स्कॉट-टी ट्रांसफार्मर: Difference between revisions

From Vigyanwiki
(Created page with "{{short description|Type of electrical circuit}} एक स्कॉट-टी ट्रांसफार्मर (जिसे स्कॉट कनेक्शन भी...")
 
No edit summary
 
(5 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{short description|Type of electrical circuit}}
{{short description|Type of electrical circuit}}


एक स्कॉट-टी ट्रांसफार्मर (जिसे स्कॉट कनेक्शन भी कहा जाता है) एक प्रकार का सर्किट है जिसका उपयोग दो-चरण विद्युत शक्ति (2 φ, 90 डिग्री चरण रोटेशन) का उत्पादन करने के लिए किया जाता है।<ref name=GET-2485T>{{cite book |title=Distribution Transformer Manual, GET-2485T |year=1996 |publisher=General Electric Company |location=Hickory, NC |page=64}}</ref> तीन-चरण (3 φ, 120 डिग्री चरण रोटेशन) स्रोत से, या इसके विपरीत। स्कॉट कनेक्शन समान रूप से स्रोत के चरणों के बीच एक संतुलित भार वितरित करता है। स्कॉट तीन-चरण [[ट्रांसफार्मर]] का आविष्कार [[वेस्टिंगहाउस इलेक्ट्रिक (1886)]] के इंजीनियर चार्ल्स एफ स्कॉट (इंजीनियर) द्वारा किया गया था। तीन चरण मोटर्स।<ref name=Passer>{{cite book |author=Passer, Harold C. |title=The Electrical Manufacturers, 1875-1900 |publisher=Harvard |year=1953 |page=315}}</ref>
'''स्कॉट-ट्रांसफॉर्मर''' (जिसे स्कॉट कनेक्शन भी कहा जाता है) एक प्रकार का सर्किट होता है जो तीन-चरण (3 φ, 120 डिग्री चरण परिवर्तन) स्रोत से दो-चरणीय (2 φ, 90 डिग्री चरण परिवर्तन) विद्युत शक्ति उत्पन्न करने के लिए या उल्टा उपयोग होता है।<ref name=GET-2485T>{{cite book |title=Distribution Transformer Manual, GET-2485T |year=1996 |publisher=General Electric Company |location=Hickory, NC |page=64}}</ref> स्कॉट कनेक्शन समान रूप से स्रोत के चरणों के बीच एक संतुलित भार वितरित करता है। स्कॉट थ्री-फेज [[ट्रांसफार्मर]] का आविष्कार वेस्टिंगहाउस इंजीनियर चार्ल्स एफ. स्कॉट द्वारा 1890 के अंत में थॉमस एडिसन के अधिक महंगे रोटरी कन्वर्टर को बायपास करने के लिए किया गया था और इस प्रकार थ्री-फेज मोटर्स को चलाने के लिए दो-फेज जनरेटर संयंत्रों को अनुमति दी गई थी।<ref name=Passer>{{cite book |author=Passer, Harold C. |title=The Electrical Manufacturers, 1875-1900 |publisher=Harvard |year=1953 |page=315}}</ref>
 
 
== इंटरकनेक्शन ==
== इंटरकनेक्शन ==
आविष्कार के समय, दो-चरण मोटर भार भी मौजूद थे और स्कॉट कनेक्शन ने उन्हें तीन चरणों के बराबर धाराओं के साथ नए तीन-चरण की आपूर्ति से जोड़ने की अनुमति दी थी।<ref name="All About Circuits">{{cite web |url=http://www.allaboutcircuits.com/vol_2/chpt_9/7.html |title=सभी सर्किट के बारे में|access-date=2014-08-04}}</ref> यह समान वोल्टेज ड्रॉप प्राप्त करने के लिए मूल्यवान था और इस प्रकार विद्युत जनरेटर से संभव वोल्टेज विनियमन (चरणों को तीन-चरण मशीन में अलग-अलग नहीं किया जा सकता है)। [[निकोला टेस्ला]] की मूल पॉलीपेज़ प्रणाली सरल-से-निर्मित दो-चरण चार-तार घटकों पर आधारित थी। हालाँकि, जैसे-जैसे संचरण दूरी बढ़ती गई, अधिक संचरण-लाइन कुशल तीन-चरण प्रणाली अधिक सामान्य होती गई। (तीन चरण की शक्ति को केवल तीन तारों से प्रेषित किया जा सकता है, जहां दो-चरण बिजली प्रणालियों को चार तारों की आवश्यकता होती है, प्रति चरण दो।) दोनों 2 φ और 3 φ घटक कई वर्षों तक सह-अस्तित्व में रहे और स्कॉट-टी ट्रांसफार्मर कनेक्शन ने उन्हें अनुमति दी आपस में जुड़ा होना।
आविष्कार के समय पर, दो-चरणीय मोटर भार भी सम्मलित थे और स्कॉट कनेक्शन उन्हें नई त्रि-चरणीय आपूर्ति से जोड़ने की अनुमति देता था जिसमें तीनों चरणों पर समान धारा होती थी।<ref name="All About Circuits">{{cite web |url=http://www.allaboutcircuits.com/vol_2/chpt_9/7.html |title=सभी सर्किट के बारे में|access-date=2014-08-04}}</ref> यह वोल्टेज में समान गिरावट और इस प्रकार बिजली जेनरेटर से वोल्टेज का संभालन संभव होने के लिए महत्वपूर्ण था (तीन चरणों को एकत्र नहीं बदला जा सकता है एक त्रि-चरणीय मशीन में)। निकोला टेस्ला का मूल पॉलीफेज पावर सिस्टम सरलता से निर्मित दो-चरणीय चार-तार संघटकों पर आधारित था। चूंकि, संचार दूरियों के बढ़ने के साथ, त्रि-चरणीय प्रणाली, जो अधिक संचार-रेखा प्रभावी होती है, आम हो गई। (तीन चरणों की शक्ति केवल तीन तारों के साथ ही अंतर्गत की जा सकती है, चूँकि दो-चरणीय शक्ति प्रणालियों के लिए चार तार आवश्यक थे, प्रति चरण दो-दो तार।) दोनों 2 φ और 3 φ घटकों ने कई वर्षों तक समवर्ती रूप से संगठित रहे और स्कॉट-टी ट्रांसफॉर्मर कनेक्शन उन्हें आपस में जोड़ने की अनुमति दी है।


== तकनीकी विवरण ==
== तकनीकी विवरण ==
[[File:Scott-T.JPG|thumb|400px|मानक स्कॉट कनेक्शन 3 φ से 2 φ]]वांछित वोल्टेज मानते हुए दो और तीन चरण पक्षों पर समान है, स्कॉट-टी ट्रांसफॉर्मर कनेक्शन (दाएं दिखाया गया है) में केंद्र-टैप 1: 1 अनुपात मुख्य ट्रांसफॉर्मर, टी 1, और एक होता है {{radic|3}}/2(≈86.6%) अनुपात टीज़र ट्रांसफार्मर, T2. T1 का केंद्र-टैप किया गया पक्ष तीन-चरण की ओर दो चरणों के बीच जुड़ा हुआ है। इसका केंद्र नल तब T2 के निचले मोड़ की गिनती के एक छोर से जुड़ता है, दूसरा छोर शेष चरण से जुड़ता है। ट्रांसफॉर्मर के दूसरी तरफ दो चरण के चार-तार प्रणाली के दो जोड़े से सीधे जुड़ते हैं।
[[File:Scott-T.JPG|thumb|400px|स्टैंडर्ड स्कॉट कनेक्शन (Scott Connection) त्रि-चरणीय (3 φ) से दो-चरणीय (2 φ) के लिए।]]यदि दोनों और त्रि-चरणीय ओरों पर यही वांछित वोल्टेज हो, तो स्कॉट-ट्रांसफॉर्मर कनेक्शन (दाहिने ओर दिखाया गया है) में एक केंद्र-टैपड़ 1:1 अनुपात का मुख्य ट्रांसफॉर्मर, T1, और √3/2 (अधिकतर 86.6%) अनुपात का टीजर ट्रांसफॉर्मर, T2, सम्मलित होता है। T1 के केंद्र-टैपड़ साइड को त्रि-चरणीय ओर के दो चरणों के बीच कनेक्ट किया जाता है। फिर इसका केंद्र-टैपड़ बांध T2 के कम टर्न संख्या वाली साइड के एक सिरे से जुड़ता है, और दूसरे सिरे को बाकी चरण से जोड़ा जाता है। ट्रांसफॉर्मरों की दूसरी साइड फिर सीधे दो-चरण चार-तार तंत्र प्रणाली के दो जोड़ों से जुड़ती है।


=== असंतुलित भार ===
=== असंतुलित भार ===
दो-चरण मोटरें निरंतर शक्ति खींचती हैं, ठीक वैसे ही जैसे तीन-चरण की मोटरें करती हैं, इसलिए संतुलित दो-चरण भार को संतुलित तीन-चरण भार में परिवर्तित किया जाता है। हालाँकि यदि दो-चरण का भार संतुलित नहीं है (एक चरण से दूसरे की तुलना में अधिक शक्ति), ट्रांसफार्मर की कोई व्यवस्था (स्कॉट-टी ट्रांसफार्मर सहित) संतुलन बहाल नहीं कर सकती है: दो-चरण की ओर असंतुलित धारा असंतुलित धारा का कारण बनती है तीन चरण पक्ष। चूंकि ठेठ दो-चरण भार एक मोटर था, स्कॉट-टी विकास के दौरान दो चरणों में वर्तमान को स्वाभाविक रूप से बराबर माना गया था।
दो-चरणीय मोटर स्थिर शक्ति उत्पन्न करते हैं, ठीक वैसे ही जैसे त्रि-चरणीय मोटर करते हैं, इसलिए एक संतुलित दो-चरणीय भार को संतुलित त्रि-चरणीय भार में परिवर्तित किया जाता है। चूंकि, यदि एक दो-चरणीय भार संतुलित नहीं है (एक चरण से दूसरे चरण से अधिक शक्ति खींची जाती है), तो कोई भी ट्रांसफॉर्मर की व्यवस्था (स्कॉट-ट्रांसफॉर्मर सहित) संतुलन को पुनर्स्थापित नहीं कर सकती है: दो-चरणीय ओर संतुलित धारा त्रि-चरणीय ओर संतुलित धारा का कारण बनती है। क्योंकि प्राथमिकतापूर्वक दो-चरणीय भार मोटर था, स्कॉट-टी विकास के समय दोनों चरणों में धारा स्वतः ही समान मानी जाती थी।
 
आधुनिक समय में लोगों ने स्कॉट कनेक्शन को तीन-चरण उपयोगिता आपूर्ति से एकल-चरण विद्युत शक्ति | एकल-चरण [[रेलवे विद्युतीकरण प्रणाली]] को बिजली देने के तरीके के रूप में पुनर्जीवित करने का प्रयास किया है। इससे तीन चरणों के बराबर होने पर संतुलित करंट नहीं लगेगा। दो खंडों पर लदान में तात्कालिक अंतर को तीन चरण की आपूर्ति में असंतुलन के रूप में देखा जाएगा; ट्रांसफॉर्मर से इसे सुचारू करने का कोई तरीका नहीं है।<ref name=AIEE>{{cite journal |journal=AIEE Transactions |date=Jan 1957 |pages=432–445 |author=General Electric |title=(unknown)}} The cited article is a GE paper which points out that railway unbalance, even via Scott-T transformers, affects generators, the motors of other customers and presumably delta connected transformers. Even small unbalances can cause heating. However, because electric systems have grown larger over the 20th&nbsp;century, the paper suggests that the railways are now a tolerable load, provided one has a confirming system analysis. Scott-T transformers may not even be relevant, since direct line-to-line load connections may be sufficient. So this leaves a potential solution, but the single-phase load should then be viewed as being ''tolerated'', not ''balanced''. Allowing it also raises the question: "What if other customers asked for the same toleration?"</ref>
 


आधुनिक समय में लोगों ने स्कॉट कनेक्शन को तीन-चरण उपयोगिता आपूर्ति से एकल-चरण विद्युत शक्ति [[रेलवे विद्युतीकरण प्रणाली]] को बिजली देने के विधि के रूप में पुनर्जीवित करने का प्रयास किया है। इससे त्रि-चरण के तीनों चरणों पर संतुलित धारा होने की संभावना नहीं होगी। दो खंडों पर भार के प्रतीक्षात्मक अंतर को त्रि-चरण आपूर्ति में असंतुलन के रूप में देखा जाएगा; इसे ट्रांसफॉर्मरों के साथ समतल नहीं किया जा सकता है।<ref name=AIEE>{{cite journal |journal=AIEE Transactions |date=Jan 1957 |pages=432–445 |author=General Electric |title=(unknown)}} The cited article is a GE paper which points out that railway unbalance, even via Scott-T transformers, affects generators, the motors of other customers and presumably delta connected transformers. Even small unbalances can cause heating. However, because electric systems have grown larger over the 20th&nbsp;century, the paper suggests that the railways are now a tolerable load, provided one has a confirming system analysis. Scott-T transformers may not even be relevant, since direct line-to-line load connections may be sufficient. So this leaves a potential solution, but the single-phase load should then be viewed as being ''tolerated'', not ''balanced''. Allowing it also raises the question: "What if other customers asked for the same toleration?"</ref>
===बैक टू बैक व्यवस्था===
===बैक टू बैक व्यवस्था===
[[File:Scott t 3 phase.png|thumb|400px|स्कॉट कनेक्शन 3 φ से 3 φ]]स्कॉट-टी ट्रांसफार्मर कनेक्शन का उपयोग तीन-चरण से तीन-चरण कनेक्शन के लिए बैक-टू-बैक टी-टू-टी व्यवस्था में भी किया जा सकता है। पारंपरिक थ्री-कॉइल प्राइमरी से थ्री-कॉइल सेकेंडरी ट्रांसफॉर्मर के बजाय सेकेंडरी टू-कॉइल टी से जुड़े टू-कॉइल टी के कारण लो-पावर ट्रांसफॉर्मर में यह लागत-बचत है। इस व्यवस्था में X0 न्यूट्रल टैप सेकेंडरी टीज़र ट्रांसफॉर्मर (दाईं ओर देखें) पर आंशिक रूप से ऊपर है। पारंपरिक तीन-कुंडली प्राथमिक से तीन-कुंडल माध्यमिक ट्रांसफार्मर की तुलना में इस टी-टू-टी व्यवस्था की वोल्टेज स्थिरता पर सवाल उठाया गया है, क्योंकि दो वाइंडिंग्स (प्राथमिक और माध्यमिक, क्रमशः) की प्रति इकाई प्रतिबाधा समान नहीं है एक टी-टू-टी कॉन्फ़िगरेशन, जबकि तीन ट्रांसफॉर्मर कॉन्फ़िगरेशन में तीन वाइंडिंग (प्राथमिक और माध्यमिक, क्रमशः) समान हैं, यदि तीन ट्रांसफार्मर समान हैं।
[[File:Scott t 3 phase.png|thumb|400px|स्कॉट कनेक्शन (Scott Connection) त्रि-चरणीय (3 φ) से त्रि-चरणीय (3 φ) के लिए।]]स्कॉट-ट्रांसफॉर्मर कनेक्शन को एक त्रि-चरण से त्रि-चरण कनेक्शन के लिए बैक-टू-बैक टी-टू-टी व्यवस्था में भी उपयोग किया जा सकता है। यह निम्न शक्ति ट्रांसफॉर्मरों में लागत की बचत करने का एक प्रणाली है क्योंकि इसमें दो कॉइल वाला टी, सेकेंडरी में दो कॉइल वाले टी के साथ जुड़ता है, चूँकि पारंपरिक तीन कॉइल प्राथमिक तीन कॉइल सेकेंडरी ट्रांसफॉर्मर में होता है। इस व्यवस्था में X0 न्यूट्रल टैप सेकेंडरी टीजर ट्रांसफॉर्मर पर ऊपरी भाग में होता है (दाहिने ओर देखें)। इस T-to-T व्यवस्था की समानता में पारंपरिक तीन कॉइल प्राथमिक तीन कॉइल सेकेंडरी ट्रांसफॉर्मर की वोल्टेज स्थिरता पर सवाल उठाया जाता है, क्योंकि एक टी-टू-टी कॉन्फ़िगरेशन में दो कॉइलों (प्राथमिक और सेकेंडरी, क्रमशः) की "पर यूनिट" प्रतिरोधकता एक समान नहीं होती है, चूँकि तीन ट्रांसफॉर्मर कॉन्फ़िगरेशन में तीन वाइंडिंग (प्राथमिक और द्वितीयक, क्रमशः) समान हैं, यदि तीन ट्रांसफार्मर समान हैं।


तीन-चरण से तीन-चरण (जिसे टी-कनेक्टेड भी कहा जाता है) वितरण ट्रांसफार्मर बढ़ते अनुप्रयोगों को देख रहे हैं। प्राथमिक [[डेल्टा (पत्र)]]अक्षर) -कनेक्टेड (Δ) होना चाहिए, लेकिन ग्राहक के विकल्प पर माध्यमिक या तो डेल्टा या वाई-कनेक्टेड (वाई (अक्षर)) हो सकता है, जिसमें एक्स0 वाईई मामले के लिए तटस्थ प्रदान करता है। किसी भी मामले के लिए नल आमतौर पर प्रदान किए जाते हैं। ऐसे वितरण ट्रांसफार्मर की प्रथागत अधिकतम क्षमता 333 kVA (Power_factor#Lagging,_leading_and_unity_power_factors) पर एक मेगावाट का एक तिहाई है।{{Citation needed|date=June 2019}}
त्रि-चरण से त्रि-चरण (जिसे "टी-कनेक्टेड" भी कहा जाता है) वितरण ट्रांसफॉर्मर की दृष्टि से बढ़ती हुई अनुप्रयोगों को देखा जा रहा है। प्राथमिक [[डेल्टा (पत्र)|डेल्टा]] कनेक्टेड (Δ) होनी चाहिए, लेकिन सेकेंडरी ग्राहक के विकल्प पर त्रिकोणीय या "वाई"-कनेक्टेड (Y) हो सकता है, जहां X0 "वाई" केस के लिए न्यूट्रल प्रदान करता है। इन दोनों केस के लिए टैप्स सामान्यतः प्रदान किए जाते हैं। ऐसे वितरण ट्रांसफॉर्मर की सामान्यतया अधिकतम क्षमता 333 किलोवॉल्ट-एम्पीयर (एक मेगावॉट का तृतीयांश एकाग्र शक्तिकारी पर) होती है।{{Citation needed|date=June 2019}}


== यह भी देखें ==
== यह भी देखें ==
Line 30: Line 26:
{{Reflist}}
{{Reflist}}


{{Electric transformers}}
{{DEFAULTSORT:Scott-T Transformer}}
 
{{DEFAULTSORT:Scott-T Transformer}}[[Category: बिजली के ट्रांसफार्मर]] [[Category: एसी पावर]]




[[fr:Transformateur électrique#Transformateur diphasé-triphasé]]
[[fr:Transformateur électrique#Transformateur diphasé-triphasé]]


 
[[Category:All articles with unsourced statements|Scott-T Transformer]]
 
[[Category:Articles with unsourced statements from June 2019|Scott-T Transformer]]
[[Category: Machine Translated Page]]
[[Category:CS1 errors]]
[[Category:Created On 02/05/2023]]
[[Category:Collapse templates|Scott-T Transformer]]
[[Category:Created On 02/05/2023|Scott-T Transformer]]
[[Category:Lua-based templates|Scott-T Transformer]]
[[Category:Machine Translated Page|Scott-T Transformer]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists|Scott-T Transformer]]
[[Category:Pages with script errors|Scott-T Transformer]]
[[Category:Sidebars with styles needing conversion|Scott-T Transformer]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Vigyan Ready|Scott-T Transformer]]
[[Category:Templates generating microformats|Scott-T Transformer]]
[[Category:Templates that add a tracking category|Scott-T Transformer]]
[[Category:Templates that are not mobile friendly|Scott-T Transformer]]
[[Category:Templates that generate short descriptions|Scott-T Transformer]]
[[Category:Templates using TemplateData|Scott-T Transformer]]
[[Category:Wikipedia metatemplates|Scott-T Transformer]]
[[Category:एसी पावर|Scott-T Transformer]]
[[Category:बिजली के ट्रांसफार्मर|Scott-T Transformer]]

Latest revision as of 15:52, 26 October 2023

स्कॉट-ट्रांसफॉर्मर (जिसे स्कॉट कनेक्शन भी कहा जाता है) एक प्रकार का सर्किट होता है जो तीन-चरण (3 φ, 120 डिग्री चरण परिवर्तन) स्रोत से दो-चरणीय (2 φ, 90 डिग्री चरण परिवर्तन) विद्युत शक्ति उत्पन्न करने के लिए या उल्टा उपयोग होता है।[1] स्कॉट कनेक्शन समान रूप से स्रोत के चरणों के बीच एक संतुलित भार वितरित करता है। स्कॉट थ्री-फेज ट्रांसफार्मर का आविष्कार वेस्टिंगहाउस इंजीनियर चार्ल्स एफ. स्कॉट द्वारा 1890 के अंत में थॉमस एडिसन के अधिक महंगे रोटरी कन्वर्टर को बायपास करने के लिए किया गया था और इस प्रकार थ्री-फेज मोटर्स को चलाने के लिए दो-फेज जनरेटर संयंत्रों को अनुमति दी गई थी।[2]

इंटरकनेक्शन

आविष्कार के समय पर, दो-चरणीय मोटर भार भी सम्मलित थे और स्कॉट कनेक्शन उन्हें नई त्रि-चरणीय आपूर्ति से जोड़ने की अनुमति देता था जिसमें तीनों चरणों पर समान धारा होती थी।[3] यह वोल्टेज में समान गिरावट और इस प्रकार बिजली जेनरेटर से वोल्टेज का संभालन संभव होने के लिए महत्वपूर्ण था (तीन चरणों को एकत्र नहीं बदला जा सकता है एक त्रि-चरणीय मशीन में)। निकोला टेस्ला का मूल पॉलीफेज पावर सिस्टम सरलता से निर्मित दो-चरणीय चार-तार संघटकों पर आधारित था। चूंकि, संचार दूरियों के बढ़ने के साथ, त्रि-चरणीय प्रणाली, जो अधिक संचार-रेखा प्रभावी होती है, आम हो गई। (तीन चरणों की शक्ति केवल तीन तारों के साथ ही अंतर्गत की जा सकती है, चूँकि दो-चरणीय शक्ति प्रणालियों के लिए चार तार आवश्यक थे, प्रति चरण दो-दो तार।) दोनों 2 φ और 3 φ घटकों ने कई वर्षों तक समवर्ती रूप से संगठित रहे और स्कॉट-टी ट्रांसफॉर्मर कनेक्शन उन्हें आपस में जोड़ने की अनुमति दी है।

तकनीकी विवरण

स्टैंडर्ड स्कॉट कनेक्शन (Scott Connection) त्रि-चरणीय (3 φ) से दो-चरणीय (2 φ) के लिए।

यदि दोनों और त्रि-चरणीय ओरों पर यही वांछित वोल्टेज हो, तो स्कॉट-ट्रांसफॉर्मर कनेक्शन (दाहिने ओर दिखाया गया है) में एक केंद्र-टैपड़ 1:1 अनुपात का मुख्य ट्रांसफॉर्मर, T1, और √3/2 (अधिकतर 86.6%) अनुपात का टीजर ट्रांसफॉर्मर, T2, सम्मलित होता है। T1 के केंद्र-टैपड़ साइड को त्रि-चरणीय ओर के दो चरणों के बीच कनेक्ट किया जाता है। फिर इसका केंद्र-टैपड़ बांध T2 के कम टर्न संख्या वाली साइड के एक सिरे से जुड़ता है, और दूसरे सिरे को बाकी चरण से जोड़ा जाता है। ट्रांसफॉर्मरों की दूसरी साइड फिर सीधे दो-चरण चार-तार तंत्र प्रणाली के दो जोड़ों से जुड़ती है।

असंतुलित भार

दो-चरणीय मोटर स्थिर शक्ति उत्पन्न करते हैं, ठीक वैसे ही जैसे त्रि-चरणीय मोटर करते हैं, इसलिए एक संतुलित दो-चरणीय भार को संतुलित त्रि-चरणीय भार में परिवर्तित किया जाता है। चूंकि, यदि एक दो-चरणीय भार संतुलित नहीं है (एक चरण से दूसरे चरण से अधिक शक्ति खींची जाती है), तो कोई भी ट्रांसफॉर्मर की व्यवस्था (स्कॉट-ट्रांसफॉर्मर सहित) संतुलन को पुनर्स्थापित नहीं कर सकती है: दो-चरणीय ओर संतुलित धारा त्रि-चरणीय ओर संतुलित धारा का कारण बनती है। क्योंकि प्राथमिकतापूर्वक दो-चरणीय भार मोटर था, स्कॉट-टी विकास के समय दोनों चरणों में धारा स्वतः ही समान मानी जाती थी।

आधुनिक समय में लोगों ने स्कॉट कनेक्शन को तीन-चरण उपयोगिता आपूर्ति से एकल-चरण विद्युत शक्ति रेलवे विद्युतीकरण प्रणाली को बिजली देने के विधि के रूप में पुनर्जीवित करने का प्रयास किया है। इससे त्रि-चरण के तीनों चरणों पर संतुलित धारा होने की संभावना नहीं होगी। दो खंडों पर भार के प्रतीक्षात्मक अंतर को त्रि-चरण आपूर्ति में असंतुलन के रूप में देखा जाएगा; इसे ट्रांसफॉर्मरों के साथ समतल नहीं किया जा सकता है।[4]

बैक टू बैक व्यवस्था

स्कॉट कनेक्शन (Scott Connection) त्रि-चरणीय (3 φ) से त्रि-चरणीय (3 φ) के लिए।

स्कॉट-ट्रांसफॉर्मर कनेक्शन को एक त्रि-चरण से त्रि-चरण कनेक्शन के लिए बैक-टू-बैक टी-टू-टी व्यवस्था में भी उपयोग किया जा सकता है। यह निम्न शक्ति ट्रांसफॉर्मरों में लागत की बचत करने का एक प्रणाली है क्योंकि इसमें दो कॉइल वाला टी, सेकेंडरी में दो कॉइल वाले टी के साथ जुड़ता है, चूँकि पारंपरिक तीन कॉइल प्राथमिक तीन कॉइल सेकेंडरी ट्रांसफॉर्मर में होता है। इस व्यवस्था में X0 न्यूट्रल टैप सेकेंडरी टीजर ट्रांसफॉर्मर पर ऊपरी भाग में होता है (दाहिने ओर देखें)। इस T-to-T व्यवस्था की समानता में पारंपरिक तीन कॉइल प्राथमिक तीन कॉइल सेकेंडरी ट्रांसफॉर्मर की वोल्टेज स्थिरता पर सवाल उठाया जाता है, क्योंकि एक टी-टू-टी कॉन्फ़िगरेशन में दो कॉइलों (प्राथमिक और सेकेंडरी, क्रमशः) की "पर यूनिट" प्रतिरोधकता एक समान नहीं होती है, चूँकि तीन ट्रांसफॉर्मर कॉन्फ़िगरेशन में तीन वाइंडिंग (प्राथमिक और द्वितीयक, क्रमशः) समान हैं, यदि तीन ट्रांसफार्मर समान हैं।

त्रि-चरण से त्रि-चरण (जिसे "टी-कनेक्टेड" भी कहा जाता है) वितरण ट्रांसफॉर्मर की दृष्टि से बढ़ती हुई अनुप्रयोगों को देखा जा रहा है। प्राथमिक डेल्टा कनेक्टेड (Δ) होनी चाहिए, लेकिन सेकेंडरी ग्राहक के विकल्प पर त्रिकोणीय या "वाई"-कनेक्टेड (Y) हो सकता है, जहां X0 "वाई" केस के लिए न्यूट्रल प्रदान करता है। इन दोनों केस के लिए टैप्स सामान्यतः प्रदान किए जाते हैं। ऐसे वितरण ट्रांसफॉर्मर की सामान्यतया अधिकतम क्षमता 333 किलोवॉल्ट-एम्पीयर (एक मेगावॉट का तृतीयांश एकाग्र शक्तिकारी पर) होती है।[citation needed]

यह भी देखें

संदर्भ

  1. Distribution Transformer Manual, GET-2485T. Hickory, NC: General Electric Company. 1996. p. 64.
  2. Passer, Harold C. (1953). The Electrical Manufacturers, 1875-1900. Harvard. p. 315.
  3. "सभी सर्किट के बारे में". Retrieved 2014-08-04.
  4. General Electric (Jan 1957). "(unknown)". AIEE Transactions: 432–445. {{cite journal}}: Cite uses generic title (help) The cited article is a GE paper which points out that railway unbalance, even via Scott-T transformers, affects generators, the motors of other customers and presumably delta connected transformers. Even small unbalances can cause heating. However, because electric systems have grown larger over the 20th century, the paper suggests that the railways are now a tolerable load, provided one has a confirming system analysis. Scott-T transformers may not even be relevant, since direct line-to-line load connections may be sufficient. So this leaves a potential solution, but the single-phase load should then be viewed as being tolerated, not balanced. Allowing it also raises the question: "What if other customers asked for the same toleration?"