हॉज अनुमान: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(3 intermediate revisions by 3 users not shown)
Line 3: Line 3:
[[File:Hodge conjecture.png|thumb|420x420px| सिंगुलर (को) होमोलॉजी का उपयोग करके पता लगाया जाता है, जहां गैर-शून्य वर्ग की उपस्थिति होती है <math>[\alpha]\in H_{sing}^k(X)</math> अंतरिक्ष को इंगित करता है <math>X</math> (आयाम है <math>k</math>) छेद। इस तरह के वर्ग को [[ सिंप्लेक्स |सिंप्लेक्स]] की (सह) श्रृंखला द्वारा दर्शाया गया है, जिसे बाईं ओर 1-सिंपलिस (लाइन सेगमेंट) से निर्मित लाल बहुभुज द्वारा दर्शाया गया है। यह वर्ग छेद का पता लगाता है <math>A</math> इसके चारों ओर चक्कर लगाकर। इस स्थिति में, वास्तव में बहुपद समीकरण है जिसका शून्य सेट, दाईं ओर हरे रंग में दर्शाया गया है, इसके चारों ओर लूप करके छेद का पता लगाता है। हॉज अनुमान इस कथन को उच्च आयामों के लिए सामान्यीकृत करता है।]]गणित में, '''हॉज अनुमान''' [[बीजगणित|बीजगणितीय]] ज्यामिति और [[जटिल ज्यामिति]] में प्रमुख अनसुलझी समस्या है जो गैर-एकवचन [[जटिल संख्या]] बीजगणितीय विविधता के [[बीजगणितीय टोपोलॉजी]] को इसकी उप-किस्मों से संबंधित करता है।
[[File:Hodge conjecture.png|thumb|420x420px| सिंगुलर (को) होमोलॉजी का उपयोग करके पता लगाया जाता है, जहां गैर-शून्य वर्ग की उपस्थिति होती है <math>[\alpha]\in H_{sing}^k(X)</math> अंतरिक्ष को इंगित करता है <math>X</math> (आयाम है <math>k</math>) छेद। इस तरह के वर्ग को [[ सिंप्लेक्स |सिंप्लेक्स]] की (सह) श्रृंखला द्वारा दर्शाया गया है, जिसे बाईं ओर 1-सिंपलिस (लाइन सेगमेंट) से निर्मित लाल बहुभुज द्वारा दर्शाया गया है। यह वर्ग छेद का पता लगाता है <math>A</math> इसके चारों ओर चक्कर लगाकर। इस स्थिति में, वास्तव में बहुपद समीकरण है जिसका शून्य सेट, दाईं ओर हरे रंग में दर्शाया गया है, इसके चारों ओर लूप करके छेद का पता लगाता है। हॉज अनुमान इस कथन को उच्च आयामों के लिए सामान्यीकृत करता है।]]गणित में, '''हॉज अनुमान''' [[बीजगणित|बीजगणितीय]] ज्यामिति और [[जटिल ज्यामिति]] में प्रमुख अनसुलझी समस्या है जो गैर-एकवचन [[जटिल संख्या]] बीजगणितीय विविधता के [[बीजगणितीय टोपोलॉजी]] को इसकी उप-किस्मों से संबंधित करता है।


सरल शब्दों में, हॉज अनुमान का दावा है कि कुछ स्थान (गणित), जटिल [[बीजगणितीय किस्म|बीजगणितीय किस्मों]] में छिद्रों की संख्या जैसी बुनियादी सामयिक जानकारी को उन स्थानों के अंदर बैठे संभावित अच्छे आकृतियों का अध्ययन करके समझा जा सकता है, जो किसी फ़ंक्शन के शून्य की तरह दिखते हैं। [[बहुपद समीकरण]]ों की। बाद की वस्तुओं का अध्ययन बीजगणित और [[विश्लेषणात्मक कार्य]]ों के कलन का उपयोग करके किया जा सकता है, और यह अप्रत्यक्ष रूप से उच्च-आयामी स्थानों के व्यापक आकार और संरचना को समझने की अनुमति देता है जिसे अन्यथा आसानी से नहीं देखा जा सकता है।
सरल शब्दों में, हॉज अनुमान का दावा है कि कुछ स्थान (गणित), जटिल [[बीजगणितीय किस्म|बीजगणितीय किस्मों]] में छिद्रों की संख्या जैसी मौलिक सामयिक जानकारी को उन स्थानों के अंदर बैठे संभावित अच्छे आकृतियों का अध्ययन करके समझा जा सकता है, जो किसी फ़ंक्शन के शून्य की तरह दिखते हैं। [[बहुपद समीकरण]]ों की। बाद की वस्तुओं का अध्ययन बीजगणित और [[विश्लेषणात्मक कार्य|विश्लेषणात्मक कार्यों]] के कलन का उपयोग करके किया जा सकता है, और यह अप्रत्यक्ष रूप से उच्च-आयामी स्थानों के व्यापक आकार और संरचना को समझने की अनुमति देता है जिसे अन्यथा आसानी से नहीं देखा जा सकता है।


अधिक विशेष रूप से, अनुमान बताता है कि कुछ [[डॉ कहलमज गर्भाशय]] वर्ग बीजगणितीय हैं; अर्थात्, वे पोंकारे द्वैत के योग हैं | उप किस्मों के होमोलॉजी वर्गों के पोंकारे द्वैत हैं। यह स्कॉटिश गणितज्ञ [[विलियम वालेंस डगलस हॉज]] द्वारा 1930 और 1940 के बीच काम के परिणामस्वरूप तैयार किया गया था जिससे कि जटिल बीजगणितीय किस्मों के स्थिति में सम्मिलित अतिरिक्त संरचना को सम्मिलित करने के लिए डी रम कोहोलॉजी के विवरण को समृद्ध किया जा सके। कैम्ब्रिज, मैसाचुसेट्स में आयोजित 1950 अंतर्राष्ट्रीय गणितज्ञ कांग्रेस के समय संबोधन में हॉज ने इसे प्रस्तुत करने से पहले इस पर थोड़ा ध्यान दिया। हॉज अनुमान, क्ले गणित संस्थान के मिलेनियम पुरस्कार समस्याओं में से है, जो हॉज अनुमान को साबित या अस्वीकार कर सकता है, उसके लिए $1,000,000 का पुरस्कार है।
अधिक विशेष रूप से, अनुमान बताता है कि कुछ [[डॉ कहलमज गर्भाशय]] वर्ग बीजगणितीय हैं; अर्थात्, वे पोंकारे द्वैत के योग हैं | उप किस्मों के होमोलॉजी वर्गों के पोंकारे द्वैत हैं। यह स्कॉटिश गणितज्ञ [[विलियम वालेंस डगलस हॉज]] द्वारा 1930 और 1940 के बीच काम के परिणामस्वरूप तैयार किया गया था जिससे कि जटिल बीजगणितीय किस्मों के स्थिति में सम्मिलित अतिरिक्त संरचना को सम्मिलित करने के लिए डी रम कोहोलॉजी के विवरण को समृद्ध किया जा सके। कैम्ब्रिज, मैसाचुसेट्स में आयोजित 1950 अंतर्राष्ट्रीय गणितज्ञ कांग्रेस के समय संबोधन में हॉज ने इसे प्रस्तुत करने से पहले इस पर थोड़ा ध्यान दिया गया था। हॉज अनुमान, क्ले गणित संस्थान के मिलेनियम पुरस्कार समस्याओं में से है, जो हॉज अनुमान को प्रमाणित या अस्वीकार कर सकता है, उसके लिए $1,000,000 का पुरस्कार है।


== प्रेरणा ==
== प्रेरणा ==
Line 11: Line 11:
{{main|हॉज सिद्धांत#हॉज_थ्योरी_फॉर_कॉम्प्लेक्स_प्रोजेक्टिव_वैरायटीज}}
{{main|हॉज सिद्धांत#हॉज_थ्योरी_फॉर_कॉम्प्लेक्स_प्रोजेक्टिव_वैरायटीज}}


एक्स को जटिल आयाम एन के कई गुना [[ कॉम्पैक्ट जगह |कॉम्पैक्ट जगह]] कॉम्प्लेक्स होने दें। फिर एक्स वास्तविक आयाम का उन्मुख चिकनी कई <math>2n</math> गुना है , इसलिए इसके [[सह-समरूपता]] समूह <math>2n</math> डिग्री को शून्य से होते हैं, मान लें कि X काहलर मैनिफोल्ड है, जिससे कि जटिल [[गुणांकों]] के साथ इसके कोहोलॉजी पर अपघटन हो
एक्स को जटिल आयाम एन के कई गुना [[ कॉम्पैक्ट जगह |कॉम्पैक्ट जगह]] कॉम्प्लेक्स होने दें। फिर एक्स वास्तविक आयाम का उन्मुख चिकनी कई <math>2n</math> गुना है , इसलिए इसके [[सह-समरूपता]] समूह <math>2n</math> डिग्री को शून्य से होते हैं, मान लें कि X काहलर मैनिफोल्ड है, जिससे कि जटिल [[गुणांकों]] के साथ इसके कोहोलॉजी पर अपघटन के समान होता हैं।


:<math>H^n(X, \Complex) = \bigoplus_{p+q=n} H^{p,q}(X),</math>
:<math>H^n(X, \Complex) = \bigoplus_{p+q=n} H^{p,q}(X),</math>
Line 22: Line 22:
:<math>\int_Z i^*\alpha</math>.
:<math>\int_Z i^*\alpha</math>.


इस इंटीग्रल का मूल्यांकन करने के लिए, Z का बिंदु चुनें और इसे नाम दें <math>z=(z_1, \ldots, z_k)</math>. Z को X में सम्मिलित करने का अर्थ है कि हम स्थानीय निर्देशांक चुन सकते हैं <math>z_1, \ldots, z_k</math> एक्स पर और है <math>z_{k+1} = \cdots = z_n = 0</math>. यदि <math>p>k</math>, तब <math>\alpha</math> कुछ सम्मिलित होना चाहिए <math>dz_i</math> जहाँ <math>z_i</math> Z पर वापस शून्य पर खींचता है। के लिए भी यही सच है <math>d\bar z_j</math> यदि <math>q > k</math>. परिणामस्वरूप, यह अभिन्न शून्य है यदि <math>(p,q) \ne (k,k)</math> के समान हैं इस स्थिति में हॉज अनुमान तब शिथिलता से इस समीकरण के द्वारा इसका उत्तर देते हैं:
इस इंटीग्रल का मूल्यांकन करने के लिए, Z का बिंदु चुनें और इसे नाम दें <math>z=(z_1, \ldots, z_k)</math>. Z को X में सम्मिलित करने का अर्थ है कि हम स्थानीय निर्देशांक चुन सकते हैं <math>z_1, \ldots, z_k</math> एक्स पर और है <math>z_{k+1} = \cdots = z_n = 0</math>. यदि <math>p>k</math>, तब <math>\alpha</math> कुछ <math>dz_i</math> के लिए सम्मिलित होना चाहिए, जहाँ <math>z_i</math> Z पर वापस शून्य पर खींचता है। इसके लिए भी यही सच है कि <math>d\bar z_j</math> यदि <math>q > k</math> के समान होता हैं तो इसके परिणामस्वरूप, यह अभिन्न शून्य है यदि <math>(p,q) \ne (k,k)</math> के समान हैं इस स्थिति में हॉज अनुमान तब शिथिलता से इस समीकरण के द्वारा इसका उत्तर देते हैं:


:कौन सी कोहोलॉजी क्लासेस में <math>H^{k,k}(X)</math> जटिल उप-किस्मों Z से आते हैं?
:कौन सी कोहोलॉजी क्लासेस में <math>H^{k,k}(X)</math> जटिल उप-किस्मों Z से आते हैं?
Line 34: Line 34:
हॉज अनुमान का आधुनिक कथन है
हॉज अनुमान का आधुनिक कथन है


::'हॉज अनुमान।' बता दें कि X गैर-विलक्षण जटिल प्रोजेक्टिव मैनिफोल्ड है। फिर एक्स पर हर हॉज वर्ग एक्स के जटिल उप-किस्मों के कोहोलॉजी वर्गों के तर्कसंगत गुणांक के साथ रैखिक संयोजन है।
::'हॉज अनुमान' के लिए बता दें कि X गैर-विलक्षण जटिल प्रोजेक्टिव मैनिफोल्ड है। फिर एक्स पर हर हॉज वर्ग एक्स के जटिल उप-किस्मों के कोहोलॉजी वर्गों के तर्कसंगत गुणांक के साथ रैखिक संयोजन है।


एक प्रोजेक्टिव कॉम्प्लेक्स मैनिफोल्ड जटिल मैनिफोल्ड है जिसे [[जटिल प्रक्षेप्य स्थान]] में एम्बेड किया जा सकता है। क्योंकि प्रोजेक्टिव स्पेस में काहलर मैट्रिक, फ्यूबिनी-स्टडी मेट्रिक होता है, इस तरह का मैनिफोल्ड हमेशा काहलर मैनिफोल्ड होता है। बीजगणितीय ज्यामिति और विश्लेषणात्मक ज्यामिति#Chow.27s प्रमेय|चाउ के प्रमेय द्वारा, प्रोजेक्टिव कॉम्प्लेक्स मैनिफोल्ड भी चिकनी प्रोजेक्टिव बीजगणितीय विविधता है, अर्ताथ यह सजातीय बहुपदों के संग्रह का शून्य सेट है।
इस प्रकार के प्रोजेक्टिव कॉम्प्लेक्स मैनिफोल्ड जटिल मैनिफोल्ड है जिसे [[जटिल प्रक्षेप्य स्थान]] में एम्बेड किया जा सकता है। क्योंकि प्रोजेक्टिव स्पेस में काहलर मैट्रिक, फ्यूबिनी-स्टडी मेट्रिक होता है, इस तरह का मैनिफोल्ड हमेशा काहलर मैनिफोल्ड होता है। इस कारण बीजगणितीय ज्यामिति और विश्लेषणात्मक ज्यामिति में चाउ के प्रमेय द्वारा, प्रोजेक्टिव कॉम्प्लेक्स मैनिफोल्ड भी चिकनी प्रोजेक्टिव बीजगणितीय विविधता है, अर्ताथ यह सजातीय बहुपदों के संग्रह का शून्य सेट है।


=== [[बीजगणितीय चक्र|बीजगणितीय चक्रों]] के संदर्भ में सुधार ===
=== [[बीजगणितीय चक्र|बीजगणितीय चक्रों]] के संदर्भ में सुधार ===
हॉज अनुमान को वाक्यांशबद्ध करने के दूसरे तरीके में बीजगणितीय चक्र का विचार सम्मिलित है। X पर बीजगणितीय चक्र, X की उप-किस्मों का औपचारिक संयोजन है; अर्थात्, यह कुछ रूप है
हॉज अनुमान को वाक्यांशबद्ध करने के दूसरे तरीके में बीजगणितीय चक्र का विचार सम्मिलित है। इस प्रकार X पर बीजगणितीय चक्र, X की उप-किस्मों का औपचारिक संयोजन है; अर्थात्, यह कुछ रूप है


: <math>\sum_i c_iZ_i.</math>
: <math>\sum_i c_iZ_i.</math>
गुणांक को सामान्यतः अभिन्न या तर्कसंगत माना जाता है। हम बीजगणितीय चक्र के कोहोलॉजी वर्ग को उसके घटकों के कोहोलॉजी वर्गों के योग के रूप में परिभाषित करते हैं। यह डी रम कोहोलॉजी के चक्र वर्ग मानचित्र का उदाहरण है, [[वील कोहोलॉजी]] देखें। उदाहरण के लिए, उपरोक्त चक्र का कोहोलॉजी वर्ग होगा
गुणांक को सामान्यतः अभिन्न या तर्कसंगत माना जाता है। हम बीजगणितीय चक्र के कोहोलॉजी वर्ग को उसके घटकों के कोहोलॉजी वर्गों के योग के रूप में परिभाषित करते हैं। यह डी रम कोहोलॉजी के चक्र वर्ग मानचित्र का उदाहरण है, [[वील कोहोलॉजी]] देखें। उदाहरण के लिए, उपरोक्त चक्र का कोहोलॉजी वर्ग के समान होता हैं।


:<math>\sum_i c_i[Z_i].</math>
:<math>\sum_i c_i[Z_i].</math>
इस तरह के कोहोलॉजी वर्ग को बीजगणितीय कहा जाता है। इस अंकन के साथ हॉज अनुमान बन जाता है
इस तरह के कोहोलॉजी वर्ग को बीजगणितीय कहा जाता है। इस अंकन के साथ हॉज अनुमान बन जाता है।


:: एक्स को प्रक्षेपी जटिल कई गुना होने दें। फिर एक्स पर हर हॉज वर्ग बीजगणितीय है।
:: एक्स को प्रक्षेपी जटिल कई गुना होने दें। फिर एक्स पर हर हॉज वर्ग बीजगणितीय है।
Line 54: Line 54:


=== कम आयाम और कोडिमेंशन ===
=== कम आयाम और कोडिमेंशन ===
हॉज अनुमान पर प्रथम परिणाम का कारण है {{Harvtxt|Lefschetz|1924}}. वास्तव में, यह अनुमान से पहले का है और हॉज की कुछ प्रेरणा प्रदान करता है।
हॉज अनुमान पर प्रथम परिणाम {{Harvtxt|लेफशेट्ज़|1924}} का कारण है। इस कारण वास्तव में, यह अनुमान से पहले का है और हॉज की कुछ प्रेरणा प्रदान करता है।


:: प्रमेय ((1,1)-श्रेणियों पर लेफ्शेट्ज़ प्रमेय) का कोई भी तत्व <math>H^2(X,\Z)\cap H^{1,1}(X)</math> वि[[भाजक (बीजीय ज्यामिति)]] का कोहोलॉजी वर्ग है <math>X</math>. विशेष रूप से, हॉज अनुमान के लिए सत्य है <math>H^2</math>.
:: प्रमेय ((1,1)-श्रेणियों पर लेफ्शेट्ज़ प्रमेय) का कोई भी तत्व <math>H^2(X,\Z)\cap H^{1,1}(X)</math> वि[[भाजक (बीजीय ज्यामिति)]] का कोहोलॉजी वर्ग है <math>X</math>. विशेष रूप से, हॉज अनुमान <math>H^2</math> के लिए सत्य है।


[[शेफ कोहोलॉजी]] और [[घातीय सटीक अनुक्रम]] का उपयोग करके बहुत ही त्वरित प्रमाण दिया जा सकता है। (भाजक का कोहोलॉजी वर्ग इसके पहले [[चेर्न वर्ग]] के बराबर हो जाता है।) लेफशेट्ज़ का मूल प्रमाण [[सामान्य कार्य (ज्यामिति)]] द्वारा आगे बढ़ा, जिसे हेनरी पॉइनकेयर द्वारा प्रस्तुत किया गया था। चूंकि, [[ग्रिफिथ्स ट्रांसवर्सलिटी प्रमेय]] से पता चलता है कि यह दृष्टिकोण उच्च कोडिमेन्शनल सबवेराइटी के लिए हॉज अनुमान को साबित नहीं कर सकता है।
[[शेफ कोहोलॉजी]] और [[घातीय सटीक अनुक्रम]] का उपयोग करके बहुत ही त्वरित प्रमाण दिया जा सकता है। (भाजक का कोहोलॉजी वर्ग इसके पहले [[चेर्न वर्ग]] के बराबर हो जाता है।) लेफशेट्ज़ का मूल प्रमाण [[सामान्य कार्य (ज्यामिति)]] द्वारा आगे बढ़ा, जिसे हेनरी पॉइनकेयर द्वारा प्रस्तुत किया गया था। चूंकि, [[ग्रिफिथ्स ट्रांसवर्सलिटी प्रमेय]] से पता चलता है कि यह दृष्टिकोण उच्च कोडिमेन्शनल सबवेराइटी के लिए हॉज अनुमान को प्रमाणित नहीं कर सकता है।


[[कठिन Lefschetz प्रमेय|कठिन लेफशेट्ज़ प्रमेय]] द्वारा, कोई साबित कर सकता है:
[[कठिन Lefschetz प्रमेय|कठिन लेफशेट्ज़ प्रमेय]] द्वारा, कोई प्रमाणित कर सकता है:


:: प्रमेय। यदि हॉज अनुमान डिग्री के हॉज वर्गों के लिए है <math>p</math>, सभी के लिए <math>p < n</math>, तो हॉज अनुमान डिग्री के हॉज वर्गों के लिए है <math>2n-p</math>.
:: प्रमेय। यदि हॉज अनुमान डिग्री के हॉज वर्गों के लिए है <math>p</math>, सभी के लिए <math>p < n</math>, तो हॉज अनुमान डिग्री के हॉज वर्गों के लिए है <math>2n-p</math>.


उपरोक्त दो प्रमेयों के संयोजन का अर्थ है कि हॉज अनुमान डिग्री के हॉज वर्गों के लिए सही है <math>2n-2</math>. यह हॉज अनुमान को कब सिद्ध करता है <math>X</math> अधिकतम तीन आयाम हैं।
उपरोक्त दो प्रमेयों के संयोजन का अर्थ है कि हॉज अनुमान डिग्री के हॉज वर्गों के लिए सही है। इस कारण <math>2n-2</math> इन हॉज अनुमान को सिद्ध करता है जब <math>X</math> के अधिकतम तीन आयाम होते हैं।


(1,1)-वर्गों पर लेफ्जस्क्वेज प्रमेय का अर्थ यह भी है कि यदि सभी हॉज वर्ग विभाजक के हॉज वर्गों द्वारा उत्पन्न होते हैं, तो हॉज अनुमान सत्य है:
(1,1)-वर्गों पर लेफ्जस्क्वेज प्रमेय का अर्थ यह भी है कि यदि सभी हॉज वर्ग विभाजक के हॉज वर्गों द्वारा उत्पन्न होते हैं, तो हॉज अनुमान सत्य है:
Line 74: Line 74:




=== [[एबेलियन किस्म]]ें ===
=== [[एबेलियन किस्म|एबेलियन प्रकार]] ===
अधिकांश एबेलियन किस्म के लिए, बीजगणित एचडीजी * (एक्स) डिग्री में उत्पन्न होता है, इसलिए हॉज अनुमान धारण करता है। विशेष रूप से, हॉज अनुमान पर्याप्त रूप से सामान्य एबेलियन किस्मों के लिए, अण्डाकार वक्रों के उत्पादों के लिए, और प्रधान आयाम की सरल एबेलियन किस्मों के लिए है।<ref>{{Cite journal|title = एबेलियन किस्मों पर चक्र|jstor = 2033404|journal = [[Proceedings of the American Mathematical Society]]|year = 1958|pages = 88–98|volume = 9|issue = 1|doi = 10.2307/2033404|first = Arthur|last = Mattuck|author-link=Arthur Mattuck|doi-access = free}}</ref><ref>{{Cite web|title = बीजगणितीय चक्र और जीटा कार्यों के ध्रुव|url = https://www.researchgate.net/publication/244452499|website = ResearchGate|access-date = 2015-10-23}}</ref><ref>{{Cite journal|title =संख्या क्षेत्रों पर प्रधान आयाम की सरल एबेलियन किस्मों पर चक्र|journal = Mathematics of the USSR-Izvestiya|volume = 31|issue = 3|pages = 527–540|date = 1988-01-01|doi = 10.1070/im1988v031n03abeh001088 |first = Sergei G|last = Tankeev|bibcode = 1988IzMat..31..527T}}</ref> चूंकि, {{Harvtxt|ममफोर्ड|1969}} ने एबेलियन किस्म का उदाहरण बनाया जहाँ Hdg<sup>2</sup>(X) भाजक वर्गों के गुणनफल से उत्पन्न नहीं होता है। {{Harvtxt|वेली|1977}} ने इस उदाहरण को यह दिखाकर सामान्यीकृत किया कि जब भी विविधता में [[काल्पनिक द्विघात क्षेत्र]] द्वारा [[जटिल गुणन]] होता है, तो एचडीजी<sup>2</sup>(X) भाजक वर्गों के गुणनफल से उत्पन्न नहीं होता है। {{Harvtxt|मूनेह|जरहीन|1999}} ने साबित किया कि 5 से कम आयाम में, या तो एचडीजी * (एक्स) डिग्री में उत्पन्न होता है, या विविधता में काल्पनिक द्विघात क्षेत्र द्वारा जटिल गुणन होता है। बाद के स्थिति में, हॉज अनुमान केवल विशेष स्थितियों में जाना जाता है।
अधिकांश एबेलियन किस्म के लिए, बीजगणित एचडीजी * (एक्स) डिग्री में उत्पन्न होता है, इसलिए हॉज अनुमान धारण करता है। विशेष रूप से, हॉज अनुमान पर्याप्त रूप से सामान्य एबेलियन किस्मों के लिए, अण्डाकार वक्रों के उत्पादों के लिए, और प्रधान आयाम की सरल एबेलियन किस्मों के लिए है।<ref>{{Cite journal|title = एबेलियन किस्मों पर चक्र|jstor = 2033404|journal = [[Proceedings of the American Mathematical Society]]|year = 1958|pages = 88–98|volume = 9|issue = 1|doi = 10.2307/2033404|first = Arthur|last = Mattuck|author-link=Arthur Mattuck|doi-access = free}}</ref><ref>{{Cite web|title = बीजगणितीय चक्र और जीटा कार्यों के ध्रुव|url = https://www.researchgate.net/publication/244452499|website = ResearchGate|access-date = 2015-10-23}}</ref><ref>{{Cite journal|title =संख्या क्षेत्रों पर प्रधान आयाम की सरल एबेलियन किस्मों पर चक्र|journal = Mathematics of the USSR-Izvestiya|volume = 31|issue = 3|pages = 527–540|date = 1988-01-01|doi = 10.1070/im1988v031n03abeh001088 |first = Sergei G|last = Tankeev|bibcode = 1988IzMat..31..527T}}</ref> चूंकि, {{Harvtxt|ममफोर्ड|1969}} ने एबेलियन किस्म का उदाहरण बनाया जहाँ Hdg<sup>2</sup>(X) भाजक वर्गों के गुणनफल से उत्पन्न नहीं होता है। {{Harvtxt|वेली|1977}} ने इस उदाहरण को यह दिखाकर सामान्यीकृत किया कि जब भी विविधता में [[काल्पनिक द्विघात क्षेत्र]] द्वारा [[जटिल गुणन]] होता है, तो एचडीजी<sup>2</sup>(X) भाजक वर्गों के गुणनफल से उत्पन्न नहीं होता है। {{Harvtxt|मूनेह|जरहीन|1999}} ने प्रमाणित किया कि 5 से कम आयाम में, या तो एचडीजी * (एक्स) डिग्री में उत्पन्न होता है, या विविधता में काल्पनिक द्विघात क्षेत्र द्वारा जटिल गुणन होता है। बाद के स्थिति में, हॉज अनुमान केवल विशेष स्थितियों में जाना जाता है।


== सामान्यीकरण ==
== सामान्यीकरण ==
Line 82: Line 82:
हॉज का मूल अनुमान था
हॉज का मूल अनुमान था


:: इंटीग्रल हॉज अनुमान। होने देना {{mvar|''X''}} प्रोजेक्टिव कॉम्प्लेक्स मैनिफोल्ड हो। फिर हर कोहोलॉजी क्लास में <math>H^{2k}(X, \Z) \cap H^{k,k}(X)</math> समाकल गुणांकों के साथ बीजगणितीय चक्र का कोहोलॉजी वर्ग है {{mvar|''X''.}}
:: इंटीग्रल हॉज अनुमान के अनुसार  {{mvar|''X''}} प्रोजेक्टिव कॉम्प्लेक्स मैनिफोल्ड होते हैं। इस प्रकार हर कोहोलॉजी क्लास में <math>H^{2k}(X, \Z) \cap H^{k,k}(X)</math> समाकल गुणांकों के साथ बीजगणितीय चक्र का कोहोलॉजी वर्ग {{mvar|''X''.}} के समान है।


यह अब झूठा माना जाता है। पहला प्रति उदाहरण द्वारा बनाया गया था {{Harvtxt|Atiyah|Hirzebruch|1961}}. [[ कश्मीर सिद्धांत |कश्मीर सिद्धांत]] का उपयोग करते हुए, उन्होंने मरोड़ वाले कोहोलॉजी वर्ग का उदाहरण बनाया- जो कि सह-विज्ञान वर्ग है {{mvar|''α''}} ऐसा है कि {{math|''nα''&nbsp;{{=}}&nbsp;0}} कुछ सकारात्मक पूर्णांक के लिए {{mvar|''n''}}—जो बीजगणितीय चक्र का वर्ग नहीं है। ऐसा वर्ग आवश्यक रूप से हॉज वर्ग है। {{Harvtxt|Totaro|1997}} ने सह-बोर्डवाद के ढांचे में उनके परिणाम की पुनर्व्याख्या की और ऐसे वर्गों के कई उदाहरण पाए।
यह अब असत्य माना जाता है। पहला प्रति उदाहरण द्वारा बनाया गया था {{Harvtxt|अतियाह|हिरजेब्रुक|1961}} के [[ कश्मीर सिद्धांत |सिद्धांत]] का उपयोग करते हुए, उन्होंने ट्विस्टेड वाले कोहोलॉजी वर्ग का उदाहरण बनाया- जो कि सह-विज्ञान वर्ग है {{mvar|''α''}} ऐसा है कि {{math|''nα''&nbsp;{{=}}&nbsp;0}} कुछ सकारात्मक पूर्णांक के लिए {{mvar|''n''}}—जो बीजगणितीय चक्र का वर्ग नहीं है। ऐसा वर्ग आवश्यक रूप से हॉज वर्ग है। {{Harvtxt|टोरैटो|1997}} ने सह-बोर्डवाद के ढांचे में उनके परिणाम की पुनर्व्याख्या की और ऐसे वर्गों के कई उदाहरण पाए जाते हैं।


इंटीग्रल हॉज अनुमान का सबसे सरल समायोजन है
इंटीग्रल हॉज अनुमान का सबसे सरल समायोजन है।


:: इंटीग्रल हॉज अनुमान मोडुलो टॉर्सन। होने देना {{mvar|''X''}} प्रोजेक्टिव कॉम्प्लेक्स मैनिफोल्ड हो। फिर हर कोहोलॉजी क्लास में <math>H^{2k}(X, \Z) \cap H^{k,k}(X)</math> अभिन्न गुणांक वाले बीजगणितीय चक्र के मरोड़ वर्ग और कोहोलॉजी वर्ग का योग है {{mvar|''X''.}}
:: इंटीग्रल हॉज अनुमान मोडुलो टॉर्सन। होने देना {{mvar|''X''}} प्रोजेक्टिव कॉम्प्लेक्स मैनिफोल्ड हो। फिर हर कोहोलॉजी क्लास में <math>H^{2k}(X, \Z) \cap H^{k,k}(X)</math> अभिन्न गुणांक वाले बीजगणितीय चक्र के ट्विस्टेड वर्ग और कोहोलॉजी वर्ग का योग है {{mvar|''X''.}}


समान रूप से, विभाजित करने के बाद <math>H^{2k}(X, \Z) \cap H^{k,k}(X)</math> मरोड़ वर्गों द्वारा, प्रत्येक वर्ग अभिन्न बीजगणितीय चक्र के कोहोलॉजी वर्ग की छवि है। यह भी असत्य है। {{Harvtxt|Kollár|1992}} हॉज वर्ग का उदाहरण मिला {{mvar|''α''}} जो बीजगणितीय नहीं है, लेकिन जिसका पूर्णांक गुणज है जो बीजगणितीय है।
समान रूप से, विभाजित करने के पश्चात <math>H^{2k}(X, \Z) \cap H^{k,k}(X)</math> ट्विस्टिड वर्गों द्वारा, प्रत्येक वर्ग अभिन्न बीजगणितीय चक्र के कोहोलॉजी वर्ग की छवि है। यह भी असत्य है। {{Harvtxt|कोलार|1992}} हॉज वर्ग का उदाहरण मिला {{mvar|''α''}} जो बीजगणितीय नहीं है, लेकिन जिसका पूर्णांक गुणज है जो बीजगणितीय है।


{{harvtxt|रोसेनशॉन|श्रीनिवास|2016}} ने दिखाया है कि सही इंटीग्रल हॉज अनुमान प्राप्त करने के लिए, चाउ समूहों को बदलने की जरूरत है, जिसे मोटिविक कोहोलॉजी समूह के रूप में भी व्यक्त किया जा सकता है, जिसे ईटेल (या लिचटेनबाम) [[प्रेरक कोहोलॉजी]] के रूप में जाना जाता है। वे दिखाते हैं कि तर्कसंगत हॉज अनुमान इस संशोधित प्रेरक कोहोलॉजी के लिए अभिन्न हॉज अनुमान के बराबर है।
{{harvtxt|रोसेनशॉन|श्रीनिवास|2016}} ने दिखाया है कि सही इंटीग्रल हॉज अनुमान प्राप्त करने के लिए, चाउ समूहों को बदलने की जरूरत है, जिसे मोटिविक कोहोलॉजी समूह के रूप में भी व्यक्त किया जा सकता है, जिसे ईटेल (या लिचटेनबाम) [[प्रेरक कोहोलॉजी]] के रूप में जाना जाता है। वे दिखाते हैं कि तर्कसंगत हॉज अनुमान इस संशोधित प्रेरक कोहोलॉजी के लिए अभिन्न हॉज अनुमान के बराबर है।


=== काहलर किस्मों के लिए हॉज अनुमान ===
=== काहलर प्रकार के हॉज अनुमान ===
हॉज अनुमान का स्वाभाविक सामान्यीकरण पूछेगा:
हॉज अनुमान का स्वाभाविक सामान्यीकरण पूछेगा:


:: काहलर किस्मों के लिए हॉज अनुमान, भोली संस्करण। बता दें कि 'X' जटिल काहलर मैनिफोल्ड है। फिर 'एक्स' पर हर हॉज वर्ग 'एक्स' की जटिल उप-किस्मों के कोहोलॉजी वर्गों के तर्कसंगत गुणांक के साथ रैखिक संयोजन है।
:: काहलर प्रकारों के लिए हॉज अनुमान, भोली संस्करण। बता दें कि 'X' जटिल काहलर मैनिफोल्ड है। फिर 'एक्स' पर हर हॉज वर्ग 'एक्स' की जटिल उप-किस्मों के कोहोलॉजी वर्गों के तर्कसंगत गुणांक के साथ रैखिक संयोजन है।


यह बहुत आशावादी है, क्योंकि इस कार्य को करने के लिए पर्याप्त उप-किस्में नहीं हैं। संभावित विकल्प इसके अतिरिक्त निम्नलिखित दो प्रश्नों में से पूछना है:
यह बहुत आशावादी है, क्योंकि इस कार्य को करने के लिए पर्याप्त उप-किस्में नहीं हैं। संभावित विकल्प इसके अतिरिक्त निम्नलिखित दो प्रश्नों में से पूछना है:
Line 104: Line 104:
:: काहलर किस्मों के लिए हॉज अनुमान, सुसंगत शीफ संस्करण। बता दें कि 'X' जटिल काहलर मैनिफोल्ड है। फिर ''X'' पर हर हॉज वर्ग ''X'' पर सुसंगत ढेरों के चेर्न वर्गों के तर्कसंगत गुणांकों के साथ रैखिक संयोजन है।
:: काहलर किस्मों के लिए हॉज अनुमान, सुसंगत शीफ संस्करण। बता दें कि 'X' जटिल काहलर मैनिफोल्ड है। फिर ''X'' पर हर हॉज वर्ग ''X'' पर सुसंगत ढेरों के चेर्न वर्गों के तर्कसंगत गुणांकों के साथ रैखिक संयोजन है।


{{Harvtxt|व्यासिन|2002}} ने साबित किया कि सुसंगत ढेरों के चेर्न वर्ग सदिश बंडलों के चेर्न वर्गों की तुलना में सख्ती से अधिक हॉज वर्ग देते हैं और सभी हॉज वर्गों को उत्पन्न करने के लिए सुसंगत शेवों के चेर्न वर्ग अपर्याप्त हैं। परिणामस्वरूप, काहलर किस्मों के लिए हॉज अनुमान के एकमात्र ज्ञात फॉर्मूलेशन झूठे हैं।
{{Harvtxt|व्यासिन|2002}} ने प्रमाणित किया कि सुसंगत ढेरों के चेर्न वर्ग सदिश बंडलों के चेर्न वर्गों की तुलना में सख्ती से अधिक हॉज वर्ग देते हैं और सभी हॉज वर्गों को उत्पन्न करने के लिए सुसंगत शेवों के चेर्न वर्ग अपर्याप्त हैं। परिणामस्वरूप, काहलर किस्मों के लिए हॉज अनुमान के एकमात्र ज्ञात फॉर्मूलेशन झूठे हैं।


=== सामान्यीकृत हॉज अनुमान ===
=== सामान्यीकृत हॉज अनुमान ===
Line 117: Line 117:


== हॉज लोकी की बीजगणितीयता ==
== हॉज लोकी की बीजगणितीयता ==
हॉज अनुमान के पक्ष में सबसे मजबूत सबूत का बीजगणितीय परिणाम {{Harvtxt|कैट्टेन|डेलिग्न|कैप्लेन|1995}} है। इस प्रकार मान लीजिए कि हम एक्स की जटिल संरचना को आसानी से जुड़े आधार पर बदलते हैं। तब X का टोपोलॉजिकल कोहोलॉजी परिवर्तित नहीं करता है, लेकिन हॉज अपघटन बदल जाता है। यह ज्ञात है कि यदि हॉज अनुमान सत्य है, तो आधार पर सभी बिंदुओं का स्थान जहां फाइबर का कोहोलॉजी हॉज वर्ग है, वास्तव में बीजगणितीय उपसमुच्चय है, अर्थात यह बहुपद समीकरणों द्वारा काट दिया जाता है। कट्टानी, डेलिग्ने और कपलान (1995) ने साबित किया कि हॉज अनुमान को ग्रहण किए बिना यह हमेशा सच होता है।
हॉज अनुमान के पक्ष में सबसे मजबूत सबूत का बीजगणितीय परिणाम {{Harvtxt|कैट्टेन|डेलिग्न|कैप्लेन|1995}} है। इस प्रकार मान लीजिए कि हम एक्स की जटिल संरचना को आसानी से जुड़े आधार पर बदलते हैं। तब X का टोपोलॉजिकल कोहोलॉजी परिवर्तित नहीं करता है, लेकिन हॉज अपघटन बदल जाता है। यह ज्ञात है कि यदि हॉज अनुमान सत्य है, तो आधार पर सभी बिंदुओं का स्थान जहां फाइबर का कोहोलॉजी हॉज वर्ग है, वास्तव में बीजगणितीय उपसमुच्चय है, अर्थात यह बहुपद समीकरणों द्वारा काट दिया जाता है। कट्टानी, डेलिग्ने और कपलान (1995) ने प्रमाणित किया कि हॉज अनुमान को ग्रहण किए बिना यह हमेशा सच होता है।


== यह भी देखें ==
== यह भी देखें ==
Line 152: Line 152:
* [[Burt Totaro]], [http://burttotaro.wordpress.com/2012/03/18/why-believe-the-hodge-conjecture/ Why believe the Hodge Conjecture?]
* [[Burt Totaro]], [http://burttotaro.wordpress.com/2012/03/18/why-believe-the-hodge-conjecture/ Why believe the Hodge Conjecture?]
* [[Claire Voisin]], [http://www.math.polytechnique.fr/~voisin/Articlesweb/hodgeloci.pdf Hodge loci]
* [[Claire Voisin]], [http://www.math.polytechnique.fr/~voisin/Articlesweb/hodgeloci.pdf Hodge loci]
[[Category: बीजगणितीय ज्यामिति]] [[Category: अनुमान]] [[Category: हॉज सिद्धांत]] [[Category: होमोलॉजी सिद्धांत]] [[Category: मिलेनियम पुरस्कार समस्याएं]]


 
[[Category:Articles with hatnote templates targeting a nonexistent page]]
 
[[Category:CS1 français-language sources (fr)]]
[[Category: Machine Translated Page]]
[[Category:Created On 24/04/2023]]
[[Category:Created On 24/04/2023]]
[[Category:Interwiki link templates| ]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:Templates using under-protected Lua modules]]
[[Category:Wikipedia fully protected templates|Sister project links]]
[[Category:अनुमान]]
[[Category:बीजगणितीय ज्यामिति]]
[[Category:मिलेनियम पुरस्कार समस्याएं]]
[[Category:हॉज सिद्धांत]]
[[Category:होमोलॉजी सिद्धांत]]

Latest revision as of 12:08, 18 May 2023

सिंगुलर (को) होमोलॉजी का उपयोग करके पता लगाया जाता है, जहां गैर-शून्य वर्ग की उपस्थिति होती है अंतरिक्ष को इंगित करता है (आयाम है ) छेद। इस तरह के वर्ग को सिंप्लेक्स की (सह) श्रृंखला द्वारा दर्शाया गया है, जिसे बाईं ओर 1-सिंपलिस (लाइन सेगमेंट) से निर्मित लाल बहुभुज द्वारा दर्शाया गया है। यह वर्ग छेद का पता लगाता है इसके चारों ओर चक्कर लगाकर। इस स्थिति में, वास्तव में बहुपद समीकरण है जिसका शून्य सेट, दाईं ओर हरे रंग में दर्शाया गया है, इसके चारों ओर लूप करके छेद का पता लगाता है। हॉज अनुमान इस कथन को उच्च आयामों के लिए सामान्यीकृत करता है।

गणित में, हॉज अनुमान बीजगणितीय ज्यामिति और जटिल ज्यामिति में प्रमुख अनसुलझी समस्या है जो गैर-एकवचन जटिल संख्या बीजगणितीय विविधता के बीजगणितीय टोपोलॉजी को इसकी उप-किस्मों से संबंधित करता है।

सरल शब्दों में, हॉज अनुमान का दावा है कि कुछ स्थान (गणित), जटिल बीजगणितीय किस्मों में छिद्रों की संख्या जैसी मौलिक सामयिक जानकारी को उन स्थानों के अंदर बैठे संभावित अच्छे आकृतियों का अध्ययन करके समझा जा सकता है, जो किसी फ़ंक्शन के शून्य की तरह दिखते हैं। बहुपद समीकरणों की। बाद की वस्तुओं का अध्ययन बीजगणित और विश्लेषणात्मक कार्यों के कलन का उपयोग करके किया जा सकता है, और यह अप्रत्यक्ष रूप से उच्च-आयामी स्थानों के व्यापक आकार और संरचना को समझने की अनुमति देता है जिसे अन्यथा आसानी से नहीं देखा जा सकता है।

अधिक विशेष रूप से, अनुमान बताता है कि कुछ डॉ कहलमज गर्भाशय वर्ग बीजगणितीय हैं; अर्थात्, वे पोंकारे द्वैत के योग हैं | उप किस्मों के होमोलॉजी वर्गों के पोंकारे द्वैत हैं। यह स्कॉटिश गणितज्ञ विलियम वालेंस डगलस हॉज द्वारा 1930 और 1940 के बीच काम के परिणामस्वरूप तैयार किया गया था जिससे कि जटिल बीजगणितीय किस्मों के स्थिति में सम्मिलित अतिरिक्त संरचना को सम्मिलित करने के लिए डी रम कोहोलॉजी के विवरण को समृद्ध किया जा सके। कैम्ब्रिज, मैसाचुसेट्स में आयोजित 1950 अंतर्राष्ट्रीय गणितज्ञ कांग्रेस के समय संबोधन में हॉज ने इसे प्रस्तुत करने से पहले इस पर थोड़ा ध्यान दिया गया था। हॉज अनुमान, क्ले गणित संस्थान के मिलेनियम पुरस्कार समस्याओं में से है, जो हॉज अनुमान को प्रमाणित या अस्वीकार कर सकता है, उसके लिए $1,000,000 का पुरस्कार है।

प्रेरणा

एक्स को जटिल आयाम एन के कई गुना कॉम्पैक्ट जगह कॉम्प्लेक्स होने दें। फिर एक्स वास्तविक आयाम का उन्मुख चिकनी कई गुना है , इसलिए इसके सह-समरूपता समूह डिग्री को शून्य से होते हैं, मान लें कि X काहलर मैनिफोल्ड है, जिससे कि जटिल गुणांकों के साथ इसके कोहोलॉजी पर अपघटन के समान होता हैं।

जहाँ कोहोलॉजी कक्षाओं का उपसमूह है जो प्रकार के हार्मोनिक रूपों द्वारा दर्शाए जाते हैं . यही है, ये सह-विज्ञान वर्ग हैं जो अंतर रूपों द्वारा दर्शाए जाते हैं, जो स्थानीय निर्देशांक के कुछ विकल्पों में होते हैं इस प्रकार , हार्मोनिक फ़ंक्शन समय के रूप में लिखा जा सकता है

चूँकि X कॉम्पैक्ट ओरिएंटेड मैनिफोल्ड है, X का मौलिक वर्ग है, और इसलिए X को एकीकृत किया जा सकता है।

Z को आयाम k के X का जटिल सबमनीफोल्ड होने दें, और दें समावेशन मानचित्र हो। विभेदक रूप चुनें प्रकार का . हम एकीकृत कर सकते हैं पुलबैक_(डिफरेंशियल_ज्यामिति पुलबैक_ऑफ_डिफरेंशियल_फॉर्म्स फ़ंक्शन का उपयोग करके ज़ेड से अधिक ,

.

इस इंटीग्रल का मूल्यांकन करने के लिए, Z का बिंदु चुनें और इसे नाम दें . Z को X में सम्मिलित करने का अर्थ है कि हम स्थानीय निर्देशांक चुन सकते हैं एक्स पर और है . यदि , तब कुछ के लिए सम्मिलित होना चाहिए, जहाँ Z पर वापस शून्य पर खींचता है। इसके लिए भी यही सच है कि यदि के समान होता हैं तो इसके परिणामस्वरूप, यह अभिन्न शून्य है यदि के समान हैं इस स्थिति में हॉज अनुमान तब शिथिलता से इस समीकरण के द्वारा इसका उत्तर देते हैं:

कौन सी कोहोलॉजी क्लासेस में जटिल उप-किस्मों Z से आते हैं?

हॉज अनुमान का कथन

समीकरण के अनुसार

हम इसे X पर 2k डिग्री के हॉज क्लास का समूह कहते हैं।

हॉज अनुमान का आधुनिक कथन है

'हॉज अनुमान' के लिए बता दें कि X गैर-विलक्षण जटिल प्रोजेक्टिव मैनिफोल्ड है। फिर एक्स पर हर हॉज वर्ग एक्स के जटिल उप-किस्मों के कोहोलॉजी वर्गों के तर्कसंगत गुणांक के साथ रैखिक संयोजन है।

इस प्रकार के प्रोजेक्टिव कॉम्प्लेक्स मैनिफोल्ड जटिल मैनिफोल्ड है जिसे जटिल प्रक्षेप्य स्थान में एम्बेड किया जा सकता है। क्योंकि प्रोजेक्टिव स्पेस में काहलर मैट्रिक, फ्यूबिनी-स्टडी मेट्रिक होता है, इस तरह का मैनिफोल्ड हमेशा काहलर मैनिफोल्ड होता है। इस कारण बीजगणितीय ज्यामिति और विश्लेषणात्मक ज्यामिति में चाउ के प्रमेय द्वारा, प्रोजेक्टिव कॉम्प्लेक्स मैनिफोल्ड भी चिकनी प्रोजेक्टिव बीजगणितीय विविधता है, अर्ताथ यह सजातीय बहुपदों के संग्रह का शून्य सेट है।

बीजगणितीय चक्रों के संदर्भ में सुधार

हॉज अनुमान को वाक्यांशबद्ध करने के दूसरे तरीके में बीजगणितीय चक्र का विचार सम्मिलित है। इस प्रकार X पर बीजगणितीय चक्र, X की उप-किस्मों का औपचारिक संयोजन है; अर्थात्, यह कुछ रूप है

गुणांक को सामान्यतः अभिन्न या तर्कसंगत माना जाता है। हम बीजगणितीय चक्र के कोहोलॉजी वर्ग को उसके घटकों के कोहोलॉजी वर्गों के योग के रूप में परिभाषित करते हैं। यह डी रम कोहोलॉजी के चक्र वर्ग मानचित्र का उदाहरण है, वील कोहोलॉजी देखें। उदाहरण के लिए, उपरोक्त चक्र का कोहोलॉजी वर्ग के समान होता हैं।

इस तरह के कोहोलॉजी वर्ग को बीजगणितीय कहा जाता है। इस अंकन के साथ हॉज अनुमान बन जाता है।

एक्स को प्रक्षेपी जटिल कई गुना होने दें। फिर एक्स पर हर हॉज वर्ग बीजगणितीय है।

हॉज अनुमान में धारणा है कि एक्स बीजगणितीय (प्रक्षेपी जटिल कई गुना) कमजोर नहीं किया जा सकता है। 1977 में, स्टीवन जकर ने दिखाया कि हॉज अनुमान के लिए जटिल तोरी के रूप में विश्लेषणात्मक तर्कसंगत कोहोलॉजी के प्रकार के प्रति उदाहरण का निर्माण करना संभव है। , जो प्रक्षेपी बीजगणितीय नहीं है। (परिशिष्ट बी देखें जुकर (1977))

हॉज अनुमान के ज्ञात स्थिति

कम आयाम और कोडिमेंशन

हॉज अनुमान पर प्रथम परिणाम लेफशेट्ज़ (1924) का कारण है। इस कारण वास्तव में, यह अनुमान से पहले का है और हॉज की कुछ प्रेरणा प्रदान करता है।

प्रमेय ((1,1)-श्रेणियों पर लेफ्शेट्ज़ प्रमेय) का कोई भी तत्व विभाजक (बीजीय ज्यामिति) का कोहोलॉजी वर्ग है . विशेष रूप से, हॉज अनुमान के लिए सत्य है।

शेफ कोहोलॉजी और घातीय सटीक अनुक्रम का उपयोग करके बहुत ही त्वरित प्रमाण दिया जा सकता है। (भाजक का कोहोलॉजी वर्ग इसके पहले चेर्न वर्ग के बराबर हो जाता है।) लेफशेट्ज़ का मूल प्रमाण सामान्य कार्य (ज्यामिति) द्वारा आगे बढ़ा, जिसे हेनरी पॉइनकेयर द्वारा प्रस्तुत किया गया था। चूंकि, ग्रिफिथ्स ट्रांसवर्सलिटी प्रमेय से पता चलता है कि यह दृष्टिकोण उच्च कोडिमेन्शनल सबवेराइटी के लिए हॉज अनुमान को प्रमाणित नहीं कर सकता है।

कठिन लेफशेट्ज़ प्रमेय द्वारा, कोई प्रमाणित कर सकता है:

प्रमेय। यदि हॉज अनुमान डिग्री के हॉज वर्गों के लिए है , सभी के लिए , तो हॉज अनुमान डिग्री के हॉज वर्गों के लिए है .

उपरोक्त दो प्रमेयों के संयोजन का अर्थ है कि हॉज अनुमान डिग्री के हॉज वर्गों के लिए सही है। इस कारण इन हॉज अनुमान को सिद्ध करता है जब के अधिकतम तीन आयाम होते हैं।

(1,1)-वर्गों पर लेफ्जस्क्वेज प्रमेय का अर्थ यह भी है कि यदि सभी हॉज वर्ग विभाजक के हॉज वर्गों द्वारा उत्पन्न होते हैं, तो हॉज अनुमान सत्य है:

परिणाम। यदि बीजगणित से उत्पन्न होता है , तो हॉज अनुमान लागू होता है .

हाइपरसर्फ्स

मजबूत और कमजोर लेफ्जस्क्वेज प्रमेय द्वारा, हाइपरसर्फ्स के लिए हॉज अनुमान का एकमात्र गैर-तुच्छ हिस्सा 2m-आयामी ऊनविम पृष्ठ का डिग्री एम भाग (अर्ताथ, मध्य कोहोलॉजी) है। . यदि डिग्री डी 2 है, अर्ताथ एक्स चतुर्भुज है, हॉज अनुमान सभी एम के लिए मान्य है। के लिए , अर्ताथ, चौगुना, हॉज अनुमान के लिए जाना जाता है .[1]


एबेलियन प्रकार

अधिकांश एबेलियन किस्म के लिए, बीजगणित एचडीजी * (एक्स) डिग्री में उत्पन्न होता है, इसलिए हॉज अनुमान धारण करता है। विशेष रूप से, हॉज अनुमान पर्याप्त रूप से सामान्य एबेलियन किस्मों के लिए, अण्डाकार वक्रों के उत्पादों के लिए, और प्रधान आयाम की सरल एबेलियन किस्मों के लिए है।[2][3][4] चूंकि, ममफोर्ड (1969) ने एबेलियन किस्म का उदाहरण बनाया जहाँ Hdg2(X) भाजक वर्गों के गुणनफल से उत्पन्न नहीं होता है। वेली (1977) ने इस उदाहरण को यह दिखाकर सामान्यीकृत किया कि जब भी विविधता में काल्पनिक द्विघात क्षेत्र द्वारा जटिल गुणन होता है, तो एचडीजी2(X) भाजक वर्गों के गुणनफल से उत्पन्न नहीं होता है। मूनेह & जरहीन (1999) ने प्रमाणित किया कि 5 से कम आयाम में, या तो एचडीजी * (एक्स) डिग्री में उत्पन्न होता है, या विविधता में काल्पनिक द्विघात क्षेत्र द्वारा जटिल गुणन होता है। बाद के स्थिति में, हॉज अनुमान केवल विशेष स्थितियों में जाना जाता है।

सामान्यीकरण

अभिन्न हॉज अनुमान

हॉज का मूल अनुमान था

इंटीग्रल हॉज अनुमान के अनुसार X प्रोजेक्टिव कॉम्प्लेक्स मैनिफोल्ड होते हैं। इस प्रकार हर कोहोलॉजी क्लास में समाकल गुणांकों के साथ बीजगणितीय चक्र का कोहोलॉजी वर्ग X. के समान है।

यह अब असत्य माना जाता है। पहला प्रति उदाहरण द्वारा बनाया गया था अतियाह & हिरजेब्रुक (1961) के सिद्धांत का उपयोग करते हुए, उन्होंने ट्विस्टेड वाले कोहोलॉजी वर्ग का उदाहरण बनाया- जो कि सह-विज्ञान वर्ग है α ऐसा है कि  = 0 कुछ सकारात्मक पूर्णांक के लिए n—जो बीजगणितीय चक्र का वर्ग नहीं है। ऐसा वर्ग आवश्यक रूप से हॉज वर्ग है। टोरैटो (1997) ने सह-बोर्डवाद के ढांचे में उनके परिणाम की पुनर्व्याख्या की और ऐसे वर्गों के कई उदाहरण पाए जाते हैं।

इंटीग्रल हॉज अनुमान का सबसे सरल समायोजन है।

इंटीग्रल हॉज अनुमान मोडुलो टॉर्सन। होने देना X प्रोजेक्टिव कॉम्प्लेक्स मैनिफोल्ड हो। फिर हर कोहोलॉजी क्लास में अभिन्न गुणांक वाले बीजगणितीय चक्र के ट्विस्टेड वर्ग और कोहोलॉजी वर्ग का योग है X.

समान रूप से, विभाजित करने के पश्चात ट्विस्टिड वर्गों द्वारा, प्रत्येक वर्ग अभिन्न बीजगणितीय चक्र के कोहोलॉजी वर्ग की छवि है। यह भी असत्य है। कोलार (1992) हॉज वर्ग का उदाहरण मिला α जो बीजगणितीय नहीं है, लेकिन जिसका पूर्णांक गुणज है जो बीजगणितीय है।

रोसेनशॉन & श्रीनिवास (2016) ने दिखाया है कि सही इंटीग्रल हॉज अनुमान प्राप्त करने के लिए, चाउ समूहों को बदलने की जरूरत है, जिसे मोटिविक कोहोलॉजी समूह के रूप में भी व्यक्त किया जा सकता है, जिसे ईटेल (या लिचटेनबाम) प्रेरक कोहोलॉजी के रूप में जाना जाता है। वे दिखाते हैं कि तर्कसंगत हॉज अनुमान इस संशोधित प्रेरक कोहोलॉजी के लिए अभिन्न हॉज अनुमान के बराबर है।

काहलर प्रकार के हॉज अनुमान

हॉज अनुमान का स्वाभाविक सामान्यीकरण पूछेगा:

काहलर प्रकारों के लिए हॉज अनुमान, भोली संस्करण। बता दें कि 'X' जटिल काहलर मैनिफोल्ड है। फिर 'एक्स' पर हर हॉज वर्ग 'एक्स' की जटिल उप-किस्मों के कोहोलॉजी वर्गों के तर्कसंगत गुणांक के साथ रैखिक संयोजन है।

यह बहुत आशावादी है, क्योंकि इस कार्य को करने के लिए पर्याप्त उप-किस्में नहीं हैं। संभावित विकल्प इसके अतिरिक्त निम्नलिखित दो प्रश्नों में से पूछना है:

काहलर किस्मों के लिए हॉज अनुमान, वेक्टर बंडल संस्करण। बता दें कि 'X' जटिल काहलर मैनिफोल्ड है। फिर X पर हर हॉज क्लास 'X पर वेक्टर बंडलों के चेर्न वर्गों के तर्कसंगत गुणांक के साथ रैखिक संयोजन है।
काहलर किस्मों के लिए हॉज अनुमान, सुसंगत शीफ संस्करण। बता दें कि 'X' जटिल काहलर मैनिफोल्ड है। फिर X पर हर हॉज वर्ग X पर सुसंगत ढेरों के चेर्न वर्गों के तर्कसंगत गुणांकों के साथ रैखिक संयोजन है।

व्यासिन (2002) ने प्रमाणित किया कि सुसंगत ढेरों के चेर्न वर्ग सदिश बंडलों के चेर्न वर्गों की तुलना में सख्ती से अधिक हॉज वर्ग देते हैं और सभी हॉज वर्गों को उत्पन्न करने के लिए सुसंगत शेवों के चेर्न वर्ग अपर्याप्त हैं। परिणामस्वरूप, काहलर किस्मों के लिए हॉज अनुमान के एकमात्र ज्ञात फॉर्मूलेशन झूठे हैं।

सामान्यीकृत हॉज अनुमान

हॉज ने इंटीग्रल हॉज अनुमान की तुलना में अतिरिक्त, मजबूत अनुमान लगाया। मान लें कि X पर कोहोलॉजी वर्ग सह-स्तर c (coniveau c) का है, यदि यह X के c-कोड-आयामी उप-विविधता पर सह-विज्ञान वर्ग का पुशफॉरवर्ड है। सह-स्तर के कोहोलॉजी वर्ग कम से कम c के सह-विज्ञान को फ़िल्टर करते हैं। , और यह देखना आसान है कि निस्पंदन का cth चरण Ncएचk(एक्स, 'जेड') संतुष्ट करता है

हॉज का मूल बयान था

सामान्यीकृत हॉज अनुमान, हॉज का संस्करण।

ग्रोदेनडीक (1969) ने देखा कि यह तर्कसंगत गुणांकों के साथ भी सत्य नहीं हो सकता है, क्योंकि दाहिनी ओर हमेशा हॉज संरचना नहीं होती है। हॉज अनुमान का उनका संशोधित रूप है

सामान्यीकृत हॉज अनुमान। एनcएचk(X, 'Q') H की सबसे बड़ी उप-हॉज संरचना हैk(एक्स, 'जेड') में निहित है

यह संस्करण खुला है।

हॉज लोकी की बीजगणितीयता

हॉज अनुमान के पक्ष में सबसे मजबूत सबूत का बीजगणितीय परिणाम कैट्टेन, डेलिग्न & कैप्लेन (1995) है। इस प्रकार मान लीजिए कि हम एक्स की जटिल संरचना को आसानी से जुड़े आधार पर बदलते हैं। तब X का टोपोलॉजिकल कोहोलॉजी परिवर्तित नहीं करता है, लेकिन हॉज अपघटन बदल जाता है। यह ज्ञात है कि यदि हॉज अनुमान सत्य है, तो आधार पर सभी बिंदुओं का स्थान जहां फाइबर का कोहोलॉजी हॉज वर्ग है, वास्तव में बीजगणितीय उपसमुच्चय है, अर्थात यह बहुपद समीकरणों द्वारा काट दिया जाता है। कट्टानी, डेलिग्ने और कपलान (1995) ने प्रमाणित किया कि हॉज अनुमान को ग्रहण किए बिना यह हमेशा सच होता है।

यह भी देखें

संदर्भ

  1. James Lewis: A Survey of the Hodge Conjecture, 1991, Example 7.21
  2. Mattuck, Arthur (1958). "एबेलियन किस्मों पर चक्र". Proceedings of the American Mathematical Society. 9 (1): 88–98. doi:10.2307/2033404. JSTOR 2033404.
  3. "बीजगणितीय चक्र और जीटा कार्यों के ध्रुव". ResearchGate. Retrieved 2015-10-23.
  4. Tankeev, Sergei G (1988-01-01). "संख्या क्षेत्रों पर प्रधान आयाम की सरल एबेलियन किस्मों पर चक्र". Mathematics of the USSR-Izvestiya. 31 (3): 527–540. Bibcode:1988IzMat..31..527T. doi:10.1070/im1988v031n03abeh001088.


बाहरी संबंध