बीजगणितीय विविधता का फलन क्षेत्र: Difference between revisions
No edit summary |
|||
(5 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Mathematical concept in algebraic geometry}}[[बीजगणितीय ज्यामिति]] में, [[बीजगणितीय किस्म|बीजगणितीय विविधता]] ''V'' के फलन क्षेत्र में ऐसे ऑब्जेक्ट होते हैं जिसकी ''V'' पर परिमेय फलन के रूप में व्याख्या की जाती है। | {{Short description|Mathematical concept in algebraic geometry}}[[बीजगणितीय ज्यामिति]] में, [[बीजगणितीय किस्म|बीजगणितीय विविधता]] ''V'' के फलन क्षेत्र में ऐसे ऑब्जेक्ट होते हैं जिसकी ''V'' पर परिमेय फलन के रूप में व्याख्या की जाती है। पारम्परिक बीजगणितीय ज्यामिति में वे बहुपदीय अनुपात हैं; समिश्र बीजगणितीय ज्यामिति में ये मेरोमॉर्फिक फलन और उनके उच्च-विमितीय अनुरूप हैं; आधुनिक बीजगणितीय ज्यामिति में वे अंशों के कुछ भागफल वलय के क्षेत्र के तत्व हैं। | ||
== जटिल कई गुना के लिए परिभाषा == | == जटिल कई गुना के लिए परिभाषा == | ||
जटिल बीजगणितीय ज्यामिति के अध्ययन का उद्देश्य [[जटिल विश्लेषण|जटिल विश्लेषणात्मक]] विविधता हैं, जिसके लिए हमारे पास जटिल विश्लेषण की एक स्थानीय धारणा है तथा उन्ही धारणा के माध्यम से हम मेरोमोर्फिक कार्यों को परिभाषित कर सकते | जटिल बीजगणितीय ज्यामिति के अध्ययन का उद्देश्य [[जटिल विश्लेषण|जटिल विश्लेषणात्मक]] विविधता हैं, जिसके लिए हमारे पास जटिल विश्लेषण की एक स्थानीय धारणा है तथा उन्ही धारणा के माध्यम से हम मेरोमोर्फिक कार्यों को परिभाषित कर सकते हैं। एक प्रकार का कार्य क्षेत्र विविधता पर सभी मेरोमोर्फिक कार्यों का समुच्चय है। (सभी मेरोमॉर्फिक कार्यों की तरह ये अपने मान <math>\mathbb{C}\cup\infty</math> में लेते हैं।) कार्यों के योग और गुणन की संक्रियाओं के साथ यह बीजगणित के अर्थ में एक क्षेत्र है। | ||
[[रीमैन क्षेत्र]] के लिए, जो कि सम्मिश्र संख्याओं पर विविधता <math>\mathbb{P}^1</math> है, वैश्विक मेरोमॉर्फिक कार्य वस्तुतः तर्कसंगत कार्य हैं (अर्थात, जटिल बहुपद कार्यों के अनुपात)। | [[रीमैन क्षेत्र]] के लिए, जो कि सम्मिश्र संख्याओं पर विविधता <math>\mathbb{P}^1</math> है, वैश्विक मेरोमॉर्फिक कार्य वस्तुतः तर्कसंगत कार्य हैं (अर्थात, जटिल बहुपद कार्यों के अनुपात)। | ||
Line 16: | Line 16: | ||
== कार्य क्षेत्र की ज्यामिति == | == कार्य क्षेत्र की ज्यामिति == | ||
यदि विविधता V एक क्षेत्र K पर परिभाषित है, तो फलन क्षेत्र K(V) आधार क्षेत्र K का एक परिमित रूप से उत्पन्न [[फील्ड एक्सटेंशन|क्षेत्र विस्तारण]] है; इसकी [[श्रेष्ठता की डिग्री|श्रेष्ठता की स्थिति]] विविधता की बीजगणितीय विविधता के आयाम के समान है। K के सभी विस्तार जो कि K पर क्षेत्रों के रूप में परिमित रूप से उत्पन्न होते हैं, कुछ बीजगणितीय विविधता से इस तरह उत्पन्न होते हैं। इन कार्य क्षेत्र को K पर बीजगणितीय कार्य क्षेत्र के रूप में भी जाना जाता है। | |||
विविधता V के गुण जो केवल कार्य क्षेत्र पर निर्भर करते हैं, उनका अध्ययन बायरेशनल ज्यामिति में किया जाता है। | विविधता V के गुण जो केवल कार्य क्षेत्र पर निर्भर करते हैं, उनका अध्ययन बायरेशनल ज्यामिति में किया जाता है। | ||
Line 37: | Line 37: | ||
* {{cite book | title=Algebraic Functions and Projective Curves | series=[[Graduate Texts in Mathematics]] | volume=215 | author=David M. Goldschmidt | publisher=Springer-Verlag | year=2002 | isbn=0-387-95432-5 |url=https://books.google.com/books?id=d83YEA6ncsYC&q=%22function+field%22}} | * {{cite book | title=Algebraic Functions and Projective Curves | series=[[Graduate Texts in Mathematics]] | volume=215 | author=David M. Goldschmidt | publisher=Springer-Verlag | year=2002 | isbn=0-387-95432-5 |url=https://books.google.com/books?id=d83YEA6ncsYC&q=%22function+field%22}} | ||
* {{Citation | last1=Hartshorne | first1=Robin | author1-link=Robin Hartshorne | title=[[Algebraic Geometry (book)|Algebraic Geometry]] | publisher=[[Springer-Verlag]] | location=Berlin, New York | isbn=978-0-387-90244-9 | oclc=13348052 | mr=0463157 | year=1977}}, section II.3 First Properties of Schemes exercise 3.6 | * {{Citation | last1=Hartshorne | first1=Robin | author1-link=Robin Hartshorne | title=[[Algebraic Geometry (book)|Algebraic Geometry]] | publisher=[[Springer-Verlag]] | location=Berlin, New York | isbn=978-0-387-90244-9 | oclc=13348052 | mr=0463157 | year=1977}}, section II.3 First Properties of Schemes exercise 3.6 | ||
[[Category:Created On 01/05/2023]] | [[Category:Created On 01/05/2023]] | ||
[[Category:Lua-based templates]] | |||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:बीजगणितीय किस्में]] |
Latest revision as of 11:26, 18 May 2023
बीजगणितीय ज्यामिति में, बीजगणितीय विविधता V के फलन क्षेत्र में ऐसे ऑब्जेक्ट होते हैं जिसकी V पर परिमेय फलन के रूप में व्याख्या की जाती है। पारम्परिक बीजगणितीय ज्यामिति में वे बहुपदीय अनुपात हैं; समिश्र बीजगणितीय ज्यामिति में ये मेरोमॉर्फिक फलन और उनके उच्च-विमितीय अनुरूप हैं; आधुनिक बीजगणितीय ज्यामिति में वे अंशों के कुछ भागफल वलय के क्षेत्र के तत्व हैं।
जटिल कई गुना के लिए परिभाषा
जटिल बीजगणितीय ज्यामिति के अध्ययन का उद्देश्य जटिल विश्लेषणात्मक विविधता हैं, जिसके लिए हमारे पास जटिल विश्लेषण की एक स्थानीय धारणा है तथा उन्ही धारणा के माध्यम से हम मेरोमोर्फिक कार्यों को परिभाषित कर सकते हैं। एक प्रकार का कार्य क्षेत्र विविधता पर सभी मेरोमोर्फिक कार्यों का समुच्चय है। (सभी मेरोमॉर्फिक कार्यों की तरह ये अपने मान में लेते हैं।) कार्यों के योग और गुणन की संक्रियाओं के साथ यह बीजगणित के अर्थ में एक क्षेत्र है।
रीमैन क्षेत्र के लिए, जो कि सम्मिश्र संख्याओं पर विविधता है, वैश्विक मेरोमॉर्फिक कार्य वस्तुतः तर्कसंगत कार्य हैं (अर्थात, जटिल बहुपद कार्यों के अनुपात)।
बीजगणितीय ज्यामिति में संरचना
पारम्परिक बीजगणितीय ज्यामिति में हम दूसरे दृष्टिकोण का सामान्यीकरण करते हैं। उपरोक्त रीमैन क्षेत्र के लिए, एक बहुपदीय धारणा को विश्व स्तर पर परिभाषित नहीं किया गया है, किन्तु एक सजातीय निर्देशांक तालिका के संबंध में परिभाषित किया गया है, जिसमें सम्मिश्र समतल सम्मिलित है (गोलाकार के उत्तरी ध्रुव के अतिरिक्त सभी)। कहा जा सकता हैं कि सामान्य विविधता V पर, एक विवृत सजातीय उपसमुच्चय U पर परिमेय फलन को U के सजातीय समन्वय वलय में द्वि बहुपदों के अनुपात के रूप में परिभाषित किया गया है, और सभी V पर परिमेय फलन में इस प्रकार के स्थानीय डेटा होते है जो विवृत सजातीय के अंतरा बंधक के रूप में सहमत हैं। हम V के फलन क्षेत्र को किसी विवृत सजातीय उपसमुच्चय के सजातीय समन्वय वलय के अंशों के क्षेत्र के रूप में परिभाषित किया जा सकता हैं,क्योंकि इस प्रकार के सभी उपसमुच्चय सघन होते हैं।
यादृच्छिक योजना के लिए सामान्यीकरण
आधुनिक योजना सिद्धांत की सबसे सामान्य समुच्चयन में हम बाद के दृष्टिकोण को प्रस्थान के बिंदु के रूप में लेते हैं। अर्थात् यदि एक समाकल योजना है, तो के प्रत्येक विवृत उपसमुच्चय के लिए पर खंडों का वलय एक अभिन्न डोमेन है और इसलिए इसमें खंडों का एक क्षेत्र है। इसके अतिरिक्त यह सत्यापित किया जा सकता है कि ये सभी समान और के सामान्य बिंदु के स्थानीय वलय के समान हैं। इस प्रकार का कार्य क्षेत्र इसके सामान्य बिंदु का स्थानीय वलय है। इस दृष्टिकोण को कार्य क्षेत्र (योजना सिद्धांत) में अधिक विकसित किया गया है। देखें रॉबिन हार्टशोर्न (वर्ष 1977).
कार्य क्षेत्र की ज्यामिति
यदि विविधता V एक क्षेत्र K पर परिभाषित है, तो फलन क्षेत्र K(V) आधार क्षेत्र K का एक परिमित रूप से उत्पन्न क्षेत्र विस्तारण है; इसकी श्रेष्ठता की स्थिति विविधता की बीजगणितीय विविधता के आयाम के समान है। K के सभी विस्तार जो कि K पर क्षेत्रों के रूप में परिमित रूप से उत्पन्न होते हैं, कुछ बीजगणितीय विविधता से इस तरह उत्पन्न होते हैं। इन कार्य क्षेत्र को K पर बीजगणितीय कार्य क्षेत्र के रूप में भी जाना जाता है।
विविधता V के गुण जो केवल कार्य क्षेत्र पर निर्भर करते हैं, उनका अध्ययन बायरेशनल ज्यामिति में किया जाता है।
उदाहरण
K बिंदु पर एक कार्य क्षेत्र K है।
K पर सजातीय रेखा का कार्य क्षेत्र एक चर में तर्कसंगत कार्यों के क्षेत्र K(t) के लिए समरूप है। यह प्रक्षेपी रेखा का कार्य क्षेत्र भी है।
समीकरण द्वारा परिभाषित सजातीय समतल वक्र पर विचार करें। इसका कार्य क्षेत्र K (x, y) है, जो तत्वों x और y द्वारा उत्पन्न होता है जो कि K से अधिक श्रेष्ठ हैं और बीजगणितीय संबंध को संतुष्ट करते है।
यह भी देखें
- कार्य क्षेत्र (योजना सिद्धांत): एक सामान्यीकरण
- बीजगणितीय कार्य क्षेत्र
- कार्टियर भाजक
संदर्भ
- David M. Goldschmidt (2002). Algebraic Functions and Projective Curves. Graduate Texts in Mathematics. Vol. 215. Springer-Verlag. ISBN 0-387-95432-5.
- Hartshorne, Robin (1977), Algebraic Geometry, Berlin, New York: Springer-Verlag, ISBN 978-0-387-90244-9, MR 0463157, OCLC 13348052, section II.3 First Properties of Schemes exercise 3.6