मीट्रिक व्युत्पन्न: Difference between revisions

From Vigyanwiki
(Created page with "गणित में, मेट्रिक यौगिक मेट्रिक रिक्त स्थान में पैरामीट्रिक सम...")
 
No edit summary
 
(9 intermediate revisions by 3 users not shown)
Line 1: Line 1:
गणित में, मेट्रिक [[ यौगिक ]] मेट्रिक रिक्त स्थान में [[पैरामीट्रिक समीकरण]] [[पथ (टोपोलॉजी)]] के लिए उपयुक्त डेरिवेटिव की धारणा है। यह उन जगहों के लिए गति या पूर्ण वेग की धारणा को सामान्यीकृत करता है जिनमें दूरी (यानी मीट्रिक रिक्त स्थान) की धारणा होती है लेकिन दिशा (जैसे वेक्टर रिक्त स्थान) नहीं होती है।
गणित में, मेट्रिक [[ यौगिक |यौगिक]] मेट्रिक रिक्त स्थान में [[पैरामीट्रिक समीकरण]] [[पथ (टोपोलॉजी)]] के लिए उपयुक्त व्युत्पन्न की धारणा है। यह उन स्थानों के लिए गति या पूर्ण वेग की धारणा को सामान्यीकृत करता है | जिनमें दूरी (अर्थात मीट्रिक रिक्त स्थान) की धारणा होती है | किन्तु दिशा (जैसे सदिश रिक्त स्थान) नहीं होती है।


== परिभाषा ==
== परिभाषा ==


होने देना <math>(M, d)</math> एक मीट्रिक स्थान बनें। होने देना <math>E \subseteq \mathbb{R}</math> पर एक [[सीमा बिंदु]] है <math>t \in \mathbb{R}</math>. होने देना <math>\gamma : E \to M</math> एक मार्ग हो। फिर का मीट्रिक व्युत्पन्न <math>\gamma</math> पर <math>t</math>, निरूपित <math>| \gamma' | (t)</math>, द्वारा परिभाषित किया गया है
माना <math>(M, d)</math> मीट्रिक स्थान है। माना <math>E \subseteq \mathbb{R}</math> पर <math>t \in \mathbb{R}</math> [[सीमा बिंदु]] है | माना <math>\gamma : E \to M</math> पथ है। फिर <math>t</math> पर <math>\gamma</math> मीट्रिक व्युत्पन्न का निरूपित <math>| \gamma' | (t)</math>, द्वारा परिभाषित किया गया है |


:<math>| \gamma' | (t) := \lim_{s \to 0} \frac{d (\gamma(t + s), \gamma (t))}{| s |},</math>
:<math>| \gamma' | (t) := \lim_{s \to 0} \frac{d (\gamma(t + s), \gamma (t))}{| s |},</math>
यदि यह [[सीमा (गणित)]] मौजूद है।
यदि यह [[सीमा (गणित)]] उपस्थित है।


== गुण ==
== गुण ==


याद रखें कि पूर्ण निरंतरता|एसी<sup>p</sup>(I; X) वक्रों का स्थान γ : I → X ऐसा है कि
याद रखें कि AC<sup>p</sup>(I; X) पूर्ण निरंतरता γ : I → X का स्थान है | जैसे कि


:<math>d \left( \gamma(s), \gamma(t) \right) \leq \int_{s}^{t} m(\tau) \, \mathrm{d} \tau \mbox{ for all } [s, t] \subseteq I</math>
:<math>d \left( \gamma(s), \gamma(t) \right) \leq \int_{s}^{t} m(\tau) \, \mathrm{d} \tau \mbox{ for all } [s, t] \subseteq I</math>
एलपी स्पेस में कुछ मीटर के लिए | एल<sup>पी</सुप> स्पेस एल<sup>पी</sup>(आई; 'आर')γ ∈ एसी के लिए<sup>p</sup>(I; X), γ का मीट्रिक व्युत्पन्न Lebesgue माप के लिए मौजूद है-लगभग हर समय I में, और मीट्रिक व्युत्पन्न सबसे छोटा m ∈ L है<sup>p</sup>(I; 'R') ऐसा है कि उपरोक्त असमानता बनी रहती है।
एलपी स्पेस L<sup>p</sup> (I; R) में कुछ मीटर के लिए γ ∈ AC<sup>p</sup> (I; X) के लिए γ का मीट्रिक व्युत्पन्न लेबेस्ग के लिए उपस्थित है | जिससे I में लगभग हर समय और मीट्रिक व्युत्पन्न सबसे छोटा m ∈ L<sup>p</sup> (I; R) है | जिससे उपरोक्त असमानता बनी रहती है।


यदि [[यूक्लिडियन अंतरिक्ष]] <math>\mathbb{R}^{n}</math> अपने सामान्य यूक्लिडियन मानदंड से सुसज्जित है <math>\| - \|</math>, और <math>\dot{\gamma} : E \to V^{*}</math> समय के संबंध में सामान्य फ्रेचेट व्युत्पन्न है, तो
यदि [[यूक्लिडियन अंतरिक्ष]] <math>\mathbb{R}^{n}</math> अपने सामान्य यूक्लिडियन मानदंड से सुसज्जित है | <math>\| - \|</math>, और <math>\dot{\gamma} : E \to V^{*}</math> समय के संबंध में सामान्य फ्रेचेट व्युत्पन्न है, तो


:<math>| \gamma' | (t) = \| \dot{\gamma} (t) \|,</math>
:<math>| \gamma' | (t) = \| \dot{\gamma} (t) \|,</math>
कहाँ <math>d(x, y) := \| x - y \|</math> यूक्लिडियन मीट्रिक है।
जहाँ <math>d(x, y) := \| x - y \|</math> यूक्लिडियन मीट्रिक है।
 
==संदर्भ==
==संदर्भ==


* {{cite book | author=Ambrosio, L., Gigli, N. & Savaré, G. | title=Gradient Flows in Metric Spaces and in the Space of Probability Measures | publisher=ETH Zürich, Birkhäuser Verlag, Basel | year=2005 | isbn=3-7643-2428-7 | page=24}}
* {{cite book | author=एम्ब्रोसियो, एल।, गिगली, एन। और सावरे, जी। | title=मेट्रिक स्पेस और स्पेस ऑफ़ प्रोबेबिलिटी मेज़र्स में ग्रेडिएंट फ्लो | publisher=ईटीएच ज्यूरिख, बिरखौसर वेरलाग, बासेल | year=2005 | isbn=3-7643-2428-7 | page=24}}
[[Category: अंतर कलन]] [[Category: मीट्रिक ज्यामिति]]
 
 


[[Category: Machine Translated Page]]
[[Category:CS1 maint]]
[[Category:Created On 26/04/2023]]
[[Category:Created On 26/04/2023]]
[[Category:Machine Translated Page]]
[[Category:Templates Vigyan Ready]]
[[Category:अंतर कलन]]
[[Category:मीट्रिक ज्यामिति]]

Latest revision as of 12:01, 18 May 2023

गणित में, मेट्रिक यौगिक मेट्रिक रिक्त स्थान में पैरामीट्रिक समीकरण पथ (टोपोलॉजी) के लिए उपयुक्त व्युत्पन्न की धारणा है। यह उन स्थानों के लिए गति या पूर्ण वेग की धारणा को सामान्यीकृत करता है | जिनमें दूरी (अर्थात मीट्रिक रिक्त स्थान) की धारणा होती है | किन्तु दिशा (जैसे सदिश रिक्त स्थान) नहीं होती है।

परिभाषा

माना मीट्रिक स्थान है। माना पर सीमा बिंदु है | माना पथ है। फिर पर मीट्रिक व्युत्पन्न का निरूपित , द्वारा परिभाषित किया गया है |

यदि यह सीमा (गणित) उपस्थित है।

गुण

याद रखें कि ACp(I; X) पूर्ण निरंतरता γ : I → X का स्थान है | जैसे कि

एलपी स्पेस Lp (I; R) में कुछ मीटर के लिए γ ∈ ACp (I; X) के लिए γ का मीट्रिक व्युत्पन्न लेबेस्ग के लिए उपस्थित है | जिससे I में लगभग हर समय और मीट्रिक व्युत्पन्न सबसे छोटा m ∈ Lp (I; R) है | जिससे उपरोक्त असमानता बनी रहती है।

यदि यूक्लिडियन अंतरिक्ष अपने सामान्य यूक्लिडियन मानदंड से सुसज्जित है | , और समय के संबंध में सामान्य फ्रेचेट व्युत्पन्न है, तो

जहाँ यूक्लिडियन मीट्रिक है।

संदर्भ

  • एम्ब्रोसियो, एल।, गिगली, एन। और सावरे, जी। (2005). मेट्रिक स्पेस और स्पेस ऑफ़ प्रोबेबिलिटी मेज़र्स में ग्रेडिएंट फ्लो. ईटीएच ज्यूरिख, बिरखौसर वेरलाग, बासेल. p. 24. ISBN 3-7643-2428-7.{{cite book}}: CS1 maint: multiple names: authors list (link)