बैकवर्ड यूलर विधि: Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|Numerical method for ordinary differential equations}} संख्यात्मक विश्लेषण और वैज्ञानिक क...")
 
No edit summary
 
(7 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{Short description|Numerical method for ordinary differential equations}}
{{Short description|Numerical method for ordinary differential equations}}
[[संख्यात्मक विश्लेषण]] और [[वैज्ञानिक कंप्यूटिंग]] में, बैकवर्ड [[यूलर विधि]] (या अंतर्निहित यूलर विधि) साधारण अंतर समीकरणों के लिए सबसे बुनियादी संख्यात्मक विधियों में से एक है। यह (मानक) यूलर विधि के समान है, लेकिन इसमें अंतर है कि यह एक स्पष्ट और निहित विधि है। बैकवर्ड यूलर विधि में समय में एक क्रम की त्रुटि है।
[[संख्यात्मक विश्लेषण]] और [[वैज्ञानिक कंप्यूटिंग]] में, बैकवर्ड [[यूलर विधि]] (या अंतर्निहित यूलर विधि) साधारण अंतर समीकरणों के लिए सबसे मूलभूत संख्यात्मक विधियों में से एक है। यह (मानक) यूलर विधि के समान है किंतु इसमें अंतर है कि यह एक स्पष्ट और निहित विधि है। बैकवर्ड यूलर विधि में समय में एक क्रम की त्रुटि है।


== विवरण ==
== विवरण ==


[[साधारण अंतर समीकरण]] पर विचार करें
[[साधारण अंतर समीकरण]] पर विचार करें
:<math> \frac{\mathrm{d} y}{\mathrm{d} t} = f(t,y) </math> प्रारंभिक मूल्य के साथ <math> y(t_0) = y_0. </math> यहाँ समारोह <math>f</math> और प्रारंभिक डेटा <math>t_0</math> और <math>y_0</math> ज्ञात हैं; कार्यक्रम <math>y</math> वास्तविक चर पर निर्भर करता है <math>t</math> और अज्ञात है। एक संख्यात्मक विधि एक अनुक्रम उत्पन्न करती है <math> y_0, y_1, y_2, \ldots </math> ऐसा है कि <math> y_k </math> अनुमानित <math> y(t_0+kh) </math>, कहाँ <math> h </math> चरण आकार कहा जाता है।
:<math> \frac{\mathrm{d} y}{\mathrm{d} t} = f(t,y) </math>  
:आरंभिक मान <math> y(t_0) = y_0. </math>के साथ यहाँ कार्य <math>f</math> और प्रारंभिक डेटा <math>t_0</math> और <math>y_0</math> ज्ञात हैं; कार्य <math>y</math> वास्तविक चर <math>t</math> पर निर्भर करता है और अज्ञात है। एक संख्यात्मक विधि एक अनुक्रम <math> y_0, y_1, y_2, \ldots </math> उत्पन्न करती है जैसे <math> y_k </math> , <math> y(t_0+kh) </math> का अनुमान लगाती है जहां <math> h </math> को चरण आकार कहा जाता है।


पिछड़े यूलर विधि का उपयोग करके सन्निकटन की गणना करता है
पिछड़े यूलर विधि का उपयोग करके सन्निकटन की गणना करता है
:<math> y_{k+1} = y_k + h f(t_{k+1}, y_{k+1}). </math> <ref>{{harvnb|Butcher|2003|p=57}}</ref>
:<math> y_{k+1} = y_k + h f(t_{k+1}, y_{k+1}). </math> <ref>{{harvnb|Butcher|2003|p=57}}</ref>
यह (आगे) यूलर विधि से अलग है जिसमें आगे की विधि का उपयोग किया जाता है <math> f(t_k, y_k) </math> की जगह <math>f(t_{k+1}, y_{k+1})</math>.
यह (फॉरवर्ड) यूलर विधि से भिन्न है जिसमें फॉरवर्ड विधि <math>f(t_{k+1}, y_{k+1})</math> के स्थान पर <math> f(t_k, y_k) </math> का उपयोग करती है।


बैकवर्ड यूलर विधि एक अंतर्निहित विधि है: नया सन्निकटन <math> y_{k+1} </math> समीकरण के दोनों ओर प्रकट होता है, और इस प्रकार विधि को अज्ञात के लिए एक बीजगणितीय समीकरण को हल करने की आवश्यकता होती है <math> y_{k+1} </math>. गैर-कठोर समीकरण समस्याओं के लिए, यह [[निश्चित-बिंदु पुनरावृत्ति]] के साथ किया जा सकता है:
बैकवर्ड यूलर विधि एक अंतर्निहित विधि है नया सन्निकटन <math> y_{k+1} </math> समीकरण के दोनों ओर प्रकट होता है, और इस प्रकार विधि को अज्ञात <math> y_{k+1} </math> के लिए एक बीजगणितीय समीकरण को हल करने की आवश्यकता होती है गैर-कठोर समीकरण समस्याओं के लिए यह [[निश्चित-बिंदु पुनरावृत्ति]] के साथ किया जा सकता है:
:<math> y_{k+1}^{[0]} = y_k, \quad y_{k+1}^{[i+1]} = y_k + h f(t_{k+1}, y_{k+1}^{[i]}). </math>
:<math> y_{k+1}^{[0]} = y_k, \quad y_{k+1}^{[i+1]} = y_k + h f(t_{k+1}, y_{k+1}^{[i]}). </math>
यदि यह अनुक्रम अभिसरित होता है (दिए गए सहिष्णुता के भीतर), तो विधि अपनी सीमा को नए सन्निकटन के रूप में लेती है
यदि यह अनुक्रम अभिसरित होता है (दिए गए सहिष्णुता के अंदर) तो विधि अपनी सीमा को नए सन्निकटन के रूप में लेती है
 
<math> y_{k+1} </math>.<ref>{{harvnb|Butcher|2003|p=57}}</ref>
<math> y_{k+1} </math>.<ref>{{harvnb|Butcher|2003|p=57}}</ref>
वैकल्पिक रूप से, बीजीय समीकरण को हल करने के लिए न्यूटन की विधि|न्यूटन-रैफसन विधि का (कुछ संशोधन) उपयोग किया जा सकता है।
 
वैकल्पिक रूप से बीजीय समीकरण को हल करने के लिए न्यूटन की विधि न्यूटन-रैफसन विधि का (कुछ संशोधन) उपयोग किया जा सकता है।


== व्युत्पत्ति ==
== व्युत्पत्ति ==


अंतर समीकरण का एकीकरण <math> \frac{\mathrm{d} y}{\mathrm{d} t} = f(t,y) </math> से <math> t_n </math> को <math> t_{n+1} = t_n + h </math> पैदावार
अंतर समीकरण का एकीकरण <math> \frac{\mathrm{d} y}{\mathrm{d} t} = f(t,y) </math> से <math> t_n </math> को <math> t_{n+1} = t_n + h </math> उत्पन्न
: <math> y(t_{n+1}) - y(t_n) = \int_{t_n}^{t_{n+1}} f(t, y(t)) \,\mathrm{d}t. </math>
: <math> y(t_{n+1}) - y(t_n) = \int_{t_n}^{t_{n+1}} f(t, y(t)) \,\mathrm{d}t. </math>
अब दाहिने हाथ की आयत विधि (एक आयत के साथ) द्वारा दाईं ओर अभिन्न अंग का अनुमान लगाएं:
अब दाहिने हाथ की आयत विधि (एक आयत के साथ) द्वारा दाईं ओर अभिन्न अंग का अनुमान लगाएं:
: <math> y(t_{n+1}) - y(t_n) \approx h f(t_{n+1}, y(t_{n+1})). </math>
: <math> y(t_{n+1}) - y(t_n) \approx h f(t_{n+1}, y(t_{n+1})). </math>
अंत में, इसका इस्तेमाल करें <math> y_n </math> अनुमानित माना जाता है <math> y(t_n) </math> और बैकवर्ड यूलर विधि का सूत्र इस प्रकार है।<ref>{{harvnb|Butcher|2003|p=57}}</ref>
अंत में, उपयोग करें कि <math> y_n </math> को <math> y(t_n) </math> का अनुमान लगाया जाता है और बैकवर्ड यूलर विधि के लिए सूत्र का पालन किया जाता है।<ref>{{harvnb|Butcher|2003|p=57}}</ref>
यदि दाएं हाथ के बजाय बाएं हाथ के आयत नियम का उपयोग किया जाता है तो यही तर्क (मानक) यूलर विधि की ओर ले जाता है।
 
यदि दाएं हाथ के अतिरिक्त बाएं हाथ के आयत नियम का उपयोग किया जाता है तो यही तर्क (मानक) यूलर विधि की ओर ले जाता है।


== विश्लेषण ==
== विश्लेषण ==


[[File:Stability region for BDF1.svg|thumb|डिस्क के बाहर का गुलाबी क्षेत्र बैकवर्ड यूलर विधि के स्थिरता क्षेत्र को दर्शाता है।]]बैकवर्ड यूलर विधि की स्थानीय ट्रंकेशन त्रुटि (एक चरण में की गई त्रुटि के रूप में परिभाषित) है <math> O(h^2) </math>, [[बिग ओ नोटेशन]] का उपयोग करना। एक विशिष्ट समय पर त्रुटि <math> t </math> है <math> O(h^2) </math>. इसका अर्थ है कि इस विधि का क्रम एक है। सामान्य तौर पर, एक विधि के साथ <math> O(h^{k+1}) </math> LTE (लोकल ट्रंकेशन एरर) को kth ऑर्डर का कहा जाता है।
[[File:Stability region for BDF1.svg|thumb|डिस्क के बाहर का गुलाबी क्षेत्र बैकवर्ड यूलर विधि के स्थिरता क्षेत्र को दर्शाता है।]]बैकवर्ड यूलर विधि की स्थानीय ट्रंकेशन त्रुटि (एक चरण में की गई त्रुटि के रूप में परिभाषित) <math> O(h^2) </math> है [[बिग ओ नोटेशन]] का उपयोग करना एक विशिष्ट समय <math> t </math> पर त्रुटि <math> O(h^2) </math> है इसका अर्थ है कि इस विधि का क्रम एक है। सामान्यतः, <math> O(h^{k+1}) </math> एक विधि के साथ एलटीई (लोकल कदाचार त्रुटि ) को kवे क्रम का कहा जाता है।


पिछड़े यूलर विधि के लिए Stiff_equation#Runge%E2%80%93Kutta_methods 1 पर केंद्रित त्रिज्या 1 के साथ डिस्क के जटिल तल में पूरक है, जिसे चित्र में दर्शाया गया है।<ref>{{harvnb|Butcher|2003|p=70}}</ref> इसमें जटिल तल का पूरा बायां आधा भाग शामिल है, जो इसे कठोर समीकरणों के समाधान के लिए उपयुक्त बनाता है।<ref>{{harvnb|Butcher|2003|p=71}}</ref> वास्तव में, बैकवर्ड यूलर विधि [[L-stability]]|L-stable भी है।
बैकवर्ड यूलर विधि के लिए पूर्ण स्थिरता का क्षेत्र डिस्क के जटिल तल में पूरक है, जिसकी त्रिज्या 1 1 पर केंद्रित है, जिसे चित्र में दर्शाया गया है।<ref>{{harvnb|Butcher|2003|p=70}}</ref> इसमें जटिल तल का पूरा बायां आधा भाग सम्मिलित है, जो इसे कठोर समीकरणों के समाधान के लिए उपयुक्त बनाता है। वास्तव में बैकवर्ड यूलर विधि [[L-stability|एल-स्थिर]] भी है।<ref>{{harvnb|Butcher|2003|p=71}}</ref>


बैकवर्ड यूलर विधि द्वारा असतत स्थिर प्रणाली के लिए क्षेत्र त्रिज्या 0.5 वाला एक चक्र है जो जेड-प्लेन में (0.5, 0) पर स्थित है।<ref>Wai-Kai Chen, Ed., Analog and VLSI Circuits The Circuits and Filters Handbook, 3rd ed. Chicago, USA: CRC Press, 2009.</ref>
बैकवर्ड यूलर विधि द्वारा असतत स्थिर प्रणाली के लिए क्षेत्र त्रिज्या 0.5 वाला एक चक्र है जो जेड-प्लेन में (0.5, 0) पर स्थित है।<ref>Wai-Kai Chen, Ed., Analog and VLSI Circuits The Circuits and Filters Handbook, 3rd ed. Chicago, USA: CRC Press, 2009.</ref>




== एक्सटेंशन और संशोधन ==
== विस्तार और संशोधन ==


बैकवर्ड यूलर विधि (फॉरवर्ड) यूलर विधि का एक प्रकार है। अन्य संस्करण अर्ध-अंतर्निहित यूलर विधि और [[घातीय यूलर विधि]] हैं।
बैकवर्ड यूलर विधि (फॉरवर्ड) यूलर विधि का एक प्रकार है। अन्य संस्करण अर्ध-अंतर्निहित यूलर विधि और [[घातीय यूलर विधि]] हैं।


बैकवर्ड यूलर विधि को बुचर झांकी द्वारा वर्णित एक चरण के साथ रनगे-कुट्टा विधि के रूप में देखा जा सकता है:
बैकवर्ड यूलर विधि को बुचर दृश्य द्वारा वर्णित एक चरण के साथ रनगे-कुट्टा विधि के रूप में देखा जा सकता है:
:<math>
:<math>
\begin{array}{c|c}
\begin{array}{c|c}
Line 47: Line 51:
\end{array}
\end{array}
</math>
</math>
विधि को एक चरण के साथ एक रेखीय मल्टीस्टेप विधि के रूप में भी देखा जा सकता है। यह एडम्स-मौल्टन विधियों के परिवार की पहली विधि है, और पिछड़े भेदभाव के फार्मूले के परिवार की भी है।
विधि को एक चरण के साथ एक रेखीय बहु - चरण विधि के रूप में भी देखा जा सकता है। यह एडम्स-मौल्टन विधियों के वर्ग की पहली विधि है, और पिछड़े भेदभाव के सूत्र के वर्ग की भी है।
 
== यह भी देखें                         ==
== यह भी देखें ==
*क्रैंक-निकोलसन विधि
*क्रैंक-निकोलसन विधि


Line 60: Line 63:


{{Numerical integrators}}
{{Numerical integrators}}
[[Category: संख्यात्मक अंतर समीकरण]] [[Category: रंगे–कुत्ता मेथड्स]]


[[Category: Machine Translated Page]]
[[Category:Collapse templates]]
[[Category:Created On 02/05/2023]]
[[Category:Created On 02/05/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages with script errors]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates generating microformats]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that are not mobile friendly]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:Wikipedia metatemplates]]
[[Category:रंगे–कुत्ता मेथड्स]]
[[Category:संख्यात्मक अंतर समीकरण]]

Latest revision as of 16:27, 24 May 2023

संख्यात्मक विश्लेषण और वैज्ञानिक कंप्यूटिंग में, बैकवर्ड यूलर विधि (या अंतर्निहित यूलर विधि) साधारण अंतर समीकरणों के लिए सबसे मूलभूत संख्यात्मक विधियों में से एक है। यह (मानक) यूलर विधि के समान है किंतु इसमें अंतर है कि यह एक स्पष्ट और निहित विधि है। बैकवर्ड यूलर विधि में समय में एक क्रम की त्रुटि है।

विवरण

साधारण अंतर समीकरण पर विचार करें

आरंभिक मान के साथ यहाँ कार्य और प्रारंभिक डेटा और ज्ञात हैं; कार्य वास्तविक चर पर निर्भर करता है और अज्ञात है। एक संख्यात्मक विधि एक अनुक्रम उत्पन्न करती है जैसे , का अनुमान लगाती है जहां को चरण आकार कहा जाता है।

पिछड़े यूलर विधि का उपयोग करके सन्निकटन की गणना करता है

[1]

यह (फॉरवर्ड) यूलर विधि से भिन्न है जिसमें फॉरवर्ड विधि के स्थान पर का उपयोग करती है।

बैकवर्ड यूलर विधि एक अंतर्निहित विधि है नया सन्निकटन समीकरण के दोनों ओर प्रकट होता है, और इस प्रकार विधि को अज्ञात के लिए एक बीजगणितीय समीकरण को हल करने की आवश्यकता होती है गैर-कठोर समीकरण समस्याओं के लिए यह निश्चित-बिंदु पुनरावृत्ति के साथ किया जा सकता है:

यदि यह अनुक्रम अभिसरित होता है (दिए गए सहिष्णुता के अंदर) तो विधि अपनी सीमा को नए सन्निकटन के रूप में लेती है

.[2]

वैकल्पिक रूप से बीजीय समीकरण को हल करने के लिए न्यूटन की विधि न्यूटन-रैफसन विधि का (कुछ संशोधन) उपयोग किया जा सकता है।

व्युत्पत्ति

अंतर समीकरण का एकीकरण से को उत्पन्न

अब दाहिने हाथ की आयत विधि (एक आयत के साथ) द्वारा दाईं ओर अभिन्न अंग का अनुमान लगाएं:

अंत में, उपयोग करें कि को का अनुमान लगाया जाता है और बैकवर्ड यूलर विधि के लिए सूत्र का पालन किया जाता है।[3]

यदि दाएं हाथ के अतिरिक्त बाएं हाथ के आयत नियम का उपयोग किया जाता है तो यही तर्क (मानक) यूलर विधि की ओर ले जाता है।

विश्लेषण

डिस्क के बाहर का गुलाबी क्षेत्र बैकवर्ड यूलर विधि के स्थिरता क्षेत्र को दर्शाता है।

बैकवर्ड यूलर विधि की स्थानीय ट्रंकेशन त्रुटि (एक चरण में की गई त्रुटि के रूप में परिभाषित) है बिग ओ नोटेशन का उपयोग करना एक विशिष्ट समय पर त्रुटि है इसका अर्थ है कि इस विधि का क्रम एक है। सामान्यतः, एक विधि के साथ एलटीई (लोकल कदाचार त्रुटि ) को kवे क्रम का कहा जाता है।

बैकवर्ड यूलर विधि के लिए पूर्ण स्थिरता का क्षेत्र डिस्क के जटिल तल में पूरक है, जिसकी त्रिज्या 1 1 पर केंद्रित है, जिसे चित्र में दर्शाया गया है।[4] इसमें जटिल तल का पूरा बायां आधा भाग सम्मिलित है, जो इसे कठोर समीकरणों के समाधान के लिए उपयुक्त बनाता है। वास्तव में बैकवर्ड यूलर विधि एल-स्थिर भी है।[5]

बैकवर्ड यूलर विधि द्वारा असतत स्थिर प्रणाली के लिए क्षेत्र त्रिज्या 0.5 वाला एक चक्र है जो जेड-प्लेन में (0.5, 0) पर स्थित है।[6]


विस्तार और संशोधन

बैकवर्ड यूलर विधि (फॉरवर्ड) यूलर विधि का एक प्रकार है। अन्य संस्करण अर्ध-अंतर्निहित यूलर विधि और घातीय यूलर विधि हैं।

बैकवर्ड यूलर विधि को बुचर दृश्य द्वारा वर्णित एक चरण के साथ रनगे-कुट्टा विधि के रूप में देखा जा सकता है:

विधि को एक चरण के साथ एक रेखीय बहु - चरण विधि के रूप में भी देखा जा सकता है। यह एडम्स-मौल्टन विधियों के वर्ग की पहली विधि है, और पिछड़े भेदभाव के सूत्र के वर्ग की भी है।

यह भी देखें

  • क्रैंक-निकोलसन विधि

टिप्पणियाँ

  1. Butcher 2003, p. 57
  2. Butcher 2003, p. 57
  3. Butcher 2003, p. 57
  4. Butcher 2003, p. 70
  5. Butcher 2003, p. 71
  6. Wai-Kai Chen, Ed., Analog and VLSI Circuits The Circuits and Filters Handbook, 3rd ed. Chicago, USA: CRC Press, 2009.


संदर्भ

  • Butcher, John C. (2003), Numerical Methods for Ordinary Differential Equations, New York: John Wiley & Sons, ISBN 978-0-471-96758-3.