समतल (गणित): Difference between revisions

From Vigyanwiki
 
(8 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{Short description|2D surface which extends indefinitely}}
{{Short description|2D surface which extends indefinitely}}गणित में, '''समतल''' द्वि-आयामी  समष्टि (गणित) या समतलता (गणित) सतह (गणित) है जो अनिश्चित काल तक फैली हुई है। समतल एक-आयामी बिंदु ([[ज्यामिति]]) (शून्य आयाम),  [[रेखा (ज्यामिति)]] (  आयाम) और त्रि-आयामी समष्टि का द्वि-आयामी समकक्ष है।
{{other uses|Plane (disambiguation)}}
{{Lead too short|date=February 2023}}


गणित में, एक तल एक द्वि-[[आयाम]]ी स्थान (गणित) या [[समतलता (गणित)]] [[सतह (गणित)]] है जो अनिश्चित काल तक फैली हुई है।
जब द्वि-आयामी यूक्लिडियन समष्टि में विशेष रूप से काम करते समय, निश्चित लेख का उपयोग किया जाता है, इसलिए ''यूक्लिडियन समतल पूरे समष्टि को संदर्भित करता है।''
एक तल एक बिंदु ([[ज्यामिति]]) (शून्य आयाम), एक [[रेखा (ज्यामिति)]] (एक आयाम) और [[त्रि-आयामी स्थान]] का द्वि-आयामी एनालॉग है।


द्वि-आयामी [[यूक्लिडियन अंतरिक्ष]] में विशेष रूप से काम करते समय, निश्चित लेख का उपयोग किया जाता है, इसलिए '' [[यूक्लिडियन विमान]] पूरे अंतरिक्ष को संदर्भित करता है।
गणित, ज्यामिति, [[त्रिकोणमिति]], ग्राफ़ सिद्धांत और किसी फ़ंक्शन के ग्राफ़ में कई मूलभूत फलन द्वि-आयामी या ''प्लानर'' समष्टि में किए जाते हैं।<ref name="Janich Zook 1992 p. 50">{{cite book | last1=Janich | first1=P. | last2=Zook | first2=D. | title=Euclid's Heritage. Is Space Three-Dimensional? | publisher=Springer Netherlands | series=The Western Ontario Series in Philosophy of Science | year=1992 | isbn=978-0-7923-2025-8 | url=https://books.google.com/books?id=0DJ5Fq35NYQC&pg=PA50 | access-date=2023-03-11 | page=50}}</ref>
== यूक्लिडियन समतल ==
गणित में, यूक्लिडियन समतल  दो-आयामी यूक्लिडियन समष्टि है, जिसे E2 के रूप में चिह्नित किया गया है। यह  ज्यामितीय समष्टि है जिसमें प्रत्येक बिंदु की स्थिति निर्धारित करने के लिए दो वास्तविक संख्याओं की आवश्यकता होती है। यह  अफ़ाइन समष्टि है, जिसमें समतल रेखाओं की  विशेषता सम्मलित है। इसके पास  दूरी द्वारा प्रेरित मापनीय गुण हैं, जो वृत्तों की परिभाषा और कोण मापनी अवधि की परिभाषा को संभव बनाते हैं।


गणित, ज्यामिति, [[त्रिकोणमिति]], ग्राफ़ सिद्धांत और किसी फ़ंक्शन के ग्राफ़ में कई मूलभूत कार्य द्वि-आयामी या ''प्लानर'' स्थान में किए जाते हैं।<ref name="Janich Zook 1992 p. 50">{{cite book | last1=Janich | first1=P. | last2=Zook | first2=D. | title=Euclid's Heritage. Is Space Three-Dimensional? | publisher=Springer Netherlands | series=The Western Ontario Series in Philosophy of Science | year=1992 | isbn=978-0-7923-2025-8 | url=https://books.google.com/books?id=0DJ5Fq35NYQC&pg=PA50 | access-date=2023-03-11 | page=50}}</ref>
चयनित कार्टीशियन संयोजन सिस्टम के साथ  यूक्लिडियन समतल को कार्टीशियन समतल कहा जाता है।


यहां यूक्लिडियन समतल इसे इसके समानार्थक रूप में जाना जाता है, जो वास्तविक संख्याओं के जोड़ों (यानि वास्तविक संख्या समतल), डॉट गुण के साथ सुसज्जित है।


== यूक्लिडियन विमान ==
=== त्रि-आयामी समष्टि में एम्बेडिंग ===
गणित में, एक यूक्लिडियन विमान आयाम दो का यूक्लिडियन स्थान है, जिसे E2 के रूप में दर्शाया गया है। यह एक ज्यामितीय स्थान है जिसमें प्रत्येक बिंदु की स्थिति निर्धारित करने के लिए दो वास्तविक संख्याओं की आवश्यकता होती है। यह एक सजातीय स्थान है, जिसमें विशेष रूप से समांतर रेखाओं की अवधारणा शामिल है। इसमें एक दूरी से प्रेरित मीट्रिक गुण भी हैं, जो मंडलियों और कोण माप को परिभाषित करने की अनुमति देता है।
यूक्लिडियन ज्यामिति में, समतल  फ्लैट दो-आयामी सतह है जो अनंत रूप से फैलती है। यूक्लिडियन समतल अधिकांशतः तीन-आयामी जगह R3 के उपसमष्टिों के रूप में प्रकट होते हैं। एक उदाहरण  कमरे की दीवार का है, जो अनंत रूप से फैली हुई होती है और इसे अत्यन्त सूक्ष्म माना जाता है।


एक चुने हुए कार्तीय समन्वय प्रणाली के साथ एक यूक्लिडियन विमान को कार्तीय तल कहा जाता है।
वैदिक संख्या के जोड़ों R 2 समतल पर बिंदुओं की विवरण करने के लिए पर्याप्त है, किन्तु  बाहरी सतह पर बिंदुओं का संबंध आपस में संबंधित अंतर्निहित समष्टि R 3 में विचार की विशेष आवश्यकता होती है।
डॉट उत्पाद से लैस वास्तविक संख्याओं (वास्तविक समन्वय विमान) के जोड़े के सेट आर 2 को अक्सर यूक्लिडियन विमान कहा जाता है, क्योंकि प्रत्येक यूक्लिडियन विमान इसके लिए आइसोमोर्फिक है।


=== त्रि-आयामी अंतरिक्ष में एम्बेडिंग ===
== अण्डाकार समतल ==
यूक्लिडियन ज्यामिति में, एक विमान एक सपाट द्वि-आयामी सतह है जो अनिश्चित काल तक फैली हुई है। यूक्लिडियन विमान अक्सर त्रि-आयामी अंतरिक्ष आर 3 के उप-स्थानों के रूप में उत्पन्न होते हैं। एक प्रोटोटाइपिक उदाहरण एक कमरे की दीवारों में से एक है, जो असीम रूप से विस्तारित और अतिसूक्ष्म पतली मानी जाती है।
अण्डाकार तल  मीट्रिक के साथ प्रदान किया गया वास्तविक प्रक्षेपी तल है। केप्लर और डेसार्गेस ने ग्नोमोनिक प्रोजेक्शन का उपयोग  समतल σ को  गोलार्ध के स्पर्शरेखा पर बिंदुओं से संबंधित करने के लिए किया। O के गोलार्ध के केंद्र के साथ, σ में   बिंदु P  रेखा OP निर्धारित करता है जो गोलार्ध को काटती है, और कोई भी रेखा L ⊂ σ  समतल OL निर्धारित करती है जो गोलार्ध को  बड़े वृत्त के आधे भाग में काटती है। गोलार्द्ध O के माध्यम से  समतल से घिरा है और σ के समानांतर है। σ की कोई साधारण रेखा इस तल से मेल नहीं खाती; इसके अतिरिक्त अनंत पर  रेखा σ से जोड़ दी जाती है। चूंकि σ के इस विस्तार में कोई भी रेखा ओ के माध्यम से  समतल से मेल खाती है, और चूंकि इस तरह के समतलों की कोई भी जोड़ी ओ के माध्यम से   रेखा में प्रतिच्छेद करती है, इसलिए यह निष्कर्ष निकाला जा सकता है कि विस्तार में रेखाओं की कोई भी जोड़ी प्रतिच्छेद करती है: चौराहे का बिंदु जहां समतल स्थित है प्रतिच्छेदन σ या रेखा से अनंत पर मिलता है। इस प्रकार प्रक्षेपी ज्यामिति का स्वयंसिद्ध, जिसके लिए   समतल में रेखाओं के सभी युग्मों को प्रतिच्छेद करने की आवश्यकता होती है, की पुष्टि की जाती है।
जबकि वास्तविक संख्याओं की एक जोड़ी आर 2 एक विमान पर बिंदुओं का वर्णन करने के लिए पर्याप्त है, आउट-ऑफ-प्लेन बिंदुओं के साथ संबंध को परिवेशी स्थान आर 3 में एम्बेड करने के लिए विशेष विचार की आवश्यकता है।


[[Category:Articles with broken excerpts]]
P और Q को σ में दिया गया है, उनके बीच दीर्घवृत्तीय दूरी कोण POQ का माप है, जिसे सामान्यतः रेडियन में लिया जाता है। आर्थर केली ने दीर्घवृत्त ज्यामिति के अध्ययन की शुरुआत तब की जब उन्होंने "ऑन द डेफिनिशन ऑफ डिस्टेंस" लिखा।
[[Category:Articles with hatnote templates targeting a nonexistent page]]
== प्रोजेक्टिव समतल ==
[[Category:Created On 05/04/2023]]
गणित में,  प्रक्षेपी तल  ज्यामितीय संरचना है जो  समतल की अवधारणा को विस्तारित करता है। साधारण यूक्लिडियन तल में, दो रेखाएँ सामान्यतः  बिंदु पर प्रतिच्छेद करती हैं, किन्तु  कुछ जोड़ी रेखाएँ (अर्थात्, समानांतर रेखाएँ) होती हैं जो प्रतिच्छेद नहीं करती हैं।  प्रक्षेपी तल को  साधारण समतल के रूप में माना जा सकता है जो अतिरिक्त "बिंदुओं पर अनंत" से सुसज्जित है जहां समानांतर रेखाएं प्रतिच्छेद करती हैं। इस प्रकार प्रक्षेपी तल में कोई भी दो अलग-अलग रेखाएँ ठीक  बिंदु पर प्रतिच्छेद करती हैं।
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Short description with empty Wikidata description]]
[[Category:Template documentation pages|Short description/doc]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]


== अण्डाकार विमान ==
पुनर्जागरण के कलाकारों ने, परिप्रेक्ष्य में ड्राइंग की तकनीक विकसित करने में, इस गणितीय विषय के लिए आधार तैयार किया। आदर्श उदाहरण वास्तविक प्रक्षेपी तल है, जिसे विस्तारित यूक्लिडियन तल के रूप में भी जाना जाता है। यह उदाहरण, थोड़े अलग भेष में, बीजगणितीय ज्यामिति, टोपोलॉजी और प्रक्षेपी ज्यामिति में महत्वपूर्ण है, जहां इसे PG(2, R), RP<sup>2</sup>,या P<sub>2</sub>(R) द्वारा अन्य संकेतन के साथ विभिन्न रूप से निरूपित किया जा सकता है। कई अन्य प्रोजेक्टिव समतल हैं, दोनों अनंत हैं, जैसे सम्मिश्र प्रोजेक्टिव समतल और परिमित, जैसे कि फ़ानो समतल।
अण्डाकार तल एक मीट्रिक के साथ प्रदान किया गया वास्तविक प्रक्षेपी तल है। केप्लर और डेसार्गेस ने ग्नोमोनिक प्रोजेक्शन का इस्तेमाल एक विमान σ को एक गोलार्ध के स्पर्शरेखा पर बिंदुओं से संबंधित करने के लिए किया। O के गोलार्ध के केंद्र के साथ, σ में एक बिंदु P एक रेखा OP निर्धारित करता है जो गोलार्ध को काटती है, और कोई भी रेखा L ⊂ σ एक समतल OL निर्धारित करती है जो गोलार्ध को एक बड़े वृत्त के आधे हिस्से में काटती है। गोलार्द्ध O के माध्यम से एक विमान से घिरा है और σ के समानांतर है। σ की कोई साधारण रेखा इस तल से मेल नहीं खाती; इसके बजाय अनंत पर एक रेखा σ से जोड़ दी जाती है। चूंकि σ के इस विस्तार में कोई भी रेखा ओ के माध्यम से एक विमान से मेल खाती है, और चूंकि इस तरह के विमानों की कोई भी जोड़ी ओ के माध्यम से एक रेखा में प्रतिच्छेद करती है, इसलिए यह निष्कर्ष निकाला जा सकता है कि विस्तार में रेखाओं की कोई भी जोड़ी प्रतिच्छेद करती है: चौराहे का बिंदु जहां विमान स्थित है प्रतिच्छेदन σ या रेखा से अनंत पर मिलता है। इस प्रकार प्रक्षेपी ज्यामिति का स्वयंसिद्ध, जिसके लिए एक समतल में रेखाओं के सभी युग्मों को प्रतिच्छेद करने की आवश्यकता होती है, की पुष्टि की जाती है।
P और Q को σ में दिया गया है, उनके बीच दीर्घवृत्तीय दूरी कोण POQ का माप है, जिसे आमतौर पर रेडियन में लिया जाता है। आर्थर केली ने दीर्घवृत्त ज्यामिति के अध्ययन की शुरुआत तब की जब उन्होंने "ऑन द डेफिनिशन ऑफ डिस्टेंस" लिखा।
 
[[Category:Articles with broken excerpts]]
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category:Created On 05/04/2023]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Short description with empty Wikidata description]]
[[Category:Template documentation pages|Short description/doc]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
 
== प्रोजेक्टिव प्लेन ==
गणित में, एक प्रक्षेपी तल एक ज्यामितीय संरचना है जो एक विमान की अवधारणा को विस्तारित करता है। साधारण यूक्लिडियन तल में, दो रेखाएँ आम तौर पर एक बिंदु पर प्रतिच्छेद करती हैं, लेकिन कुछ जोड़ी रेखाएँ (अर्थात्, समानांतर रेखाएँ) होती हैं जो प्रतिच्छेद नहीं करती हैं। एक प्रक्षेपी तल को एक साधारण विमान के रूप में माना जा सकता है जो अतिरिक्त "बिंदुओं पर अनंत" से सुसज्जित है जहां समानांतर रेखाएं प्रतिच्छेद करती हैं। इस प्रकार प्रक्षेपी तल में कोई भी दो अलग-अलग रेखाएँ ठीक एक बिंदु पर प्रतिच्छेद करती हैं।
 
पुनर्जागरण के कलाकारों ने, परिप्रेक्ष्य में ड्राइंग की तकनीक विकसित करने में, इस गणितीय विषय के लिए आधार तैयार किया। आदर्श उदाहरण वास्तविक प्रक्षेपी तल है, जिसे विस्तारित यूक्लिडियन तल के रूप में भी जाना जाता है। यह उदाहरण, थोड़े अलग भेष में, बीजगणितीय ज्यामिति, टोपोलॉजी और प्रक्षेपी ज्यामिति में महत्वपूर्ण है, जहां इसे पीजी (2, आर), आरपी2, या पी2 (आर) द्वारा अन्य संकेतन के साथ विभिन्न रूप से निरूपित किया जा सकता है। कई अन्य प्रोजेक्टिव प्लेन हैं, दोनों अनंत हैं, जैसे जटिल प्रोजेक्टिव प्लेन और परिमित, जैसे कि फ़ानो प्लेन।
एक प्रोजेक्टिव प्लेन एक 2-डायमेंशनल प्रोजेक्टिव स्पेस है, लेकिन सभी प्रोजेक्टिव प्लेन को 3-डायमेंशनल प्रोजेक्टिव स्पेस में एम्बेड नहीं किया जा सकता है। इस तरह की एम्बेडिंग एक संपत्ति का परिणाम है जिसे डेसार्ग्स प्रमेय के रूप में जाना जाता है, जो सभी प्रक्षेपी विमानों द्वारा साझा नहीं किया जाता है।
 
[[Category:Articles with broken excerpts]]
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category:Created On 05/04/2023]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Short description with empty Wikidata description]]
[[Category:Template documentation pages|Short description/doc]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]


प्रोजेक्टिव समतल एक 2-आयामी प्रोजेक्टिव स्पेस है, किन्तु  सभी प्रोजेक्टिव समतल को 3-आयामी प्रोजेक्टिव स्पेस में एम्बेड नहीं किया जा सकता है। इस तरह की एम्बेडिंग  संपत्ति का परिणाम है जिसे डेसार्ग्स प्रमेय के रूप में जाना जाता है, जो सभी प्रक्षेपी समतलों द्वारा साझा नहीं किया जाता है
== आगे सामान्यीकरण ==
== आगे सामान्यीकरण ==
इसकी परिचित ज्यामितीय संरचना के अलावा, समरूपता के साथ जो सामान्य आंतरिक उत्पाद के संबंध में समरूपता है, विमान को [[अमूर्तता (गणित)]] के विभिन्न अन्य स्तरों पर देखा जा सकता है। अमूर्तता का प्रत्येक स्तर एक विशिष्ट [[श्रेणी (गणित)]] से मेल खाता है।
इसकी परिचित ज्यामितीय संरचना के अतिरिक्त, समरूपता के साथ जो सामान्य आंतरिक उत्पाद के संबंध में समरूपता है, समतल को [[अमूर्तता (गणित)]] के विभिन्न अन्य स्तरों पर देखा जा सकता है। अमूर्तता का प्रत्येक स्तर एक विशिष्ट [[श्रेणी (गणित)]] से मेल खाता है।


एक चरम पर, सभी ज्यामितीय और [[मीट्रिक (गणित)]] अवधारणाओं को [[ संस्थानिक ]] प्लेन छोड़ने के लिए छोड़ दिया जा सकता है, जिसे एक आदर्श [[होमोटॉपी]] तुच्छ अनंत रबर शीट के रूप में माना जा सकता है, जो निकटता की धारणा को बरकरार रखता है, लेकिन इसमें कोई दूरी नहीं है। टोपोलॉजिकल प्लेन में एक रेखीय पथ की अवधारणा है, लेकिन एक सीधी रेखा की कोई अवधारणा नहीं है। टोपोलॉजिकल प्लेन, या इसके समतुल्य ओपन डिस्क, कम-आयामी टोपोलॉजी में वर्गीकृत [[सतह (टोपोलॉजी)]] (या 2-[[कई गुना]]) के निर्माण के लिए इस्तेमाल किया जाने वाला बुनियादी टोपोलॉजिकल पड़ोस है। टोपोलॉजिकल प्लेन के आइसोमोर्फिज्म सभी [[निरंतर कार्य]] आक्षेप हैं। टोपोलॉजिकल प्लेन ग्राफ़ थ्योरी की शाखा के लिए प्राकृतिक संदर्भ है जो [[समतल रेखांकन]] से संबंधित है, और [[चार रंग प्रमेय]] जैसे परिणाम।
एक चरम पर, सभी ज्यामितीय और [[मीट्रिक (गणित)]] अवधारणाओं को समतल छोड़ने के लिए छोड़ दिया जा सकता है, जिसे   आदर्श [[होमोटॉपी]] तुच्छ अनंत रबर शीट के रूप में माना जा सकता है, जो निकटता की धारणा को निरंतर रखता है, किन्तु  इसमें कोई दूरी नहीं है। टोपोलॉजिकल समतल में एक रेखीय पथ की अवधारणा है, किन्तु  सीधी रेखा की कोई अवधारणा नहीं है। टोपोलॉजिकल समतल, या इसके समतुल्य ओपन डिस्क, कम-आयामी टोपोलॉजी में वर्गीकृत [[सतह (टोपोलॉजी)]] (या 2-[[कई गुना]]) के निर्माण के लिए उपयोग किया जाने वाला बुनियादी टोपोलॉजिकल पड़ोस है। टोपोलॉजिकल समतल के आइसोमोर्फिज्म सभी निरंतर फलन आक्षेप हैं। टोपोलॉजिकल समतल ग्राफ़ थ्योरी की शाखा के लिए प्राकृतिक संदर्भ है जो [[समतल रेखांकन]] से संबंधित है, और [[चार रंग प्रमेय]] जैसे परिणाम होते हैं।


विमान को एक सजातीय स्थान के रूप में भी देखा जा सकता है, जिसका समरूपता अनुवाद और गैर-एकवचन रैखिक मानचित्रों का संयोजन है। इस दृष्टिकोण से कोई दूरी नहीं है, लेकिन संरेखता और किसी भी रेखा पर दूरियों के अनुपात संरक्षित हैं।
समतल को एक अफाइन समष्टि के रूप में भी देखा जा सकता है, जिसके इसोमॉर्फिज़म ट्रांसलेशन और गैर-संकलनशील रूप से रूपांतरण हैं। इस दृष्टिकोण से दूरी नहीं होती है, किन्तु  संभावित रूप से कोलीनियरिटी और किसी भी रेखा पर दूरियों के अनुपात को संभाला गया है।


[[ विभेदक [[ज्यामितिक]] ]] एक प्लेन को 2-डायमेंशनल रियल मैनिफोल्ड के रूप में देखती है, एक टोपोलॉजिकल प्लेन जो एक [[ विभेदक संरचना ]] के साथ दिया जाता है। फिर से इस मामले में, दूरी की कोई धारणा नहीं है, लेकिन अब नक्शों की चिकनाई की अवधारणा है, उदाहरण के लिए एक भिन्न कार्य या सुचारू कार्य पथ (लागू अंतर संरचना के प्रकार के आधार पर)। इस मामले में तुल्याकारिता विभेदीयता की चुनी हुई डिग्री के साथ आक्षेप हैं।
अवकल [[ज्यामितिक]] समतल को 2-आयामी रियल मैनिफोल्ड के रूप में देखती है, टोपोलॉजिकल समतल जो अवकल संरचना के साथ दिया जाता है। फिर से इस स्थितियों  में, दूरी की कोई धारणा नहीं है, किन्तु  अब नक्शों की चिकनाई की अवधारणा है, उदाहरण के लिए   भिन्न फलन या सुचारू फलन पथ (लागू अंतर संरचना के प्रकार के आधार पर)। इस स्थितियों  में तुल्याकारिता विभेदीयता की चुनी हुई डिग्री के साथ आक्षेप हैं।


अमूर्तता की विपरीत दिशा में, हम [[जटिल विमान]] और [[जटिल विश्लेषण]] के प्रमुख क्षेत्र को जन्म देते हुए, ज्यामितीय तल पर एक संगत क्षेत्र संरचना लागू कर सकते हैं। जटिल क्षेत्र में केवल दो समरूपताएं हैं जो वास्तविक रेखा को स्थिर करती हैं, पहचान और [[जटिल संयुग्मन]]।
अमूर्तता की विपरीत दिशा में, हम सम्मिश्र समतल और [[जटिल विश्लेषण|सम्मिश्र विश्लेषण]] के प्रमुख क्षेत्र को जन्म देते हुए, ज्यामितीय तल पर संगत क्षेत्र संरचना लागू कर सकते हैं। संयुक्त क्षेत्र में एकमात्र  दो ऐसे इसोमॉर्फिज़म होते हैं जो वास्तविक रेखा को ठीक छोड़ कर बाकी सब कुछ जैसा रखते हैं -, पहचान और सम्मिश्र संयुग्मन हैं।


उसी तरह जैसे वास्तविक मामले में, समतल को सरलतम, एक-आयामी (जटिल संख्याओं पर) [[जटिल कई गुना]] के रूप में भी देखा जा सकता है, जिसे कभी-कभी जटिल रेखा भी कहा जाता है। हालांकि, यह दृष्टिकोण विमान के मामले के साथ 2-आयामी वास्तविक कई गुना के विपरीत है। [[समाकृतिकता]]एँ जटिल समतल के सभी [[अनुरूप नक्शा]] आक्षेप हैं, लेकिन केवल संभावनाएँ ऐसे नक्शे हैं जो एक जटिल संख्या और एक अनुवाद द्वारा गुणन की संरचना के अनुरूप हैं।
उसी तरह जैसे वास्तविक स्थितियों  में, समतल को सरलतम, एक-आयामी (सम्मिश्र संख्याओं पर) [[जटिल कई गुना|सम्मिश्र कई गुना]] के रूप में भी देखा जा सकता है, जिसे कभी-कभी सम्मिश्र रेखा भी कहा जाता है। चूंकि, यह दृष्टिकोण समतल के स्थितियों  के साथ 2-आयामी वास्तविक कई गुना के विपरीत है। [[समाकृतिकता]]एँ सम्मिश्र समतल के सभी अनुरूप नक्शा आक्षेप हैं, किन्तु  एकमात्र  वे संभवता हैं जो   कॉम्प्लेक्स संख्या के गुणा करने और एक समष्टिांतरण का संयोजन करते हैं।


इसके अलावा, यूक्लिडियन ज्यामिति (जिसमें हर जगह शून्य [[वक्रता]] होती है) केवल वही ज्यामिति नहीं है जो विमान में हो सकती है। [[त्रिविम प्रक्षेपण]] का उपयोग करके विमान को एक [[गोलाकार ज्यामिति]] दी जा सकती है। इसे समतल पर एक गोले की स्पर्शरेखा (फर्श पर एक गेंद की तरह) रखने, शीर्ष बिंदु को हटाने और इस बिंदु से गोले को समतल पर प्रक्षेपित करने के बारे में सोचा जा सकता है। यह उन अनुमानों में से एक है जिसका उपयोग पृथ्वी की सतह के एक हिस्से का समतल नक्शा बनाने में किया जा सकता है। परिणामी ज्यामिति में निरंतर सकारात्मक वक्रता होती है।
इसके अतिरिक्त , यूक्लिडियन ज्यामिति (जिसमें हर जगह शून्य [[वक्रता]] होती है) एकमात्र  वही ज्यामिति नहीं है जो समतल में हो सकती है। [[त्रिविम प्रक्षेपण]] का उपयोग करके समतल को   [[गोलाकार ज्यामिति]] दी जा सकती है। इसे समतल पर गोले की स्पर्शरेखा (फर्श पर   गेंद की तरह) रखने, शीर्ष बिंदु को हटाने और इस बिंदु से गोले को समतल पर प्रक्षेपित करने के बारे में सोचा जा सकता है। यह उन अनुमानों में से   है जिसका उपयोग पृथ्वी की सतह के   भाग का समतल नक्शा बनाने में किया जा सकता है। परिणामी ज्यामिति में निरंतर सकारात्मक वक्रता होती है।


वैकल्पिक रूप से, समतल को एक मीट्रिक भी दिया जा सकता है जो इसे [[अतिशयोक्तिपूर्ण ज्यामिति]] देते हुए निरंतर नकारात्मक वक्रता प्रदान करता है। बाद की संभावना सरलीकृत मामले में [[विशेष सापेक्षता]] के सिद्धांत में एक आवेदन पाती है जहां दो स्थानिक आयाम और एक समय आयाम हैं। (हाइपरबॉलिक प्लेन त्रि-आयामी मिंकोव्स्की अंतरिक्ष में एक समयबद्ध [[ऊनविम पृष्ठ]] है।)
वैकल्पिक रूप से, समतल को मीट्रिक भी दिया जा सकता है जो इसे [[अतिशयोक्तिपूर्ण ज्यामिति]] देते हुए निरंतर नकारात्मक वक्रता प्रदान करता है। बाद की संभावना सरलीकृत स्थितियों  में [[विशेष सापेक्षता]] के सिद्धांत में एक आवेदन पाती है जहां दो समष्टििक आयाम और समय आयाम हैं। (हाइपरबॉलिक समतल त्रि-आयामी मिंकोव्स्की समष्टि में   समयबद्ध [[ऊनविम पृष्ठ]] है।)


== सामयिक और विभेदक ज्यामितीय धारणाएँ ==
== सामयिक और अवकल ज्यामितीय धारणाएँ ==
विमान का [[एक-बिंदु संघनन]] एक क्षेत्र के लिए होमोमोर्फिक है (स्टीरियोग्राफिक प्रोजेक्शन देखें); खुली डिस्क उत्तरी ध्रुव के लापता होने के साथ एक गोले के लिए होमियोमॉर्फिक है; उस बिंदु को जोड़ने से (कॉम्पैक्ट) गोला पूरा हो जाता है। इस कॉम्पैक्टिफिकेशन का नतीजा कई गुना है जिसे [[रीमैन क्षेत्र]] या जटिल संख्या [[ प्रक्षेपण रेखा ]] कहा जाता है। यूक्लिडियन विमान से एक बिंदु के बिना एक क्षेत्र में प्रक्षेपण एक भिन्नता है और यहां तक ​​​​कि एक अनुरूप मानचित्र भी है।
समतल का [[एक-बिंदु संघनन]]   क्षेत्र के लिए होमोमोर्फिक है (स्टीरियोग्राफिक प्रोजेक्शन देखें); खुली डिस्क उत्तरी ध्रुव के लापता होने के साथ गोले के लिए होमियोमॉर्फिक है; उस बिंदु को जोड़ने से (कॉम्पैक्ट) गोला पूरा हो जाता है। इस कॉम्पैक्टिफिकेशन का परिणाम कई गुना है जिसे [[रीमैन क्षेत्र]] या सम्मिश्र संख्या [[ प्रक्षेपण रेखा ]] कहा जाता है। यूक्लिडियन समतल से एक बिंदु के बिना क्षेत्र में प्रक्षेपण भिन्नता है और यहां तक ​​​​कि अनुरूप मानचित्र भी है।


प्लेन स्वयं एक खुली [[डिस्क (गणित)]] के लिए होमियोमॉर्फिक (और [[डिफियोमोर्फिज्म]]) है। अतिशयोक्तिपूर्ण ज्यामिति के लिए इस तरह के भिन्नता अनुरूप है, लेकिन यूक्लिडियन विमान के लिए यह नहीं है।
समतल स्वयं खुली [[डिस्क (गणित)]] के लिए होमियोमॉर्फिक (और [[डिफियोमोर्फिज्म]]) है। अतिशयोक्तिपूर्ण ज्यामिति के लिए इस तरह के भिन्नता अनुरूप है, किन्तु  यूक्लिडियन समतल के लिए यह नहीं है।


== यह भी देखें ==
== यह भी देखें ==
* [[एफ़िन विमान]]
* [[एफ़िन विमान|एफ़िन समतल]]
* [[अतिशयोक्तिपूर्ण विमान]]
* [[अतिशयोक्तिपूर्ण विमान|अतिशयोक्तिपूर्ण समतल]]
*[[ज्यामितीय स्थान]]
*[[ज्यामितीय स्थान|ज्यामितीय समष्टि]]


==संदर्भ==
==संदर्भ==
{{reflist}}
{{reflist}}
[[Category: अंक शास्त्र]]


 
[[Category:Articles with broken excerpts]]
 
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category: Machine Translated Page]]
[[Category:Created On 05/04/2023]]
[[Category:Created On 05/04/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Short description with empty Wikidata description]]
[[Category:Template documentation pages|Short description/doc]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:अंक शास्त्र]]

Latest revision as of 15:03, 26 October 2023

गणित में, समतल द्वि-आयामी समष्टि (गणित) या समतलता (गणित) सतह (गणित) है जो अनिश्चित काल तक फैली हुई है। समतल एक-आयामी बिंदु (ज्यामिति) (शून्य आयाम), रेखा (ज्यामिति) ( आयाम) और त्रि-आयामी समष्टि का द्वि-आयामी समकक्ष है।

जब द्वि-आयामी यूक्लिडियन समष्टि में विशेष रूप से काम करते समय, निश्चित लेख का उपयोग किया जाता है, इसलिए यूक्लिडियन समतल पूरे समष्टि को संदर्भित करता है।

गणित, ज्यामिति, त्रिकोणमिति, ग्राफ़ सिद्धांत और किसी फ़ंक्शन के ग्राफ़ में कई मूलभूत फलन द्वि-आयामी या प्लानर समष्टि में किए जाते हैं।[1]

यूक्लिडियन समतल

गणित में, यूक्लिडियन समतल दो-आयामी यूक्लिडियन समष्टि है, जिसे E2 के रूप में चिह्नित किया गया है। यह ज्यामितीय समष्टि है जिसमें प्रत्येक बिंदु की स्थिति निर्धारित करने के लिए दो वास्तविक संख्याओं की आवश्यकता होती है। यह अफ़ाइन समष्टि है, जिसमें समतल रेखाओं की विशेषता सम्मलित है। इसके पास दूरी द्वारा प्रेरित मापनीय गुण हैं, जो वृत्तों की परिभाषा और कोण मापनी अवधि की परिभाषा को संभव बनाते हैं।

चयनित कार्टीशियन संयोजन सिस्टम के साथ यूक्लिडियन समतल को कार्टीशियन समतल कहा जाता है।

यहां यूक्लिडियन समतल इसे इसके समानार्थक रूप में जाना जाता है, जो वास्तविक संख्याओं के जोड़ों (यानि वास्तविक संख्या समतल), डॉट गुण के साथ सुसज्जित है।

त्रि-आयामी समष्टि में एम्बेडिंग

यूक्लिडियन ज्यामिति में, समतल फ्लैट दो-आयामी सतह है जो अनंत रूप से फैलती है। यूक्लिडियन समतल अधिकांशतः तीन-आयामी जगह R3 के उपसमष्टिों के रूप में प्रकट होते हैं। एक उदाहरण कमरे की दीवार का है, जो अनंत रूप से फैली हुई होती है और इसे अत्यन्त सूक्ष्म माना जाता है।

वैदिक संख्या के जोड़ों R 2 समतल पर बिंदुओं की विवरण करने के लिए पर्याप्त है, किन्तु बाहरी सतह पर बिंदुओं का संबंध आपस में संबंधित अंतर्निहित समष्टि R 3 में विचार की विशेष आवश्यकता होती है।

अण्डाकार समतल

अण्डाकार तल मीट्रिक के साथ प्रदान किया गया वास्तविक प्रक्षेपी तल है। केप्लर और डेसार्गेस ने ग्नोमोनिक प्रोजेक्शन का उपयोग समतल σ को गोलार्ध के स्पर्शरेखा पर बिंदुओं से संबंधित करने के लिए किया। O के गोलार्ध के केंद्र के साथ, σ में बिंदु P रेखा OP निर्धारित करता है जो गोलार्ध को काटती है, और कोई भी रेखा L ⊂ σ समतल OL निर्धारित करती है जो गोलार्ध को बड़े वृत्त के आधे भाग में काटती है। गोलार्द्ध O के माध्यम से समतल से घिरा है और σ के समानांतर है। σ की कोई साधारण रेखा इस तल से मेल नहीं खाती; इसके अतिरिक्त अनंत पर रेखा σ से जोड़ दी जाती है। चूंकि σ के इस विस्तार में कोई भी रेखा ओ के माध्यम से समतल से मेल खाती है, और चूंकि इस तरह के समतलों की कोई भी जोड़ी ओ के माध्यम से रेखा में प्रतिच्छेद करती है, इसलिए यह निष्कर्ष निकाला जा सकता है कि विस्तार में रेखाओं की कोई भी जोड़ी प्रतिच्छेद करती है: चौराहे का बिंदु जहां समतल स्थित है प्रतिच्छेदन σ या रेखा से अनंत पर मिलता है। इस प्रकार प्रक्षेपी ज्यामिति का स्वयंसिद्ध, जिसके लिए समतल में रेखाओं के सभी युग्मों को प्रतिच्छेद करने की आवश्यकता होती है, की पुष्टि की जाती है।

P और Q को σ में दिया गया है, उनके बीच दीर्घवृत्तीय दूरी कोण POQ का माप है, जिसे सामान्यतः रेडियन में लिया जाता है। आर्थर केली ने दीर्घवृत्त ज्यामिति के अध्ययन की शुरुआत तब की जब उन्होंने "ऑन द डेफिनिशन ऑफ डिस्टेंस" लिखा।

प्रोजेक्टिव समतल

गणित में, प्रक्षेपी तल ज्यामितीय संरचना है जो समतल की अवधारणा को विस्तारित करता है। साधारण यूक्लिडियन तल में, दो रेखाएँ सामान्यतः बिंदु पर प्रतिच्छेद करती हैं, किन्तु कुछ जोड़ी रेखाएँ (अर्थात्, समानांतर रेखाएँ) होती हैं जो प्रतिच्छेद नहीं करती हैं। प्रक्षेपी तल को साधारण समतल के रूप में माना जा सकता है जो अतिरिक्त "बिंदुओं पर अनंत" से सुसज्जित है जहां समानांतर रेखाएं प्रतिच्छेद करती हैं। इस प्रकार प्रक्षेपी तल में कोई भी दो अलग-अलग रेखाएँ ठीक बिंदु पर प्रतिच्छेद करती हैं।

पुनर्जागरण के कलाकारों ने, परिप्रेक्ष्य में ड्राइंग की तकनीक विकसित करने में, इस गणितीय विषय के लिए आधार तैयार किया। आदर्श उदाहरण वास्तविक प्रक्षेपी तल है, जिसे विस्तारित यूक्लिडियन तल के रूप में भी जाना जाता है। यह उदाहरण, थोड़े अलग भेष में, बीजगणितीय ज्यामिति, टोपोलॉजी और प्रक्षेपी ज्यामिति में महत्वपूर्ण है, जहां इसे PG(2, R), RP2,या P2(R) द्वारा अन्य संकेतन के साथ विभिन्न रूप से निरूपित किया जा सकता है। कई अन्य प्रोजेक्टिव समतल हैं, दोनों अनंत हैं, जैसे सम्मिश्र प्रोजेक्टिव समतल और परिमित, जैसे कि फ़ानो समतल।

प्रोजेक्टिव समतल एक 2-आयामी प्रोजेक्टिव स्पेस है, किन्तु सभी प्रोजेक्टिव समतल को 3-आयामी प्रोजेक्टिव स्पेस में एम्बेड नहीं किया जा सकता है। इस तरह की एम्बेडिंग संपत्ति का परिणाम है जिसे डेसार्ग्स प्रमेय के रूप में जाना जाता है, जो सभी प्रक्षेपी समतलों द्वारा साझा नहीं किया जाता है

आगे सामान्यीकरण

इसकी परिचित ज्यामितीय संरचना के अतिरिक्त, समरूपता के साथ जो सामान्य आंतरिक उत्पाद के संबंध में समरूपता है, समतल को अमूर्तता (गणित) के विभिन्न अन्य स्तरों पर देखा जा सकता है। अमूर्तता का प्रत्येक स्तर एक विशिष्ट श्रेणी (गणित) से मेल खाता है।

एक चरम पर, सभी ज्यामितीय और मीट्रिक (गणित) अवधारणाओं को समतल छोड़ने के लिए छोड़ दिया जा सकता है, जिसे आदर्श होमोटॉपी तुच्छ अनंत रबर शीट के रूप में माना जा सकता है, जो निकटता की धारणा को निरंतर रखता है, किन्तु इसमें कोई दूरी नहीं है। टोपोलॉजिकल समतल में एक रेखीय पथ की अवधारणा है, किन्तु सीधी रेखा की कोई अवधारणा नहीं है। टोपोलॉजिकल समतल, या इसके समतुल्य ओपन डिस्क, कम-आयामी टोपोलॉजी में वर्गीकृत सतह (टोपोलॉजी) (या 2-कई गुना) के निर्माण के लिए उपयोग किया जाने वाला बुनियादी टोपोलॉजिकल पड़ोस है। टोपोलॉजिकल समतल के आइसोमोर्फिज्म सभी निरंतर फलन आक्षेप हैं। टोपोलॉजिकल समतल ग्राफ़ थ्योरी की शाखा के लिए प्राकृतिक संदर्भ है जो समतल रेखांकन से संबंधित है, और चार रंग प्रमेय जैसे परिणाम होते हैं।

समतल को एक अफाइन समष्टि के रूप में भी देखा जा सकता है, जिसके इसोमॉर्फिज़म ट्रांसलेशन और गैर-संकलनशील रूप से रूपांतरण हैं। इस दृष्टिकोण से दूरी नहीं होती है, किन्तु संभावित रूप से कोलीनियरिटी और किसी भी रेखा पर दूरियों के अनुपात को संभाला गया है।

अवकल ज्यामितिक समतल को 2-आयामी रियल मैनिफोल्ड के रूप में देखती है, टोपोलॉजिकल समतल जो अवकल संरचना के साथ दिया जाता है। फिर से इस स्थितियों में, दूरी की कोई धारणा नहीं है, किन्तु अब नक्शों की चिकनाई की अवधारणा है, उदाहरण के लिए भिन्न फलन या सुचारू फलन पथ (लागू अंतर संरचना के प्रकार के आधार पर)। इस स्थितियों में तुल्याकारिता विभेदीयता की चुनी हुई डिग्री के साथ आक्षेप हैं।

अमूर्तता की विपरीत दिशा में, हम सम्मिश्र समतल और सम्मिश्र विश्लेषण के प्रमुख क्षेत्र को जन्म देते हुए, ज्यामितीय तल पर संगत क्षेत्र संरचना लागू कर सकते हैं। संयुक्त क्षेत्र में एकमात्र दो ऐसे इसोमॉर्फिज़म होते हैं जो वास्तविक रेखा को ठीक छोड़ कर बाकी सब कुछ जैसा रखते हैं -, पहचान और सम्मिश्र संयुग्मन हैं।

उसी तरह जैसे वास्तविक स्थितियों में, समतल को सरलतम, एक-आयामी (सम्मिश्र संख्याओं पर) सम्मिश्र कई गुना के रूप में भी देखा जा सकता है, जिसे कभी-कभी सम्मिश्र रेखा भी कहा जाता है। चूंकि, यह दृष्टिकोण समतल के स्थितियों के साथ 2-आयामी वास्तविक कई गुना के विपरीत है। समाकृतिकताएँ सम्मिश्र समतल के सभी अनुरूप नक्शा आक्षेप हैं, किन्तु एकमात्र वे संभवता हैं जो कॉम्प्लेक्स संख्या के गुणा करने और एक समष्टिांतरण का संयोजन करते हैं।

इसके अतिरिक्त , यूक्लिडियन ज्यामिति (जिसमें हर जगह शून्य वक्रता होती है) एकमात्र वही ज्यामिति नहीं है जो समतल में हो सकती है। त्रिविम प्रक्षेपण का उपयोग करके समतल को गोलाकार ज्यामिति दी जा सकती है। इसे समतल पर गोले की स्पर्शरेखा (फर्श पर गेंद की तरह) रखने, शीर्ष बिंदु को हटाने और इस बिंदु से गोले को समतल पर प्रक्षेपित करने के बारे में सोचा जा सकता है। यह उन अनुमानों में से है जिसका उपयोग पृथ्वी की सतह के भाग का समतल नक्शा बनाने में किया जा सकता है। परिणामी ज्यामिति में निरंतर सकारात्मक वक्रता होती है।

वैकल्पिक रूप से, समतल को मीट्रिक भी दिया जा सकता है जो इसे अतिशयोक्तिपूर्ण ज्यामिति देते हुए निरंतर नकारात्मक वक्रता प्रदान करता है। बाद की संभावना सरलीकृत स्थितियों में विशेष सापेक्षता के सिद्धांत में एक आवेदन पाती है जहां दो समष्टििक आयाम और समय आयाम हैं। (हाइपरबॉलिक समतल त्रि-आयामी मिंकोव्स्की समष्टि में समयबद्ध ऊनविम पृष्ठ है।)

सामयिक और अवकल ज्यामितीय धारणाएँ

समतल का एक-बिंदु संघनन क्षेत्र के लिए होमोमोर्फिक है (स्टीरियोग्राफिक प्रोजेक्शन देखें); खुली डिस्क उत्तरी ध्रुव के लापता होने के साथ गोले के लिए होमियोमॉर्फिक है; उस बिंदु को जोड़ने से (कॉम्पैक्ट) गोला पूरा हो जाता है। इस कॉम्पैक्टिफिकेशन का परिणाम कई गुना है जिसे रीमैन क्षेत्र या सम्मिश्र संख्या प्रक्षेपण रेखा कहा जाता है। यूक्लिडियन समतल से एक बिंदु के बिना क्षेत्र में प्रक्षेपण भिन्नता है और यहां तक ​​​​कि अनुरूप मानचित्र भी है।

समतल स्वयं खुली डिस्क (गणित) के लिए होमियोमॉर्फिक (और डिफियोमोर्फिज्म) है। अतिशयोक्तिपूर्ण ज्यामिति के लिए इस तरह के भिन्नता अनुरूप है, किन्तु यूक्लिडियन समतल के लिए यह नहीं है।

यह भी देखें

संदर्भ

  1. Janich, P.; Zook, D. (1992). Euclid's Heritage. Is Space Three-Dimensional?. The Western Ontario Series in Philosophy of Science. Springer Netherlands. p. 50. ISBN 978-0-7923-2025-8. Retrieved 2023-03-11.