तनाव (भौतिकी): Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
Line 1: Line 1:
{{Short description|Pulling force transmitted axially – Opposite of compression}}
{{Short description|Pulling force transmitted axially – Opposite of compression}}
भौतिकी में, तनाव को स्ट्रिंग, केबल, चेन, या इसी तरह की पिण्ड के माध्यम से, या रॉड, ट्रस सदस्य, या इसी तरह की त्रि-आयामी  पिण्ड के प्रत्येक छोर से अक्षीय रूप से प्रेषित खींचने वाले बल के रूप में वर्णित किया जाता हैl तनाव को उक्त तत्वों के प्रत्येक छोर पर कार्यरत बलों की क्रिया-प्रतिक्रिया जोड़ी के रूप में भी वर्णित किया जा सकता है। तनाव संपीड़न (भौतिकी) के विपरीत हो सकता है।
भौतिकी में, '''तनाव''' को स्ट्रिंग, केबल, चेन, या इसी तरह की पिण्ड के माध्यम से, या रॉड, ट्रस सदस्य, या इसी तरह की त्रि-आयामी  पिण्ड के प्रत्येक छोर से अक्षीय रूप से प्रेषित खींचने वाले बल के रूप में वर्णित किया जाता हैl तनाव को उक्त तत्वों के प्रत्येक छोर पर कार्यरत बलों की क्रिया-प्रतिक्रिया जोड़ी के रूप में भी वर्णित किया जा सकता है। तनाव संपीड़न (भौतिकी) के विपरीत हो सकता है।


परमाणु स्तर पर, जब परमाणु या अणु एक दूसरे से अलग हो जाते हैं और पुनः स्थापित करने वाले बल के साथ संभावित ऊर्जा प्राप्त करते हैं, तो पुनः स्थापित करने वाला बल वह पैदा कर सकता है जिसे तनाव भी कहा जाता है। इस तरह के तनाव के तहत स्ट्रिंग या रॉड का प्रत्येक सिरा उस पिण्ड को खींच सकता है जिससे वह जुड़ी हुई है, ताकि स्ट्रिंग / रॉड को उसकी आराम से लंबाई में पुनःस्थापित किया जा सके।
परमाणु स्तर पर, जब परमाणु या अणु एक दूसरे से अलग हो जाते हैं और पुनः स्थापित करने वाले बल के साथ संभावित ऊर्जा प्राप्त करते हैं, तो पुनः स्थापित करने वाला बल वह पैदा कर सकता है जिसे तनाव भी कहा जाता है। इस तरह के तनाव के तहत स्ट्रिंग या रॉड का प्रत्येक सिरा उस पिण्ड को खींच सकता है जिससे वह जुड़ी हुई है, ताकि स्ट्रिंग / रॉड को उसकी आराम से लंबाई में पुनःस्थापित किया जा सके।

Latest revision as of 15:26, 29 August 2023

भौतिकी में, तनाव को स्ट्रिंग, केबल, चेन, या इसी तरह की पिण्ड के माध्यम से, या रॉड, ट्रस सदस्य, या इसी तरह की त्रि-आयामी पिण्ड के प्रत्येक छोर से अक्षीय रूप से प्रेषित खींचने वाले बल के रूप में वर्णित किया जाता हैl तनाव को उक्त तत्वों के प्रत्येक छोर पर कार्यरत बलों की क्रिया-प्रतिक्रिया जोड़ी के रूप में भी वर्णित किया जा सकता है। तनाव संपीड़न (भौतिकी) के विपरीत हो सकता है।

परमाणु स्तर पर, जब परमाणु या अणु एक दूसरे से अलग हो जाते हैं और पुनः स्थापित करने वाले बल के साथ संभावित ऊर्जा प्राप्त करते हैं, तो पुनः स्थापित करने वाला बल वह पैदा कर सकता है जिसे तनाव भी कहा जाता है। इस तरह के तनाव के तहत स्ट्रिंग या रॉड का प्रत्येक सिरा उस पिण्ड को खींच सकता है जिससे वह जुड़ी हुई है, ताकि स्ट्रिंग / रॉड को उसकी आराम से लंबाई में पुनःस्थापित किया जा सके।

तनाव (एक संचरित बल के रूप में, बलों की एक क्रिया-प्रतिक्रिया जोड़ी के रूप में, या एक पुनर्स्थापना बल के रूप में) को इंटरनेशनल सिस्टम ऑफ यूनिट्स (या इंपीरियल इकाइयों में पाउंड-बल) में न्यूटन (इकाई) में मापा जाता है। स्ट्रिंग या अन्य पिण्ड जो तनाव संचारित करती है, के सिरे उन पिण्डओं पर बल लगाएंगे जिनसे स्ट्रिंग या रॉड जुड़ा हुआ है, और लगाव के बिंदु पर स्ट्रिंग की दिशा में हो। तनाव के कारण इन बलों को निष्क्रिय बल भी कहा जाता है। स्ट्रिंग्स द्वारा आयोजित पिण्डओं के प्रणाली के लिए दो बुनियादी संभावनाएं हैं:[1] या तो त्वरण शून्य है और प्रणाली संतुलन में है, या त्वरण है, और इसलिए प्रणाली में एक शुद्ध बल प्राप्त है।

आयरिश चैंपियन रस्साकशी टीम के नौ पुरुष एक स्ट्रिंग पर खींचते हैं। तस्वीर में स्ट्रिंग स्ट्रिंग के आसन्न खंडों को दिखाते हुए एक खींचे गए चित्रण में फैली हुई है। एक खंड को मुक्त शरीर आरेख में दोहराया गया है जो परिमाण T की क्रिया-प्रतिक्रिया बलों की एक जोड़ी को विपरीत दिशाओं में खींच रहा है, जहां T अक्षीय रूप से प्रसारित होता है और इसे तनाव बल कहा जाता है। स्ट्रिंग का यह सिरा रस्साकशी दल को दाईं ओर खींच रहा है। स्ट्रिंग के प्रत्येक खंड को दो पड़ोसी खंडों द्वारा अलग किया जाता है, उस खंड पर जोर दिया जाता है जिसे तनाव भी कहा जाता है, जो दो फुटबॉल मैदान के सदस्यों के साथ बदल सकता है।

एक आयाम में तनाव

टेदरबॉल स्ट्रिंग में तनाव।

एक स्ट्रिंग में तनाव गैर-ऋणात्मक अदिश (भौतिकी) है। शून्य तनाव सुस्त है। स्ट्रिंग को प्रायः एक आयाम के रूप में आदर्शित किया जाता है, जिसकी लंबाई होती है लेकिन शून्य क्रॉस सेक्शन (ज्यामिति) के साथ द्रव्यमान रहित होता है। यदि स्ट्रिंग में कोई मोड़ नहीं है, जैसा कि कंपन या पुली के साथ होता है, तो तनाव स्ट्रिंग के साथ एक स्थिरांक होता है, जो स्ट्रिंग के सिरों द्वारा लगाए गए बलों के परिमाण के बराबर होता है। न्यूटन के तीसरे नियम के अनुसार, ये वही बल हैं जो स्ट्रिंग के सिरों पर उन पिण्डओं द्वारा लगाए जाते हैं जिनसे सिरे जुड़े होते हैं। यदि स्ट्रिंग एक या पुली के चारों ओर मुड़ती है, तो आदर्श स्थिति में इसकी लंबाई के साथ निरंतर तनाव रहेगा कि पुली द्रव्यमान रहित और घर्षण रहित हैं। कंपन स्ट्रिंग आवृत्तियों के एक सेट के साथ कंपन करती है जो स्ट्रिंग के तनाव पर निर्भर करती है। इन आवृत्तियों को न्यूटन के गति के नियमों से प्राप्त किया जा सकता है। स्ट्रिंग का प्रत्येक सूक्ष्म खंड खींचता है और अपने निकटम खंडों द्वारा खींचा जाता है, जिसमें स्ट्रिंग के साथ उस स्थिति में तनाव के बराबर बल होता है।

यदि स्ट्रिंग में वक्रता है, तो उसके दो निकटम खंडों द्वारा एक खंड पर खींचे गए दो खिंचाव शून्य में नहीं जुड़ेंगे, और स्ट्रिंग के उस खंड पर एक शुद्ध बल होगा, जिससे त्वरण होगा। यह शुद्ध बल एक पुनर्स्थापना बल है, और स्ट्रिंग की गति में अनुप्रस्थ तरंगें सम्मिलित हो सकती हैं जो स्टर्म-लिउविल सिद्धांत के लिए केंद्रीय समीकरण को हल करती हैं:

जहाँ पे प्रति इकाई लंबाई पर बल स्थिरांक है [इकाई प्रति क्षेत्र बल] और अनुप्रस्थ विस्थापन के प्रतिध्वनि के लिए प्रतिजन मान हैं स्ट्रिंग पर,[2] समाधान के साथ जिसमें एक स्ट्रिंग वाले यंत्र पर हार्मोनिक्स के विभिन्न पैमाने सम्मिलित हैं।

तीन आयामों का तनाव

तनाव का उपयोग त्रि-आयामी, निरंतर सामग्री जैसे रॉड या ट्रस सदस्य के सिरों द्वारा लगाए गए बल का वर्णन करने के लिए भी किया जाता है। इस संदर्भ में, तनाव दबाव के अनुरूप है ऋणात्मक दबाव। तनाव में एक छड़ लंबी हो जाती है। बढ़ाव की मात्रा और संरचनात्मक भार जो विफलता का कारण होगा, दोनों अकेले बल के बजाय प्रति-अनुभागीय क्षेत्र पर बल पर निर्भर करते हैं, इसलिए तनाव (यांत्रिकी) = अक्षीय बल/पार अनुभागीय क्षेत्र तनाव की तुलना में इंजीनियरिंग उद्देश्यों के लिए अधिक उपयोगी है। तनाव एक 3x3 आव्यूह है जिसे टेंसर कहा जाता है, और तनाव टेंसर का तत्व प्रति क्षेत्र तन्यता बल है, या प्रति क्षेत्र संपीड़न बल है, जिसे इस तत्व के लिए ऋणात्मक संख्या के रूप में दर्शाया जाता है, यदि रॉड को लम्बा करने के बजाय संकुचित किया जा रहा है।

इस प्रकार, तनाव टेंसर के ट्रेस (रैखिक बीजगणित) को लेकर कोई भी तनाव के अनुरूप एक अदिश प्राप्त कर सकता है।

संतुलन में प्रणाली

एक प्रणाली संतुलन में होती है जब सभी बलों का योग शून्य होता है।[1]

उदाहरण के लिए, एक ऐसी प्रणाली पर विचार करें जिसमें पिण्ड सम्मिलित है जिसे एक स्थिर वेग पर तनाव, T के साथ एक स्ट्रिंग द्वारा लंबवत रूप से कम किया जा रहा है। प्रणाली का एक स्थिर वेग है और इसलिए संतुलन में है क्योंकि स्ट्रिंग में तनाव, जो पिण्ड पर खींच रहा है, भार बल के बराबर है, मिलीग्राम (एम द्रव्यमान है, जी पृथ्वी के गुरुत्वाकर्षण के कारण त्वरण है) , जो पिण्ड पर नीचे खींच रहा है।[1]

नेट बल के तहत प्रणाली

प्रणाली पर एक असंतुलित बल लगाया जाता है जब एक प्रणाली में शुद्ध बल होता है, दूसरे शब्दों में सभी बलों का योग शून्य नहीं होता है। त्वरण और शुद्ध बल हमेशा एक साथ उपलब्ध होते हैं।[1]

उदाहरण के लिए, ऊपर के समान प्रणाली पर विचार करें लेकिन मान लीजिए कि पिण्ड अब बढ़ते वेग के साथ नीचे की ओर (धनात्मक त्वरण) हो रही है, इसलिए प्रणाली में कहीं न कहीं एक शुद्ध बल उपलब्ध है। इस मामले में, ऋणात्मक त्वरण इंगित करेगा कि .[1]
एक अन्य उदाहरण में, मान लीजिए कि दो पिंड A और B जिनका द्रव्यमान है तथा , क्रमशः घर्षण रहित चरखी पर एक अविभाज्य स्ट्रिंग द्वारा एक दूसरे से जुड़े होते हैं। पिण्ड A पर दो बल कार्य कर रहे हैं: इसका भार () नीचे खींचना, और तनाव स्ट्रिंग में ऊपर खींच रहा है। इसलिए, शुद्ध बल पिण्ड पर A है, इसलिए . एक्स्टेंसिबल स्ट्रिंग में, हुक का नियम लागू होता है।

आधुनिक भौतिकी में स्ट्रिंग

विशेष सापेक्षता सिद्धांतों में स्ट्रिंग जैसी पिण्डएं, जैसे क्वार्क के बीच बातचीत के कुछ मॉडलों में उपयोग की जाने वाली क्यूसीडी स्ट्रिंग, या आधुनिक स्ट्रिंग सिद्धांत में उपयोग की जाने वाली पिण्डओं में भी तनाव होता है। इन स्ट्रिंग्स का विश्लेषण उनकी विश्व शीट के संदर्भ में किया जाता है, और ऊर्जा तब सामान्यतः स्ट्रिंग की लंबाई के समानुपाती होती है। नतीजतन, ऐसे स्ट्रिंगों में तनाव खिंचाव की मात्रा से स्वतंत्र होता है।

यह भी देखें

  • सातत्यक यांत्रिकी
  • गिरावट कारक
  • सतह तनाव
  • तन्यता ताकत
  • द्रव - स्थैतिक दबाव

संदर्भ

  1. 1.0 1.1 1.2 1.3 1.4 Physics for Scientists and Engineers with Modern Physics, Section 5.7. Seventh Edition, Brooks/Cole Cengage Learning, 2008.
  2. A. Fetter and J. Walecka. (1980). Theoretical Mechanics of Particles and Continua. New York: McGraw-Hill.