दोष यह है कि कार्तीय निर्देशांक (x,y) और (x,-y) वाले बिंदुओं में समान निर्देशांक होते हैं, इसलिए कार्टेशियन निर्देशांक में रूपांतरण एक फ़ंक्शन नहीं है, बल्कि एक बहुक्रिया है।
वैकल्पिक पैमाने के कारक
वैकल्पिक दीर्घवृत्तीय निर्देशांक के लिए पैमाने कारक हैं
इसलिए, अत्यल्प क्षेत्र अवयव बन जाता है
और लाप्लासियन बराबर है
और जैसे अवकल संकारकों को ओर्थोगोनल निर्देशांकों में पाए जाने वाले सामान्य सूत्रों में माप गुणकों को प्रतिस्थापित करके निर्देशांकों में व्यक्त किया जा सकता है I
उच्च आयामों के लिए बहिर्वेशन
दीर्घवृत्त निर्देशांक त्रि-आयामी ऑर्थोगोनल निर्देशांक के कई सेटों के लिए आधार बनाते हैं:
- दीर्घवृत्त बेलनाकार निर्देशांक - दिशा में प्रक्षेपित करके निर्मित होते हैं।
- प्रोलेट स्फेरोइडल निर्देशांक -अक्ष के बारे में दीर्घवृत्तीय निर्देशांक को घुमाकर उत्पादित किया जाता है, यानी, फॉसी को जोड़ने वाली धुरी, जबकि दीर्घवृत्तीय गोलाकार निर्देशांक -अक्ष के बारे में दीर्घवृत्तीय निर्देशांक घूर्णन करके उत्पादित होते हैं, यानी धुरी को अलग करने वाली धुरी होती है। .
- दीर्घवृत्तीय निर्देशांक 3 आयामों में दीर्घवृत्तीय निर्देशांकों का एक औपचारिक विस्तार है, जो कन्फोकल दीर्घवृत्तों पर आधारित हैं, और एक और दो शीटों के अतिपरवलय हैं।
अनुप्रयोग
दीर्घवृत्त निर्देशांकों के क्लासिक अनुप्रयोग आंशिक अंतर समीकरणों को हल करने में हैं, उदाहरण के लिए, लाप्लास के समीकरण या हेल्महोल्ट्ज़ समीकरण, जिसके लिए दीर्घवृत्त निर्देशांक एक प्रणाली का एक प्राकृतिक विवरण है, इस प्रकार आंशिक अंतर समीकरणों में चर के पृथक्करण की अनुमति देता है। कुछ पारंपरिक उदाहरण हल करने वाली प्रणालियाँ हैं जैसे इलेक्ट्रॉन एक अणु या ग्रहों की कक्षाओं की परिक्रमा करते हैं जिनका दीर्घवृत्तीय आकार होता है।
दीर्घवृत्तीय निर्देशांकों के ज्यामितीय गुण भी उपयोगी हो सकते हैं। एक विशिष्ट उदाहरण में सदिश और के सभी युग्मों पर एकीकरण सम्मिलित हो सकता है जो एक निश्चित सदिश का योग है, जहाँ समाकलन सदिश लंबाई का एक फलन था और (ऐसी स्थिति में, कोई को दो फोसि के बीच और -अक्ष के साथ संरेखित करेगा, यानी, संक्षिप्तता के लिए, , और क्रमशः एक कण और उसके अपघटन उत्पादों के संवेग का प्रतिनिधित्व कर सकते हैं, और समाकलन में कण की गतिज ऊर्जा सम्मिलित हो सकती है। उत्पाद (जो संवेग के वर्ग लंबाई के समानुपाती होते हैं)।
यह भी देखें
- वक्रीय निर्देशांक
- दीर्घवृत्त निर्देशांक
- सामान्यीकृत निर्देशांक
संदर्भ
- "Elliptic coordinates", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
- Korn GA and Korn TM. (1961) Mathematical Handbook for Scientists and Engineers, McGraw-Hill.
- Weisstein, Eric W. "Elliptic Cylindrical Coordinates." From MathWorld — A Wolfram Web Resource. http://mathworld.wolfram.com/EllipticCylindricalCoordinates.html