सिमेंटिक क्वेरी: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(5 intermediate revisions by 3 users not shown)
Line 1: Line 1:
सिमेंटिक क्वेरी साहचर्य और [[प्रासंगिकता (कंप्यूटर विज्ञान)]] प्रकृति के क्वेरी और विश्लेषणों की अनुमति देते हैं। सिमेंटिक क्वेरी डेटा में निहित [[ वाक्य - विन्यास ]], [[अर्थ विज्ञान]] और [[संरचनात्मक सूचना सिद्धांत]] के आधार पर स्पष्ट और निहित रूप से प्राप्त जानकारी दोनों की पुनर्प्राप्ति को सक्षम करती हैं। वे स्पष्ट परिणाम देने के लिए रचना किए गए हैं (संभवतः जानकारी के टुकड़े का विशिष्ट चयन) या [[पैटर्न मिलान|प्रतिरूप मिलान]] और [[तर्क प्रणाली]] के माध्यम से अधिक [[फजी लॉजिक|अस्पष्ट]] और विस्तृत खुले क्वेरी के उत्तर देने के लिए होता है।
सिमेंटिक क्वेरी साहचर्य और [[प्रासंगिकता (कंप्यूटर विज्ञान)]] प्रकृति के क्वेरी और विश्लेषणों की अनुमति देते हैं। सिमेंटिक क्वेरी डेटा में निहित [[ वाक्य - विन्यास |वाक्य - विन्यास]] , [[अर्थ विज्ञान]] और [[संरचनात्मक सूचना सिद्धांत]] के आधार पर स्पष्ट और निहित रूप से प्राप्त जानकारी दोनों की पुनर्प्राप्ति को सक्षम करती हैं। वे स्पष्ट परिणाम देने के लिए रचना किए गए हैं (संभवतः जानकारी के टुकड़े का विशिष्ट चयन) या [[पैटर्न मिलान|प्रतिरूप मिलान]] और [[तर्क प्रणाली]] के माध्यम से अधिक [[फजी लॉजिक|अस्पष्ट]] और विस्तृत खुले क्वेरी के उत्तर देने के लिए होता है।


सिमेंटिक क्वेरी नामांकित रेखाचित्र, [[लिंक्ड डेटा]] या [[सिमेंटिक ट्रिपल]] पर काम करती हैं। यह क्वेरी को सूचना के बीच वास्तविक इकाई-संबंध मॉडल को संसाधित करने और 'डेटा के नेटवर्क' से उत्तरों का अनुमान लगाने में सक्षम बनाता है। यह [[शब्दार्थ खोज]] के विपरीत है, जो उत्तम खोज परिणाम उत्पन्न करने के लिए [[असंरचित डेटा]] में शब्दार्थ (भाषा निर्माण का अर्थ) का उपयोग करता है। ([[प्राकृतिक भाषा प्रसंस्करण]] देखें।)
सिमेंटिक क्वेरी नामांकित रेखाचित्र, [[लिंक्ड डेटा]] या [[सिमेंटिक ट्रिपल]] पर काम करती हैं। यह क्वेरी को सूचना के बीच वास्तविक इकाई-संबंध मॉडल को संसाधित करने और 'डेटा के नेटवर्क' से उत्तरों का अनुमान लगाने में सक्षम बनाता है। यह [[शब्दार्थ खोज]] के विपरीत है, जो उत्तम खोज परिणाम उत्पन्न करने के लिए [[असंरचित डेटा]] में शब्दार्थ (भाषा निर्माण का अर्थ) का उपयोग करता है। ([[प्राकृतिक भाषा प्रसंस्करण]] देखें।)


विधि दृष्टिकोण से, सिमेंटिक क्वेरी [[SQL|एसक्यूएल]] की तरह स्पष्ट रिलेशनल-टाइप ऑपरेशंस हैं। वे संरचित डेटा पर काम करते हैं और इसलिए ऑपरेटरों (जैसे>, <और =), नाम स्थान, प्रतिरूप मिलान, प्रकार विरासत, [[सकर्मक संबंध]], [[सेमांटिक वेब]] नियम भाषा और प्रासंगिक पूर्ण-पाठ खोज जैसी व्यापक सुविधाओं का उपयोग करने की संभावना है। [[W3C|डब्ल्यू3सी]] का सिमेंटिक वेब टेक्नोलॉजी स्टैक [[SPARQL|स्पार्कल]] की प्रस्तुति कर रहा है |<ref name="XML.com">{{cite web|url=http://www.xml.com/pub/a/2005/11/16/introducing-sparql-querying-semantic-web-tutorial.html |title=Introducing SPARQL: Querying the Semantic Web |publisher=XML.com|date=2005}}</ref><ref name="W3C">{{cite web|url=http://www.w3.org/TR/rdf-sparql-query |title=RDF के लिए SPARQL क्वेरी भाषा|publisher=W3C|date=2008}}</ref> एसक्यूएल के समान सिंटैक्स में सिमेंटिक क्वेरी तैयार करने के लिए होता है। सिमेंटिक क्वेरी का उपयोग [[ tiktor |टिकटोक]], [[ग्राफ डेटाबेस]], [[सिमेंटिक विकी]], प्राकृतिक भाषा और [[ कृत्रिम होशियारी | कृत्रिम बुद्धिमत्ता]] प्रणाली में किया जाता है।
विधि दृष्टिकोण से, सिमेंटिक क्वेरी [[SQL|एसक्यूएल]] की तरह स्पष्ट रिलेशनल-टाइप ऑपरेशंस हैं। वे संरचित डेटा पर काम करते हैं और इसलिए ऑपरेटरों (जैसे>, <और =), नाम स्थान, प्रतिरूप मिलान, प्रकार विरासत, [[सकर्मक संबंध]], [[सेमांटिक वेब]] नियम भाषा और प्रासंगिक पूर्ण-पाठ खोज जैसी व्यापक सुविधाओं का उपयोग करने की संभावना है। [[W3C|डब्ल्यू3सी]] का सिमेंटिक वेब टेक्नोलॉजी स्टैक [[SPARQL|स्पार्कल]] की प्रस्तुति कर रहा है |<ref name="XML.com">{{cite web|url=http://www.xml.com/pub/a/2005/11/16/introducing-sparql-querying-semantic-web-tutorial.html |title=Introducing SPARQL: Querying the Semantic Web |publisher=XML.com|date=2005}}</ref><ref name="W3C">{{cite web|url=http://www.w3.org/TR/rdf-sparql-query |title=RDF के लिए SPARQL क्वेरी भाषा|publisher=W3C|date=2008}}</ref> एसक्यूएल के समान सिंटैक्स में सिमेंटिक क्वेरी तैयार करने के लिए होता है। सिमेंटिक क्वेरी का उपयोग [[ tiktor |टिकटोक]], [[ग्राफ डेटाबेस]], [[सिमेंटिक विकी]], प्राकृतिक भाषा और [[ कृत्रिम होशियारी |कृत्रिम बुद्धिमत्ता]] प्रणाली में किया जाता है।
 
'''इस प्रक्रिया को अनुमान या तर्क कहा जाता है और यह सॉफ़्टवेयर की क्षमता'''
 
== पृष्ठभूमि ==
== पृष्ठभूमि ==


संबंधपरक डेटाबेस डेटा के बीच सभी संबंधों को केवल अंतर्निहित विधि से दर्शाते हैं।<ref name="ACM-DL">{{cite book|url=http://portal.acm.org/citation.cfm?id=1646157 |title=Semantic queries in databases: problems and challenges |publisher=ACM Digital Library|date=2009|pages=1505–1508 |doi=10.1145/1645953.1646157 |isbn=9781605585123 |s2cid=1578867 }}</ref><ref name="ESWC">{{cite web|url=http://2012.eswc-conferences.org/sites/default/files/eswc2012_submission_357.pdf |title=Karma: A System for Mapping Structured Sources into the Semantic Web |publisher=eswc-conferences.org|date=2012}}</ref> उदाहरण के लिए, ग्राहकों और उत्पादों के बीच संबंध (दो पदार्थ-तालिकाओं में संग्रहीत और अतिरिक्त लिंक-तालिका से जुड़े) केवल डेवलपर द्वारा लिखे गए क्वेरी स्टेटमेंट (एसक्यूएल संबंधपरक डेटाबेस के मामले में) में अस्तित्व में आते हैं। क्वेरी लिखने के लिए [[डेटाबेस स्कीमा]] के स्पष्ट ज्ञान की आवश्यकता होती है।<ref name="IEEE">{{cite web|url=http://www-scf.usc.edu/~taheriya/papers/taheriyan14-icsc-paper.pdf |title=संरचित स्रोतों के सिमेंटिक मॉडल सीखने के लिए एक स्केलेबल दृष्टिकोण|publisher=8th IEEE International Conference on Semantic Computing|date=2014}}</ref><ref name="AAAI">{{cite web|url=http://www.isi.edu/integration/papers/knoblock13-sbd.pdf |title=बड़े डेटा एकीकरण और विश्लेषण के लिए शब्दार्थ|publisher=AAAI Fall Symposium on Semantics for Big Data|date=2013}}</ref>
संबंधपरक डेटाबेस डेटा के बीच सभी संबंधों को केवल अंतर्निहित विधि से दर्शाते हैं।<ref name="ACM-DL">{{cite book|url=http://portal.acm.org/citation.cfm?id=1646157 |title=Semantic queries in databases: problems and challenges |publisher=ACM Digital Library|date=2009|pages=1505–1508 |doi=10.1145/1645953.1646157 |isbn=9781605585123 |s2cid=1578867 }}</ref><ref name="ESWC">{{cite web|url=http://2012.eswc-conferences.org/sites/default/files/eswc2012_submission_357.pdf |title=Karma: A System for Mapping Structured Sources into the Semantic Web |publisher=eswc-conferences.org|date=2012}}</ref> उदाहरण के लिए, ग्राहकों और उत्पादों के बीच संबंध (दो पदार्थ-तालिकाओं में संग्रहीत और अतिरिक्त लिंक-तालिका से जुड़े) केवल डेवलपर द्वारा लिखे गए क्वेरी स्टेटमेंट (एसक्यूएल संबंधपरक डेटाबेस के स्थिति में) में अस्तित्व में आते हैं। क्वेरी लिखने के लिए [[डेटाबेस स्कीमा]] के स्पष्ट ज्ञान की आवश्यकता होती है।<ref name="IEEE">{{cite web|url=http://www-scf.usc.edu/~taheriya/papers/taheriyan14-icsc-paper.pdf |title=संरचित स्रोतों के सिमेंटिक मॉडल सीखने के लिए एक स्केलेबल दृष्टिकोण|publisher=8th IEEE International Conference on Semantic Computing|date=2014}}</ref><ref name="AAAI">{{cite web|url=http://www.isi.edu/integration/papers/knoblock13-sbd.pdf |title=बड़े डेटा एकीकरण और विश्लेषण के लिए शब्दार्थ|publisher=AAAI Fall Symposium on Semantics for Big Data|date=2013}}</ref>


लिंक्ड-डेटा स्पष्ट विधि से डेटा के बीच सभी संबंधों का प्रतिनिधित्व करता है। उपरोक्त उदाहरण में, कोई क्वेरी कोड लिखने की आवश्यकता नहीं है। प्रत्येक ग्राहक के लिए सही उत्पाद स्वचालित रूप से प्राप्त किया जा सकता है। जबकि यह सरल उदाहरण नगण्य है | लिंक्ड-डेटा की वास्तविक शक्ति तब काम आती है | जब सूचना का नेटवर्क बनाया जाता है |(ग्राहक अपनी भू-स्थानिक जानकारी जैसे शहर, राज्य और देश; उप- और सुपर-श्रेणियों के भीतर अपनी श्रेणियों के साथ उत्पाद) ) अब प्रणाली स्वचालित रूप से अधिक जटिल क्वेरी और विश्लेषणों का उत्तर दे सकता है | जो किसी उत्पाद श्रेणी के साथ किसी विशेष स्थान के संबंध की तलाश करते हैं। इस क्वेरी के विकास के प्रयास को छोड़ दिया गया है। सूचना के नेटवर्क पर चलने और मिलान खोजने (जिसे डेटा रेखाचित्र ट्रैवर्सल भी कहा जाता है) द्वारा सिमेंटिक क्वेरी को निष्पादित किया जाता है।
लिंक्ड-डेटा स्पष्ट विधि से डेटा के बीच सभी संबंधों का प्रतिनिधित्व करता है। उपरोक्त उदाहरण में, कोई क्वेरी कोड लिखने की आवश्यकता नहीं है। प्रत्येक ग्राहक के लिए सही उत्पाद स्वचालित रूप से प्राप्त किया जा सकता है। जबकि यह सरल उदाहरण नगण्य है | लिंक्ड-डेटा की वास्तविक शक्ति तब काम आती है | जब सूचना का नेटवर्क बनाया जाता है |(ग्राहक अपनी भू-स्थानिक जानकारी जैसे शहर, राज्य और देश; उप- और सुपर-श्रेणियों के भीतर अपनी श्रेणियों के साथ उत्पाद) ) अब प्रणाली स्वचालित रूप से अधिक जटिल क्वेरी और विश्लेषणों का उत्तर दे सकता है | जो किसी उत्पाद श्रेणी के साथ किसी विशेष स्थान के संबंध की तलाश करते हैं। इस क्वेरी के विकास के प्रयास को छोड़ दिया गया है। सूचना के नेटवर्क पर चलने और मिलान खोजने (जिसे डेटा रेखाचित्र ट्रैवर्सल भी कहा जाता है) द्वारा सिमेंटिक क्वेरी को निष्पादित किया जाता है।


सिमेंटिक क्वेरी का अन्य महत्वपूर्ण पहलू यह है | कि प्रणाली में इंटेलिजेंस को सम्मिलित करने के लिए समूह के प्रकार का उपयोग किया जा सकता है। ग्राहक और उत्पाद के बीच के संबंध में पड़ोस और उसके शहर के बीच के समूह की तुलना में मौलिक रूप से भिन्न प्रकृति होती है। उत्तरार्द्ध सिमेंटिक क्वेरी इंजन को यह अनुमान लगाने में सक्षम बनाता है कि मैनहट्टन में रहने वाला ग्राहक भी न्यूयॉर्क शहर में रह रहा है | जबकि अन्य समूहों में अधिक जटिल प्रतिरूप और प्रासंगिक विश्लेषण हो सकते हैं। इस प्रक्रिया को अनुमान कहा जाता है और यह सॉफ़्टवेयर की क्षमता है कि वह दिए गए तथ्यों के आधार पर नई जानकारी प्राप्त कर सकता है।
सिमेंटिक क्वेरी का अन्य महत्वपूर्ण पहलू यह है | कि प्रणाली में इंटेलिजेंस को सम्मिलित करने के लिए समूह के प्रकार का उपयोग किया जा सकता है। ग्राहक और उत्पाद के बीच के संबंध में पड़ोस और उसके शहर के बीच के समूह की तुलना में मौलिक रूप से भिन्न प्रकृति होती है। उत्तरार्द्ध सिमेंटिक क्वेरी इंजन को यह अनुमान लगाने में सक्षम बनाता है कि मैनहट्टन में रहने वाला ग्राहक भी न्यूयॉर्क शहर में रह रहा है | जबकि अन्य समूहों में अधिक जटिल प्रतिरूप और प्रासंगिक विश्लेषण हो सकते हैं। इस प्रक्रिया को अनुमान कहा जाता है और यह सॉफ़्टवेयर की क्षमता है कि वह दिए गए तथ्यों के आधार पर नई जानकारी प्राप्त कर सकता है।


== लेख ==
== लेख ==
Line 25: Line 22:
}}
}}
* {{Cite conference
* {{Cite conference
| last =  Zhifeng
| last =  झिफेंग
| first = Xiao
| first = जिओ
| editor2-first = Xinming
| editor2-first = Xinming
| editor2-last = Tang
| editor2-last = तांग
| editor1-first = Yaolin
| editor1-first = Yaolin
| editor1-last = Liu
| editor1-last = लियू
|book-title=International Symposium on Spatial Analysis, Spatial-Temporal Data Modeling, and Data Mining
|book-title=स्थानिक विश्लेषण, स्थानिक-कालिक डेटा मॉडलिंग और डेटा खनन पर अंतर्राष्ट्रीय संगोष्ठी
|date=2009
|date=2009
| bibcode = 2009SPIE.7492E..60X
| bibcode = 2009SPIE.7492E..60X
|title=SPARQL पर आधारित स्थानिक सूचना सिमेंटिक क्वेरी| volume = 7492
|title=स्पार्कल पर आधारित स्थानिक सूचना सिमेंटिक क्वेरी| volume = 7492
| pages = 74921P
| pages = 74921P
| publisher=SPIE
| publisher=स्पाई
| doi = 10.1117/12.838556
| doi = 10.1117/12.838556
| s2cid = 62191842
| s2cid = 62191842
}}
}}
* {{Cite web
* {{Cite web
| last = Aquin
| last = एक्विन
| first = Mathieu
| first = मैथ्यु
| year = 2010
| year = 2010
| url = http://www.semantic-web-journal.net/sites/default/files/swj96_1.pdf
| url = http://www.semantic-web-journal.net/sites/default/files/swj96_1.pdf
| title = वाटसन, सिमेंटिक वेब सर्च इंजन से कहीं अधिक| publisher = Semantic Web Journal
| title = वाटसन, सिमेंटिक वेब सर्च इंजन से कहीं अधिक| publisher = सिमेंटिक वेब जर्नल
}}
}}
* {{Cite web
* {{Cite web
| last = Dworetzky
| last = ड्वोरेट्स्की
| first = Tom
| first = टॉम
| year = 2011
| year = 2011
| url = http://www.ibtimes.com/how-siri-works-iphones-brain-comes-natural-language-processing-stanford-professors-teach-free-online
| url = http://www.ibtimes.com/how-siri-works-iphones-brain-comes-natural-language-processing-stanford-professors-teach-free-online
| title = सिरी कैसे काम करता है: आईफोन का 'ब्रेन' नेचुरल लैंग्वेज प्रोसेसिंग से आता है| work = International Business Times
| title = सिरी कैसे काम करता है: आईफोन का 'ब्रेन' नेचुरल लैंग्वेज प्रोसेसिंग से आता है| work = इंटरनेशनल बिजनेस टाइम्स
}}
}}
* {{Cite web
* {{Cite web
| last =  Horwitt
| last =  हॉर्विट
| first = Elisabeth
| first = एलिसाबेथ
| year = 2011
| year = 2011
| url = http://www.computerworld.com/s/article/9209118/The_semantic_Web_gets_down_to_businessarticleID=208700210&pgno=2
| url = http://www.computerworld.com/s/article/9209118/The_semantic_Web_gets_down_to_businessarticleID=208700210&pgno=2
Line 62: Line 59:
}}
}}
* {{Cite web
* {{Cite web
| last = Rodriguez
| last = रोड्रिगेज
| first = Marko
| first = मार्को
| year = 2011
| year = 2011
| url = http://markorodriguez.com/2011/06/15/graph-pattern-matching-with-gremlin-1-1/
| url = http://markorodriguez.com/2011/06/15/graph-pattern-matching-with-gremlin-1-1/
Line 69: Line 66:
}}
}}
* {{Cite web
* {{Cite web
| last = Sequeda
| last = सीक्वेडा
| first = Juan
| first = जुआन
| year = 2011
| year = 2011
| url = http://www.cambridgesemantics.com/semantic-university/sparql-nuts-and-bolts
| url = http://www.cambridgesemantics.com/semantic-university/sparql-nuts-and-bolts
| title = SPARQL नट और बोल्ट| publisher = Cambridge Semantics
| title = स्पार्कल नट और बोल्ट| publisher = कैम्ब्रिज सिमेंटिक्स
}}
}}
* {{Cite web
* {{Cite web
| last = Freitas
| last = फ्रीटास
| first = Andre
| first = एंड्रे
| year = 2012
| year = 2012
| url = https://www.deri.ie/sites/default/files/publications/freitas_ic_12.pdf
| url = https://www.deri.ie/sites/default/files/publications/freitas_ic_12.pdf
| title = लिंक किए गए डेटा वेब पर विषम डेटासेट को क्वेरी करना| publisher = IEEE Internet Computing
| title = लिंक किए गए डेटा वेब पर विषम डेटासेट को क्वेरी करना| publisher = आईईईई इंटरनेट कंप्यूटिंग
}}
}}
* {{Cite web
* {{Cite web
| last = Kauppinen
| last = कौपिनन
| first = Tomi
| first = टॉमी
| year = 2012
| year = 2012
| url = http://linkedscience.org/tools/sparql-package-for-r/tutorial-on-sparql-package-for-r/
| url = http://linkedscience.org/tools/sparql-package-for-r/tutorial-on-sparql-package-for-r/
| title = स्थानिक लिंक्ड डेटा को संभालने के लिए R में SPARQL पैकेज का उपयोग करना| publisher = linkedscience.org
| title = स्थानिक लिंक्ड डेटा को संभालने के लिए R में स्पार्कल पैकेज का उपयोग करना| publisher = linkedscience.org
}}
}}
* {{Cite web
* {{Cite web
| last = Lorentz
| last = लोरेंत्ज़
| first = Alissa
| first = एलिसा
| year = 2013
| year = 2013
| url = https://www.wired.com/2013/04/with-big-data-context-is-a-big-issue/
| url = https://www.wired.com/2013/04/with-big-data-context-is-a-big-issue/
| title = बड़े डेटा के साथ संदर्भ एक बड़ा मुद्दा है| publisher = Wired
| title = बड़े डेटा के साथ संदर्भ एक बड़ा मुद्दा है| publisher = वायर्ड
}}
}}


Line 116: Line 113:
==बाहरी संबंध==
==बाहरी संबंध==
* [http://www.w3.org/standards/semanticweb/query डब्ल्यू3सी Semantic Web Standards - Query]
* [http://www.w3.org/standards/semanticweb/query डब्ल्यू3सी Semantic Web Standards - Query]
[[Category: डेटा प्रबंधन]] [[Category: क्वेरी भाषाएँ]] [[Category: सेमांटिक वेब]]


[[Category: Machine Translated Page]]
[[Category:Created On 08/05/2023]]
[[Category:Created On 08/05/2023]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:क्वेरी भाषाएँ]]
[[Category:डेटा प्रबंधन]]
[[Category:सेमांटिक वेब]]

Latest revision as of 18:05, 18 May 2023

सिमेंटिक क्वेरी साहचर्य और प्रासंगिकता (कंप्यूटर विज्ञान) प्रकृति के क्वेरी और विश्लेषणों की अनुमति देते हैं। सिमेंटिक क्वेरी डेटा में निहित वाक्य - विन्यास , अर्थ विज्ञान और संरचनात्मक सूचना सिद्धांत के आधार पर स्पष्ट और निहित रूप से प्राप्त जानकारी दोनों की पुनर्प्राप्ति को सक्षम करती हैं। वे स्पष्ट परिणाम देने के लिए रचना किए गए हैं (संभवतः जानकारी के टुकड़े का विशिष्ट चयन) या प्रतिरूप मिलान और तर्क प्रणाली के माध्यम से अधिक अस्पष्ट और विस्तृत खुले क्वेरी के उत्तर देने के लिए होता है।

सिमेंटिक क्वेरी नामांकित रेखाचित्र, लिंक्ड डेटा या सिमेंटिक ट्रिपल पर काम करती हैं। यह क्वेरी को सूचना के बीच वास्तविक इकाई-संबंध मॉडल को संसाधित करने और 'डेटा के नेटवर्क' से उत्तरों का अनुमान लगाने में सक्षम बनाता है। यह शब्दार्थ खोज के विपरीत है, जो उत्तम खोज परिणाम उत्पन्न करने के लिए असंरचित डेटा में शब्दार्थ (भाषा निर्माण का अर्थ) का उपयोग करता है। (प्राकृतिक भाषा प्रसंस्करण देखें।)

विधि दृष्टिकोण से, सिमेंटिक क्वेरी एसक्यूएल की तरह स्पष्ट रिलेशनल-टाइप ऑपरेशंस हैं। वे संरचित डेटा पर काम करते हैं और इसलिए ऑपरेटरों (जैसे>, <और =), नाम स्थान, प्रतिरूप मिलान, प्रकार विरासत, सकर्मक संबंध, सेमांटिक वेब नियम भाषा और प्रासंगिक पूर्ण-पाठ खोज जैसी व्यापक सुविधाओं का उपयोग करने की संभावना है। डब्ल्यू3सी का सिमेंटिक वेब टेक्नोलॉजी स्टैक स्पार्कल की प्रस्तुति कर रहा है |[1][2] एसक्यूएल के समान सिंटैक्स में सिमेंटिक क्वेरी तैयार करने के लिए होता है। सिमेंटिक क्वेरी का उपयोग टिकटोक, ग्राफ डेटाबेस, सिमेंटिक विकी, प्राकृतिक भाषा और कृत्रिम बुद्धिमत्ता प्रणाली में किया जाता है।

पृष्ठभूमि

संबंधपरक डेटाबेस डेटा के बीच सभी संबंधों को केवल अंतर्निहित विधि से दर्शाते हैं।[3][4] उदाहरण के लिए, ग्राहकों और उत्पादों के बीच संबंध (दो पदार्थ-तालिकाओं में संग्रहीत और अतिरिक्त लिंक-तालिका से जुड़े) केवल डेवलपर द्वारा लिखे गए क्वेरी स्टेटमेंट (एसक्यूएल संबंधपरक डेटाबेस के स्थिति में) में अस्तित्व में आते हैं। क्वेरी लिखने के लिए डेटाबेस स्कीमा के स्पष्ट ज्ञान की आवश्यकता होती है।[5][6]

लिंक्ड-डेटा स्पष्ट विधि से डेटा के बीच सभी संबंधों का प्रतिनिधित्व करता है। उपरोक्त उदाहरण में, कोई क्वेरी कोड लिखने की आवश्यकता नहीं है। प्रत्येक ग्राहक के लिए सही उत्पाद स्वचालित रूप से प्राप्त किया जा सकता है। जबकि यह सरल उदाहरण नगण्य है | लिंक्ड-डेटा की वास्तविक शक्ति तब काम आती है | जब सूचना का नेटवर्क बनाया जाता है |(ग्राहक अपनी भू-स्थानिक जानकारी जैसे शहर, राज्य और देश; उप- और सुपर-श्रेणियों के भीतर अपनी श्रेणियों के साथ उत्पाद) ) अब प्रणाली स्वचालित रूप से अधिक जटिल क्वेरी और विश्लेषणों का उत्तर दे सकता है | जो किसी उत्पाद श्रेणी के साथ किसी विशेष स्थान के संबंध की तलाश करते हैं। इस क्वेरी के विकास के प्रयास को छोड़ दिया गया है। सूचना के नेटवर्क पर चलने और मिलान खोजने (जिसे डेटा रेखाचित्र ट्रैवर्सल भी कहा जाता है) द्वारा सिमेंटिक क्वेरी को निष्पादित किया जाता है।

सिमेंटिक क्वेरी का अन्य महत्वपूर्ण पहलू यह है | कि प्रणाली में इंटेलिजेंस को सम्मिलित करने के लिए समूह के प्रकार का उपयोग किया जा सकता है। ग्राहक और उत्पाद के बीच के संबंध में पड़ोस और उसके शहर के बीच के समूह की तुलना में मौलिक रूप से भिन्न प्रकृति होती है। उत्तरार्द्ध सिमेंटिक क्वेरी इंजन को यह अनुमान लगाने में सक्षम बनाता है कि मैनहट्टन में रहने वाला ग्राहक भी न्यूयॉर्क शहर में रह रहा है | जबकि अन्य समूहों में अधिक जटिल प्रतिरूप और प्रासंगिक विश्लेषण हो सकते हैं। इस प्रक्रिया को अनुमान कहा जाता है और यह सॉफ़्टवेयर की क्षमता है कि वह दिए गए तथ्यों के आधार पर नई जानकारी प्राप्त कर सकता है।

लेख

यह भी देखें

संदर्भ


बाहरी संबंध