केंद्रक और सामान्यक: Difference between revisions
No edit summary |
No edit summary |
||
(8 intermediate revisions by 3 users not shown) | |||
Line 4: | Line 4: | ||
{{Redirect|केंद्रक|बनच रिक्त स्थान के केंद्रीकरणकर्ता|गुणक और केंद्रक (बानाच स्पेस)}} | {{Redirect|केंद्रक|बनच रिक्त स्थान के केंद्रीकरणकर्ता|गुणक और केंद्रक (बानाच स्पेस)}} | ||
गणित में, विशेष रूप से [[समूह सिद्धांत]],में [[समूह (गणित)]] में एक उपसमुच्चय S का केंद्रक (जिसे कम्यूटेंट भी कहा जाता है | <ref name="O'MearaClark2011">{{cite book|author1=Kevin O'Meara|author2=John Clark|author3=Charles Vinsonhaler|title=Advanced Topics in Linear Algebra: Weaving Matrix Problems Through the Weyr Form|url=https://books.google.com/books?id=HLiWsnzJe6MC&pg=PA65|year=2011|publisher= [[Oxford University Press]]|isbn=978-0-19-979373-0|page=65}}</ref><ref name="HofmannMorris2007">{{cite book|author1=Karl Heinrich Hofmann|author2=Sidney A. Morris|title=The Lie Theory of Connected Pro-Lie Groups: A Structure Theory for Pro-Lie Algebras, Pro-Lie Groups, and Connected Locally Compact Groups|url=https://books.google.com/books?id=fJyqSkEexNgC&pg=PA30|year=2007|publisher= [[European Mathematical Society]]|isbn=978-3-03719-032-6|page=30}}</ref>) <math>\operatorname{C}_G(S)</math> G के | गणित में, विशेष रूप से [[समूह सिद्धांत]],में [[समूह (गणित)]] में एक उपसमुच्चय S का केंद्रक (जिसे कम्यूटेंट भी कहा जाता है | <ref name="O'MearaClark2011">{{cite book|author1=Kevin O'Meara|author2=John Clark|author3=Charles Vinsonhaler|title=Advanced Topics in Linear Algebra: Weaving Matrix Problems Through the Weyr Form|url=https://books.google.com/books?id=HLiWsnzJe6MC&pg=PA65|year=2011|publisher= [[Oxford University Press]]|isbn=978-0-19-979373-0|page=65}}</ref><ref name="HofmannMorris2007">{{cite book|author1=Karl Heinrich Hofmann|author2=Sidney A. Morris|title=The Lie Theory of Connected Pro-Lie Groups: A Structure Theory for Pro-Lie Algebras, Pro-Lie Groups, and Connected Locally Compact Groups|url=https://books.google.com/books?id=fJyqSkEexNgC&pg=PA30|year=2007|publisher= [[European Mathematical Society]]|isbn=978-3-03719-032-6|page=30}}</ref>) <math>\operatorname{C}_G(S)</math> G के अवयवों का समुच्चय है | G जो S के प्रत्येक अवयव के साथ [[क्रमविनिमेयता]], या समकक्ष, जैसे कि [[संयुग्मन (समूह सिद्धांत)]] द्वारा <math>g</math> S के प्रत्येक अवयव को नियत छोड़ देता है। G में S का 'नॉर्मलाइज़र' अवयवों का [[सेट (गणित)|समुच्चय (गणित)]] है | G में S का नॉर्मलाइज़र <math>\mathrm{N}_G(S)</math> का G का समुच्चय है | जो संयुग्मन के अनुसार समुच्चय <math>S \subseteq G</math> छोड़ने की अशक्त स्थिति को पूरा करता है। S का केंद्रक और सामान्यक G के [[उपसमूह]] हैं। समूह सिद्धांत में कई विधि उपयुक्त उपसमूहों S के केंद्रक और सामान्यीकरण का अध्ययन करने पर आधारित हैं। | ||
उपयुक्त रूप से तैयार की गई, परिभाषाएँ [[ semigroup |अर्धसमूह]] पर भी प्रयुक्त होती हैं। | उपयुक्त रूप से तैयार की गई, परिभाषाएँ [[ semigroup |अर्धसमूह]] पर भी प्रयुक्त होती हैं। | ||
[[ अंगूठी सिद्धांत | रिंग सिद्धांत]] में, '[[सबरिंग]] (गणित) के सबसमुच्चय के केंद्रीकरण को रिंग के अर्धसमूह (गुणन) | [[ अंगूठी सिद्धांत | रिंग सिद्धांत]] में, '[[सबरिंग]] (गणित) के सबसमुच्चय के केंद्रीकरण को रिंग के अर्धसमूह (गुणन) संचालन के संबंध में परिभाषित किया गया है। रिंग R के उपसमुच्चय का केंद्रक, R का उपसमूह है। यह लेख [[झूठ बीजगणित|लाई बीजगणित]] में केंद्रक और सामान्यीकरण से भी संबंधित है। | ||
अर्धसमूह या रिंग में [[आदर्शवादी|आइडियलाइज़र]] अन्य निर्माण है | जो सेंट्रलाइज़र और नॉर्मलाइज़र के समान ही है। | |||
== परिभाषाएँ == | == परिभाषाएँ == | ||
Line 19: | Line 16: | ||
समूह (या अर्धसमूह) ''G'' के सबसमुच्चय ''S'' के केंद्रक को इस रूप में परिभाषित किया गया है |<ref>Jacobson (2009), p. 41</ref> | समूह (या अर्धसमूह) ''G'' के सबसमुच्चय ''S'' के केंद्रक को इस रूप में परिभाषित किया गया है |<ref>Jacobson (2009), p. 41</ref> | ||
:<math>\mathrm{C}_G(S) = \left\{g \in G \mid gs = sg \text{ for all } s \in S\right\} = \left\{g \in G \mid gsg^{-1} = s \text{ for all } s \in S\right\},</math> | :<math>\mathrm{C}_G(S) = \left\{g \in G \mid gs = sg \text{ for all } s \in S\right\} = \left\{g \in G \mid gsg^{-1} = s \text{ for all } s \in S\right\},</math> | ||
जहाँ केवल पहली परिभाषा अर्धसमूह पर प्रयुक्त होती है। यदि प्रश्न में समूह के बारे में कोई अस्पष्टता नहीं है, तो G को संकेतन से दबाया जा सकता है। जब S = {a} [[सिंगलटन (गणित)]] समुच्चय होता है, तो हम C<sub>''G''</sub>(a) के अतिरिक्त C<sub>''G''</sub>({a}) लिखते हैं । केंद्रक के लिए एक और कम सामान्य अंकन z (a) है | जो [[केंद्र (समूह सिद्धांत)]] के लिए अंकन के समानांतर है। इस बाद के अंकन के साथ, समूह G, z (G) के 'केंद्र' और G, z (G) में | जहाँ केवल पहली परिभाषा अर्धसमूह पर प्रयुक्त होती है। यदि प्रश्न में समूह के बारे में कोई अस्पष्टता नहीं है, तो G को संकेतन से दबाया जा सकता है। जब S = {a} [[सिंगलटन (गणित)]] समुच्चय होता है, तो हम C<sub>''G''</sub>(a) के अतिरिक्त C<sub>''G''</sub>({a}) लिखते हैं । केंद्रक के लिए एक और कम सामान्य अंकन z (a) है | जो [[केंद्र (समूह सिद्धांत)]] के लिए अंकन के समानांतर है। इस बाद के अंकन के साथ, समूह G, z (G) के 'केंद्र' और G, z (G) में अवयव G के केंद्र के बीच भ्रम से बचने के लिए सावधान रहना चाहिए। | ||
समूह (या अर्धसमूह) G में S के 'नॉर्मलाइज़र' को इस रूप में परिभाषित किया गया है | समूह (या अर्धसमूह) G में S के 'नॉर्मलाइज़र' को इस रूप में परिभाषित किया गया है | | ||
:<math>\mathrm{N}_G(S) = \left\{ g \in G \mid gS = Sg \right\} = \left\{g \in G \mid gSg^{-1} = S\right\},</math> | :<math>\mathrm{N}_G(S) = \left\{ g \in G \mid gS = Sg \right\} = \left\{g \in G \mid gSg^{-1} = S\right\},</math> | ||
जहां फिर से केवल पहली परिभाषा | जहां फिर से केवल पहली परिभाषा उपसमूह पर प्रयुक्त होती है। परिभाषाएँ समान हैं किन्तु समान नहीं हैं। यदि G S के केंद्र में है और S S में है, तो यह {{nowrap|1=''gs'' = ''sg''}} होना चाहिए , किन्तु यदि G नॉर्मलाइज़र में है, तो {{nowrap|1=''gs'' = ''tg''}} S में कुछ T के लिए, T संभवतः S से अलग है। S के केंद्रक के अवयवों को S के साथ बिंदुवार बदलना चाहिए, किन्तु S के सामान्यीकरण के अवयवों को केवल समुच्चय के रूप में S के साथ यात्रा करने की आवश्यकता है। सेंट्रलाइजर्स के लिए ऊपर वर्णित वही सांकेतिक टिप्पणी नॉर्मलाइजर्स पर भी प्रयुक्त होती हैं। नॉर्मलाइज़र को [[ संयुग्मी बंद होना |संयुग्मी बंद होना]] के साथ भ्रमित नहीं होना चाहिए। | ||
स्पष्ट रूप से <math>C_G(S) \subseteq N_G(S)</math> और <math>G</math> दोनों के उपसमूह हैं | | स्पष्ट रूप से <math>C_G(S) \subseteq N_G(S)</math> और <math>G</math> दोनों के उपसमूह हैं | | ||
Line 35: | Line 32: | ||
:<math>\mathrm{C}_{\mathfrak{L}}(S) = \{ x \in \mathfrak{L} \mid [x, s] = 0 \text{ for all } s \in S \}.</math> | :<math>\mathrm{C}_{\mathfrak{L}}(S) = \{ x \in \mathfrak{L} \mid [x, s] = 0 \text{ for all } s \in S \}.</math> | ||
लाइ रिंग्स के लिए सेंट्रलाइजर्स की परिभाषा निम्नलिखित विधि से रिंग्स की परिभाषा से जुड़ी हुई है। यदि R साहचर्य वलय है, तो R को कम्यूटेटर {{nowrap|1=[''x'', ''y''] = ''xy'' − ''yx''}} (रिंग सिद्धांत) दिया जा सकता है | तब {{nowrap|1=''xy'' = ''yx''}} यदि और केवल यदि {{nowrap|1=[''x'', ''y''] = 0}}. यदि हम समुच्चय R को ब्रैकेट उत्पाद के साथ L<sub>''R''</sub> के रूप में निरूपित करते हैं , तो स्पष्ट रूप से R में S का रिंग सेंट्रलाइज़र L<sub>''R''</sub> में S के लाई रिंग सेंट्रलाइज़र के समान है | | लाइ रिंग्स के लिए सेंट्रलाइजर्स की परिभाषा निम्नलिखित विधि से रिंग्स की परिभाषा से जुड़ी हुई है। यदि R साहचर्य वलय है, तो R को कम्यूटेटर {{nowrap|1=[''x'', ''y''] = ''xy'' − ''yx''}} (रिंग सिद्धांत) दिया जा सकता है | तब {{nowrap|1=''xy'' = ''yx''}} यदि और केवल यदि {{nowrap|1=[''x'', ''y''] = 0}}. यदि हम समुच्चय R को ब्रैकेट उत्पाद के साथ L<sub>''R''</sub> के रूप में निरूपित करते हैं , तो स्पष्ट रूप से R में S का रिंग सेंट्रलाइज़र L<sub>''R''</sub> में S के लाई रिंग सेंट्रलाइज़र के समान है | | ||
लाई बीजगणित (या लाई रिंग) के उपसमुच्चय S का सामान्यक <math>\mathfrak{L}</math> द्वारा दिया गया है |{{sfn|Jacobson|1979|loc=p. 28}} | लाई बीजगणित (या लाई रिंग) के उपसमुच्चय S का सामान्यक <math>\mathfrak{L}</math> द्वारा दिया गया है |{{sfn|Jacobson|1979|loc=p. 28}} | ||
Line 49: | Line 45: | ||
स्रोत:{{sfn|Isaacs|2009|loc=Chapters 1−3}} | स्रोत:{{sfn|Isaacs|2009|loc=Chapters 1−3}} | ||
* S का केंद्रक और सामान्यक दोनों G के उपसमूह हैं। | * S का केंद्रक और सामान्यक दोनों G के उपसमूह हैं। | ||
* स्पष्ट रूप से, {{nowrap|C<sub>''G''</sub>(''S'') ⊆ N<sub>''G''</sub>(''S'')}}. वास्तव में, C<sub>''G''</sub>(S) सदैव N<sub>''G''</sub>(S) का [[सामान्य उपसमूह]] होता है | * स्पष्ट रूप से, {{nowrap|C<sub>''G''</sub>(''S'') ⊆ N<sub>''G''</sub>(''S'')}}. वास्तव में, C<sub>''G''</sub>(S) सदैव N<sub>''G''</sub>(S) का [[सामान्य उपसमूह]] होता है | होमोमोर्फिज्म {{nowrap|N<sub>''G''</sub>(''S'') → Bij(''S'')}} का कर्नेल होता है और समूह N<sub>''G''</sub>(S)/C<sub>''G''</sub>(S) पर द्विभाजनों के समूह के रूप में संयुग्मन द्वारा कार्य करता है। टोरस T के साथ कॉम्पैक्ट लाइ समूह G के [[वेइल समूह]] को {{nowrap|1=''W''(''G'',''T'') = N<sub>''G''</sub>(''T'')/C<sub>''G''</sub>(''T'')}} परिभाषित किया गया है , और विशेष रूप से यदि टोरस अधिक से अधिक है (अर्थात {{nowrap|1=C<sub>''G''</sub>(''T'') = ''T'')}} यह लाई समूहों के सिद्धांत में केंद्रीय उपकरण है। | ||
* C<sub>''G''</sub>(C<sub>''G''</sub>(S)) में S होता है, किन्तु C<sub>''G''</sub>(S) में S सम्मिलित करने की आवश्यकता नहीं है। रोकथाम ठीक तब होती है जब S एबेलियन होता है। | * C<sub>''G''</sub>(C<sub>''G''</sub>(S)) में S होता है, किन्तु C<sub>''G''</sub>(S) में S सम्मिलित करने की आवश्यकता नहीं है। रोकथाम ठीक तब होती है जब S एबेलियन होता है। | ||
* यदि H, G का उपसमूह है, तो N<sub>''G''</sub>(H) में H सम्मिलित है। | * यदि H, G का उपसमूह है, तो N<sub>''G''</sub>(H) में H सम्मिलित है। | ||
* यदि H, G का उपसमूह है, तो G का सबसे बड़ा उपसमूह जिसमें H सामान्य है, उपसमूह N<sub>''G''</sub>(H) है। | * यदि H, G का उपसमूह है, तो G का सबसे बड़ा उपसमूह जिसमें H सामान्य है, उपसमूह N<sub>''G''</sub>(H) है। | ||
* यदि S, G का उपसमुच्चय है जैसे कि S के सभी | * यदि S, G का उपसमुच्चय है जैसे कि S के सभी अवयव एक दूसरे के साथ आवागमन करते हैं, तो G का सबसे बड़ा उपसमूह जिसके केंद्र में S उपसमूह C<sub>''G''</sub>(S) है। | ||
* समूह G के उपसमूह H को ''G'' का स्व-सामान्यीकरण उपसमूह 'कहा जाता है। यदि {{nowrap|1=N<sub>''G''</sub>(''H'') = ''H''}}. है | | * समूह G के उपसमूह H को ''G'' का स्व-सामान्यीकरण उपसमूह 'कहा जाता है। यदि {{nowrap|1=N<sub>''G''</sub>(''H'') = ''H''}}. है | | ||
* G का केंद्र ठीक C<sub>''G''</sub>(G) है और G [[एबेलियन समूह]] है यदि और केवल यदि {{nowrap|1=C<sub>''G''</sub>(G) = Z(''G'') = ''G''}}. होता है | | * G का केंद्र ठीक C<sub>''G''</sub>(G) है और G [[एबेलियन समूह]] है | यदि और केवल यदि {{nowrap|1=C<sub>''G''</sub>(G) = Z(''G'') = ''G''}}. होता है | | ||
* सिंगलटन समुच्चय | * सिंगलटन समुच्चय {{nowrap|1=C<sub>''G''</sub>(''a'') = N<sub>''G''</sub>(''a'')}} के लिए | | ||
* सममिति के अनुसार, यदि S और T, G के दो उपसमुच्चय हैं,तो {{nowrap|''T'' ⊆ C<sub>''G''</sub>(''S'')}} यदि और केवल यदि {{nowrap|''S'' ⊆ C<sub>''G''</sub>(''T'')}}. है | | * सममिति के अनुसार, यदि S और T, G के दो उपसमुच्चय हैं,तो {{nowrap|''T'' ⊆ C<sub>''G''</sub>(''S'')}} यदि और केवल यदि {{nowrap|''S'' ⊆ C<sub>''G''</sub>(''T'')}}. है | | ||
* समूह G के उपसमूह H के लिए, 'N/C प्रमेय' कहता है कि [[कारक समूह]] N<sub>''G''</sub>(H) / C<sub>''G''</sub>(H) ऑट (H) के उपसमूह के लिए [[समूह समरूपता]] है, H के [[ automorphism |ऑटोमोर्फिज़्म]] का समूह है | चूंकि {{nowrap|1=N<sub>''G''</sub>(''G'') = ''G''}} और {{nowrap|1=C<sub>''G''</sub>(''G'') = Z(''G'')}}, N/C प्रमेय का अर्थ यह भी है कि G/Z(G) Inn(G) के लिए आइसोमॉर्फिक है |, Aut(G) के उपसमूह में G के सभी [[आंतरिक ऑटोमोर्फिज्म]] सम्मिलित हैं। | * समूह G के उपसमूह H के लिए, 'N/C प्रमेय' कहता है कि [[कारक समूह]] N<sub>''G''</sub>(H) / C<sub>''G''</sub>(H) ऑट (H) के उपसमूह के लिए [[समूह समरूपता]] है, H के [[ automorphism |ऑटोमोर्फिज़्म]] का समूह है | चूंकि {{nowrap|1=N<sub>''G''</sub>(''G'') = ''G''}} और {{nowrap|1=C<sub>''G''</sub>(''G'') = Z(''G'')}}, N/C प्रमेय का अर्थ यह भी है कि G/Z(G) Inn(G) के लिए आइसोमॉर्फिक है |, Aut(G) के उपसमूह में G के सभी [[आंतरिक ऑटोमोर्फिज्म]] सम्मिलित हैं। | ||
Line 66: | Line 62: | ||
* एक क्षेत्र में रिंग और बीजगणित में केंद्रक क्षेत्र के ऊपर क्रमशः सबरिंग और सबलजेब्रस होते हैं; लाई रिंग्स और लाई बीजगणित में सेंट्रलाइज़र क्रमशः लाई सबरिंग्स और लाई सबलजेब्रस हैं। | * एक क्षेत्र में रिंग और बीजगणित में केंद्रक क्षेत्र के ऊपर क्रमशः सबरिंग और सबलजेब्रस होते हैं; लाई रिंग्स और लाई बीजगणित में सेंट्रलाइज़र क्रमशः लाई सबरिंग्स और लाई सबलजेब्रस हैं। | ||
* लाइ रिंग में S के नॉर्मलाइज़र में S का सेंट्रलाइज़र होता है। | * लाइ रिंग में S के नॉर्मलाइज़र में S का सेंट्रलाइज़र होता है। | ||
* C<sub>''R''</sub>(C<sub>''R''</sub>(S)) में S सम्मिलित है किन्तु आवश्यक नहीं कि समान हो। [[डबल केंद्रीकरण प्रमेय]] उन स्थितियों से संबंधित है जहाँ समानता होती है। | * C<sub>''R''</sub>(C<sub>''R''</sub>(S)) में S सम्मिलित है किन्तु आवश्यक नहीं कि समान हो। [[डबल केंद्रीकरण प्रमेय]] उन स्थितियों से संबंधित है | जहाँ समानता होती है। | ||
* यदि S एक लाई रिंग A का योगात्मक उपसमूह है, तो N<sub>''A''</sub>(S) A का सबसे बड़ा लाई उपसमूह है जिसमें S लाई आदर्श है। | * यदि S एक लाई रिंग A का योगात्मक उपसमूह है, तो N<sub>''A''</sub>(S) A का सबसे बड़ा लाई उपसमूह है जिसमें S लाई आदर्श है। | ||
* यदि S, लाइ रिंग A का लाइ सबरिंग है, तो {{nowrap|''S'' ⊆ N<sub>''A''</sub>(''S'')}}. | * यदि S, लाइ रिंग A का लाइ सबरिंग है, तो {{nowrap|''S'' ⊆ N<sub>''A''</sub>(''S'')}}. होता है | | ||
== यह भी देखें == | == यह भी देखें == | ||
* [[कम्यूटेटर]] | * [[कम्यूटेटर]] | ||
* डबल केंद्रक प्रमेय | * डबल केंद्रक प्रमेय | ||
* | * आइडियलाइज़र | ||
* | * मल्टीप्लायर और सेंट्रलाइज़र (बैनाच स्पेस) | ||
* [[स्टेबलाइजर उपसमूह]] | * [[स्टेबलाइजर उपसमूह]] | ||
Line 86: | Line 82: | ||
*{{citation|last=Jacobson |first=Nathan |title=Lie Algebras |edition=republication of the 1962 original |publisher= [[Dover Publications]] |year=1979 |isbn=0-486-63832-4 |mr=559927|url=https://books.google.com/books?id=hPE1Mmm7SFMC&q=centralizer+OR+normalizer}} | *{{citation|last=Jacobson |first=Nathan |title=Lie Algebras |edition=republication of the 1962 original |publisher= [[Dover Publications]] |year=1979 |isbn=0-486-63832-4 |mr=559927|url=https://books.google.com/books?id=hPE1Mmm7SFMC&q=centralizer+OR+normalizer}} | ||
{{DEFAULTSORT:Centralizer And Normalizer}} | {{DEFAULTSORT:Centralizer And Normalizer}} | ||
[[Category: | [[Category:Articles with hatnote templates targeting a nonexistent page|Centralizer And Normalizer]] | ||
[[Category:Created On 26/04/2023]] | [[Category:Articles with redirect hatnotes needing review|Centralizer And Normalizer]] | ||
[[Category:Created On 26/04/2023|Centralizer And Normalizer]] | |||
[[Category:Lua-based templates|Centralizer And Normalizer]] | |||
[[Category:Machine Translated Page|Centralizer And Normalizer]] | |||
[[Category:Missing redirects|Centralizer And Normalizer]] | |||
[[Category:Pages with script errors|Centralizer And Normalizer]] | |||
[[Category:Templates Vigyan Ready|Centralizer And Normalizer]] | |||
[[Category:Templates that add a tracking category|Centralizer And Normalizer]] | |||
[[Category:Templates that generate short descriptions|Centralizer And Normalizer]] | |||
[[Category:Templates using TemplateData|Centralizer And Normalizer]] | |||
[[Category:बीजगणित झूठ बोलो|Centralizer And Normalizer]] | |||
[[Category:रिंग थ्योरी|Centralizer And Normalizer]] | |||
[[Category:समूह सिद्धांत|Centralizer And Normalizer]] | |||
[[Category:सार बीजगणित|Centralizer And Normalizer]] |
Latest revision as of 11:50, 23 May 2023
गणित में, विशेष रूप से समूह सिद्धांत,में समूह (गणित) में एक उपसमुच्चय S का केंद्रक (जिसे कम्यूटेंट भी कहा जाता है | [1][2]) G के अवयवों का समुच्चय है | G जो S के प्रत्येक अवयव के साथ क्रमविनिमेयता, या समकक्ष, जैसे कि संयुग्मन (समूह सिद्धांत) द्वारा S के प्रत्येक अवयव को नियत छोड़ देता है। G में S का 'नॉर्मलाइज़र' अवयवों का समुच्चय (गणित) है | G में S का नॉर्मलाइज़र का G का समुच्चय है | जो संयुग्मन के अनुसार समुच्चय छोड़ने की अशक्त स्थिति को पूरा करता है। S का केंद्रक और सामान्यक G के उपसमूह हैं। समूह सिद्धांत में कई विधि उपयुक्त उपसमूहों S के केंद्रक और सामान्यीकरण का अध्ययन करने पर आधारित हैं।
उपयुक्त रूप से तैयार की गई, परिभाषाएँ अर्धसमूह पर भी प्रयुक्त होती हैं।
रिंग सिद्धांत में, 'सबरिंग (गणित) के सबसमुच्चय के केंद्रीकरण को रिंग के अर्धसमूह (गुणन) संचालन के संबंध में परिभाषित किया गया है। रिंग R के उपसमुच्चय का केंद्रक, R का उपसमूह है। यह लेख लाई बीजगणित में केंद्रक और सामान्यीकरण से भी संबंधित है।
अर्धसमूह या रिंग में आइडियलाइज़र अन्य निर्माण है | जो सेंट्रलाइज़र और नॉर्मलाइज़र के समान ही है।
परिभाषाएँ
समूह और अर्धसमूह
समूह (या अर्धसमूह) G के सबसमुच्चय S के केंद्रक को इस रूप में परिभाषित किया गया है |[3]
जहाँ केवल पहली परिभाषा अर्धसमूह पर प्रयुक्त होती है। यदि प्रश्न में समूह के बारे में कोई अस्पष्टता नहीं है, तो G को संकेतन से दबाया जा सकता है। जब S = {a} सिंगलटन (गणित) समुच्चय होता है, तो हम CG(a) के अतिरिक्त CG({a}) लिखते हैं । केंद्रक के लिए एक और कम सामान्य अंकन z (a) है | जो केंद्र (समूह सिद्धांत) के लिए अंकन के समानांतर है। इस बाद के अंकन के साथ, समूह G, z (G) के 'केंद्र' और G, z (G) में अवयव G के केंद्र के बीच भ्रम से बचने के लिए सावधान रहना चाहिए।
समूह (या अर्धसमूह) G में S के 'नॉर्मलाइज़र' को इस रूप में परिभाषित किया गया है |
जहां फिर से केवल पहली परिभाषा उपसमूह पर प्रयुक्त होती है। परिभाषाएँ समान हैं किन्तु समान नहीं हैं। यदि G S के केंद्र में है और S S में है, तो यह gs = sg होना चाहिए , किन्तु यदि G नॉर्मलाइज़र में है, तो gs = tg S में कुछ T के लिए, T संभवतः S से अलग है। S के केंद्रक के अवयवों को S के साथ बिंदुवार बदलना चाहिए, किन्तु S के सामान्यीकरण के अवयवों को केवल समुच्चय के रूप में S के साथ यात्रा करने की आवश्यकता है। सेंट्रलाइजर्स के लिए ऊपर वर्णित वही सांकेतिक टिप्पणी नॉर्मलाइजर्स पर भी प्रयुक्त होती हैं। नॉर्मलाइज़र को संयुग्मी बंद होना के साथ भ्रमित नहीं होना चाहिए।
स्पष्ट रूप से और दोनों के उपसमूह हैं |
रिंग, एक क्षेत्र पर बीजगणित, लाई रिंग, और लाई बीजगणित
यदि R क्षेत्र पर एक वलय या बीजगणित है, और S, R का उपसमुच्चय है, तो S का केंद्रक ठीक वैसा ही है जैसा कि G के स्थान पर R के साथ समूहों के लिए परिभाषित किया गया है।
यदि लाई उत्पाद [x, y] के साथ लाइ बीजगणित (या लाई की रिंग) है | फिर सबसमुच्चय S का केंद्रक होना परिभाषित किया गया है |[4]
लाइ रिंग्स के लिए सेंट्रलाइजर्स की परिभाषा निम्नलिखित विधि से रिंग्स की परिभाषा से जुड़ी हुई है। यदि R साहचर्य वलय है, तो R को कम्यूटेटर [x, y] = xy − yx (रिंग सिद्धांत) दिया जा सकता है | तब xy = yx यदि और केवल यदि [x, y] = 0. यदि हम समुच्चय R को ब्रैकेट उत्पाद के साथ LR के रूप में निरूपित करते हैं , तो स्पष्ट रूप से R में S का रिंग सेंट्रलाइज़र LR में S के लाई रिंग सेंट्रलाइज़र के समान है |
लाई बीजगणित (या लाई रिंग) के उपसमुच्चय S का सामान्यक द्वारा दिया गया है |[4]
जबकि यह ले बीजगणित में नॉर्मलाइज़र शब्द का मानक उपयोग है | यह निर्माण वास्तव में समुच्चय S का आदर्श है | यदि S का योगात्मक उपसमूह है | तब सबसे बड़ा लाइ सबरिंग (या लाइ सबलजेब्रा, जैसी भी स्थिति हो) है | जिसमें S एक लाइ आदर्श (रिंग सिद्धांत) है।[5]
गुण
अर्धसमूह
बता दें कि अर्धसमूह में के केंद्रक को निरूपित करें, अर्थात तब उपसमूह बनाता है और ; अर्थात कम्यूटेंट अपना स्वयं का द्विकम्यूटेंट है।
समूह
स्रोत:[6]
- S का केंद्रक और सामान्यक दोनों G के उपसमूह हैं।
- स्पष्ट रूप से, CG(S) ⊆ NG(S). वास्तव में, CG(S) सदैव NG(S) का सामान्य उपसमूह होता है | होमोमोर्फिज्म NG(S) → Bij(S) का कर्नेल होता है और समूह NG(S)/CG(S) पर द्विभाजनों के समूह के रूप में संयुग्मन द्वारा कार्य करता है। टोरस T के साथ कॉम्पैक्ट लाइ समूह G के वेइल समूह को W(G,T) = NG(T)/CG(T) परिभाषित किया गया है , और विशेष रूप से यदि टोरस अधिक से अधिक है (अर्थात CG(T) = T) यह लाई समूहों के सिद्धांत में केंद्रीय उपकरण है।
- CG(CG(S)) में S होता है, किन्तु CG(S) में S सम्मिलित करने की आवश्यकता नहीं है। रोकथाम ठीक तब होती है जब S एबेलियन होता है।
- यदि H, G का उपसमूह है, तो NG(H) में H सम्मिलित है।
- यदि H, G का उपसमूह है, तो G का सबसे बड़ा उपसमूह जिसमें H सामान्य है, उपसमूह NG(H) है।
- यदि S, G का उपसमुच्चय है जैसे कि S के सभी अवयव एक दूसरे के साथ आवागमन करते हैं, तो G का सबसे बड़ा उपसमूह जिसके केंद्र में S उपसमूह CG(S) है।
- समूह G के उपसमूह H को G का स्व-सामान्यीकरण उपसमूह 'कहा जाता है। यदि NG(H) = H. है |
- G का केंद्र ठीक CG(G) है और G एबेलियन समूह है | यदि और केवल यदि CG(G) = Z(G) = G. होता है |
- सिंगलटन समुच्चय CG(a) = NG(a) के लिए |
- सममिति के अनुसार, यदि S और T, G के दो उपसमुच्चय हैं,तो T ⊆ CG(S) यदि और केवल यदि S ⊆ CG(T). है |
- समूह G के उपसमूह H के लिए, 'N/C प्रमेय' कहता है कि कारक समूह NG(H) / CG(H) ऑट (H) के उपसमूह के लिए समूह समरूपता है, H के ऑटोमोर्फिज़्म का समूह है | चूंकि NG(G) = G और CG(G) = Z(G), N/C प्रमेय का अर्थ यह भी है कि G/Z(G) Inn(G) के लिए आइसोमॉर्फिक है |, Aut(G) के उपसमूह में G के सभी आंतरिक ऑटोमोर्फिज्म सम्मिलित हैं।
- यदि हम समूह समरूपता T : G → Inn(G) को T(x)(g) = Tx(g) = xgx−1,द्वारा परिभाषित करते हैं तो हम समूह कार्रवाई (गणित) के संदर्भ में NG(S) और CG(S) का वर्णन कर सकते हैं | G पर इन (G) की संख्या : इन (G) में S का स्टेबलाइजर T (NG(S)) है और इन (G) का उपसमूह S बिंदुवार फिक्सिंग T (CG(S)) है।
- समूह G के उपसमूह H को 'C-बंद' या 'स्वयं-बायकोमुटेंट' कहा जाता है | यदि H = CG(S) कुछ सबसमुच्चय S ⊆ G.के लिए यदि ऐसा है, तो वास्तव में, H = CG(CG(H)).होता है |
एक क्षेत्र पर रिंग और बीजगणित
स्रोत:[4]
- एक क्षेत्र में रिंग और बीजगणित में केंद्रक क्षेत्र के ऊपर क्रमशः सबरिंग और सबलजेब्रस होते हैं; लाई रिंग्स और लाई बीजगणित में सेंट्रलाइज़र क्रमशः लाई सबरिंग्स और लाई सबलजेब्रस हैं।
- लाइ रिंग में S के नॉर्मलाइज़र में S का सेंट्रलाइज़र होता है।
- CR(CR(S)) में S सम्मिलित है किन्तु आवश्यक नहीं कि समान हो। डबल केंद्रीकरण प्रमेय उन स्थितियों से संबंधित है | जहाँ समानता होती है।
- यदि S एक लाई रिंग A का योगात्मक उपसमूह है, तो NA(S) A का सबसे बड़ा लाई उपसमूह है जिसमें S लाई आदर्श है।
- यदि S, लाइ रिंग A का लाइ सबरिंग है, तो S ⊆ NA(S). होता है |
यह भी देखें
- कम्यूटेटर
- डबल केंद्रक प्रमेय
- आइडियलाइज़र
- मल्टीप्लायर और सेंट्रलाइज़र (बैनाच स्पेस)
- स्टेबलाइजर उपसमूह
टिप्पणियाँ
- ↑ Kevin O'Meara; John Clark; Charles Vinsonhaler (2011). Advanced Topics in Linear Algebra: Weaving Matrix Problems Through the Weyr Form. Oxford University Press. p. 65. ISBN 978-0-19-979373-0.
- ↑ Karl Heinrich Hofmann; Sidney A. Morris (2007). The Lie Theory of Connected Pro-Lie Groups: A Structure Theory for Pro-Lie Algebras, Pro-Lie Groups, and Connected Locally Compact Groups. European Mathematical Society. p. 30. ISBN 978-3-03719-032-6.
- ↑ Jacobson (2009), p. 41
- ↑ 4.0 4.1 4.2 Jacobson 1979, p. 28.
- ↑ Jacobson 1979, p. 57.
- ↑ Isaacs 2009, Chapters 1−3.
संदर्भ
- Isaacs, I. Martin (2009), Algebra: a graduate course, Graduate Studies in Mathematics, vol. 100 (reprint of the 1994 original ed.), Providence, RI: American Mathematical Society, doi:10.1090/gsm/100, ISBN 978-0-8218-4799-2, MR 2472787
- Jacobson, Nathan (2009), Basic Algebra, vol. 1 (2 ed.), Dover Publications, ISBN 978-0-486-47189-1
- Jacobson, Nathan (1979), Lie Algebras (republication of the 1962 original ed.), Dover Publications, ISBN 0-486-63832-4, MR 0559927