क्वैसिकोनफॉर्मल मैपिंग: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(6 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{Short description|Homeomorphism between plane domains}}
{{Short description|Homeomorphism between plane domains}}गणितीय [[जटिल विश्लेषण]] में, क्वासिकोनफॉर्मल मैपिंग, द्वारा प्रस्तुत किया गया {{harvtxt|ग्रोट्ज़स्च|1928}} और द्वारा नामित {{harvtxt|अहलफोरस|1935}}, समतल (ज्यामिति) डोमेन के बीच होमोमोर्फिज़्म है जो पहले क्रम में छोटे वृत्तों को परिबद्ध दीर्घवृत्त उत्केन्द्रता के छोटे दीर्घवृत्तों में ले जाता है।
{{multiple issues|
{{no footnotes|date=December 2020}}
{{Technical|date=December 2020}}
}}


गणितीय [[जटिल विश्लेषण]] में, एक क्वासिकोनफॉर्मल मैपिंग, द्वारा प्रस्तुत किया गया {{harvtxt|ग्रोट्ज़स्च|1928}} और द्वारा नामित {{harvtxt|अहलफोरस|1935}}, समतल (ज्यामिति) डोमेन के बीच एक होमोमोर्फिज़्म है जो पहले क्रम में छोटे वृत्तों को परिबद्ध दीर्घवृत्त # उत्केन्द्रता के छोटे दीर्घवृत्तों में ले जाता है।
सहजता से, माना f : D → D′ [[अभिविन्यास (गणित)]] हो - विमान में खुले सेटों के बीच [[होमियोमोर्फिज्म]] को संरक्षित करना। यदि f निरंतर अवकलनीय है, तो यह K--क्वैसिकोनफ़ॉर्मल है यदि प्रत्येक बिंदु पर f का व्युत्पन्न K द्वारा परिबद्ध उत्केन्द्रता वाले दीर्घवृत्तों को मानचित्र बनाता है।
 
सहजता से, माना f : D → D′ एक [[अभिविन्यास (गणित)]] हो - विमान में खुले सेटों के बीच [[होमियोमोर्फिज्म]] को संरक्षित करना। यदि f निरंतर अवकलनीय है, तो यह K--क्वैसिकोनफ़ॉर्मल है यदि प्रत्येक बिंदु पर f का व्युत्पन्न K द्वारा परिबद्ध उत्केन्द्रता वाले दीर्घवृत्तों को मानचित्र बनाता है। '''यदि f निरंतर अवकलनीय है, तो यह K--क्वैसिकोनफ़ॉर्मल  है यदि प्रत्येक बिंदु पर f का व्युत्पन्न K द्वारा परिबद्ध उत्केन्द्रता वाले दीर्घवृत्तों को मानचित्र बनाता है।'''


== परिभाषा ==
== परिभाषा ==
Line 14: Line 8:
{{NumBlk|:|<math>\frac{\partial f}{\partial\bar{z}} = \mu(z)\frac{\partial f}{\partial z},</math>|{{EquationRef|1}}}}
{{NumBlk|:|<math>\frac{\partial f}{\partial\bar{z}} = \mu(z)\frac{\partial f}{\partial z},</math>|{{EquationRef|1}}}}


कुछ जटिल मूल्यवान [[Lebesgue मापने योग्य|लेबेस्ग मापने योग्य]] μ संतोषजनक समर्थन के लिए |μ| <1 {{harv|Bers|1977}}. यह समीकरण एक ज्यामितीय व्याख्या को स्वीकार करता है। D को [[ मीट्रिक टेंसर ]] से लैस करें
कुछ जटिल मूल्यवान [[Lebesgue मापने योग्य|लेबेस्ग मापने योग्य]] μ संतोषजनक समर्थन के लिए |μ| <1 {{harv|Bers|1977}}. यह समीकरण ज्यामितीय व्याख्या को स्वीकार करता है। D को [[ मीट्रिक टेंसर |मीट्रिक टेंसर]] से लैस करें


:<math>ds^2 = \Omega(z)^2\left| \, dz + \mu(z) \, d\bar{z}\right|^2,</math>
:<math>ds^2 = \Omega(z)^2\left| \, dz + \mu(z) \, d\bar{z}\right|^2,</math>
जहां Ω(z) > 0. फिर f संतुष्ट करता है ({{EquationNote|1}}) ठीक है जब यह इस मीट्रिक से लैस d से मानक यूक्लिडियन मीट्रिक से लैस डोमेन d' से एक अनुरूप परिवर्तन है। तब फलन f को 'μ-conformal' कहा जाता है। अधिक सामान्यतः, f की निरंतर भिन्नता को कमजोर स्थिति से प्रतिस्थापित किया जा सकता है कि एफ [[सोबोलेव स्पेस]] ''W''<sup>1,2</sup>(''D'') में हो <sup>'''1,2'''</sup>'''(D)''' ऐसे फलन जिनके प्रथम-क्रम के वितरणात्मक डेरिवेटिव Lp स्पेस में हैं| L<sup>2</sup>(''D'')। इस स्थिति में, f का एक [[कमजोर समाधान]] होना आवश्यक है ({{EquationNote|1}}). जब μ लगभग हर जगह शून्य होता है, W में कोई होमियोमोर्फिज्म ''W''<sup>1,2</sup>(''D'') है जो कि एक कमजोर समाधान है ({{EquationNote|1}}) अनुरूप है।
जहां Ω(z) > 0. फिर f संतुष्ट करता है ({{EquationNote|1}}) ठीक है जब यह इस मीट्रिक से लैस d से मानक यूक्लिडियन मीट्रिक से लैस डोमेन d' से अनुरूप परिवर्तन है। तब फलन f को 'μ-कोन्फोर्मल' कहा जाता है। अधिक सामान्यतः, f की निरंतर भिन्नता को असक्त स्थिति से प्रतिस्थापित किया जा सकता है कि एफ [[सोबोलेव स्पेस]] ''W''<sup>1,2</sup>(''D'') में हो <sup>'''1,2'''</sup>'''(D)''' ऐसे फलन जिनके प्रथम-क्रम के वितरणात्मक डेरिवेटिव Lp स्पेस में हैं| L<sup>2</sup>(''D'')। इस स्थिति में, f का [[कमजोर समाधान|असक्त समाधान]] होना आवश्यक है ({{EquationNote|1}}). जब μ लगभग हर जगह शून्य होता है, W में कोई होमियोमोर्फिज्म ''W''<sup>1,2</sup>(''D'') है जो कि असक्त समाधान है ({{EquationNote|1}}) अनुरूप है।


एक सहायक मीट्रिक के लिए अपील के बिना, सामान्य यूक्लिडियन मीट्रिक के एफ के अंतर्गत [[पुलबैक (अंतर ज्यामिति)]] के प्रभाव पर विचार करें। परिणामी मीट्रिक तब द्वारा दिया जाता है
सहायक मीट्रिक के लिए अपील के बिना, सामान्य यूक्लिडियन मीट्रिक के एफ के अंतर्गत [[पुलबैक (अंतर ज्यामिति)]] के प्रभाव पर विचार करें। परिणामी मीट्रिक तब द्वारा दिया जाता है।


:<math>\left|\frac{\partial f}{\partial z}\right|^2\left|\,dz+\mu(z)\,d\bar{z}\right|^2</math>
:<math>\left|\frac{\partial f}{\partial z}\right|^2\left|\,dz+\mu(z)\,d\bar{z}\right|^2</math>
Line 27: Line 21:
आइजन वैल्यूज, क्रमशः, स्पर्शरेखा तल में इकाई वृत्त के साथ वापस खींचकर प्राप्त दीर्घवृत्त के प्रमुख और लघु अक्ष की वर्ग लंबाई का प्रतिनिधित्व करते हैं।
आइजन वैल्यूज, क्रमशः, स्पर्शरेखा तल में इकाई वृत्त के साथ वापस खींचकर प्राप्त दीर्घवृत्त के प्रमुख और लघु अक्ष की वर्ग लंबाई का प्रतिनिधित्व करते हैं।


तदनुसार, एक बिंदु z पर f का विस्तार किसके द्वारा परिभाषित किया गया है
तदनुसार, बिंदु z पर f का विस्तार किसके द्वारा परिभाषित किया गया है


:<math>K(z) = \frac{1+|\mu(z)|}{1-|\mu(z)|}.</math>
:<math>K(z) = \frac{1+|\mu(z)|}{1-|\mu(z)|}.</math>
K(z) का (अनिवार्य) सर्वोच्च इसके द्वारा दिया गया है
K(z) का (अनिवार्य) सर्वोच्च इसके द्वारा दिया गया है।


:<math>K = \sup_{z\in D} |K(z)| = \frac{1+\|\mu\|_\infty}{1-\|\mu\|_\infty}</math>
:<math>K = \sup_{z\in D} |K(z)| = \frac{1+\|\mu\|_\infty}{1-\|\mu\|_\infty}</math>
और इसे f का फैलाव कहा जाता है।
और इसे f का फैलाव कहा जाता है।


[[अत्यधिक लंबाई]] की धारणा पर आधारित एक परिभाषा इस प्रकार है। यदि कोई परिमित K ऐसा है कि D में वक्रों के प्रत्येक संग्रह 'Γ' के लिए 'Γ' की चरम लंबाई {f o γ : γ ∈ 'Γ'} की चरम लंबाई का अधिक से अधिक K गुना है। फिर f K-क्वैसिकोनफॉर्मल है।
[[अत्यधिक लंबाई]] की धारणा पर आधारित परिभाषा इस प्रकार है। यदि कोई परिमित K ऐसा है कि D में वक्रों के प्रत्येक संग्रह 'Γ' के लिए 'Γ' की चरम लंबाई {f o γ : γ ∈ 'Γ'} की चरम लंबाई का अधिक से अधिक K गुना है। फिर f K-क्वैसिकोनफॉर्मल है।


यदि f कुछ परिमित K के लिए K-क्वैसिकोनफॉर्मल है, तो f अर्ध-अनुरूप है।
यदि f कुछ परिमित K के लिए K-क्वैसिकोनफॉर्मल है, तो f अर्ध-अनुरूप है।


==== == क्वासिकोनफॉर्मल मैपिंग == के बारे में कुछ तथ्य ====
==== क्वासिकोनफॉर्मल मैपिंग के बारे में कुछ तथ्य ====
यदि K > 1 है तो मानचित्र x + iy ↦ Kx + iy और x + iy ↦ x + iKy दोनों क्वासिकोनफॉर्मल हैं और निरंतर फैलाव K हैं।
यदि K > 1 है तो मानचित्र x + iy ↦ Kx + iy और x + iy ↦ x + iKy दोनों क्वासिकोनफॉर्मल हैं और निरंतर फैलाव K हैं।


अगर s > -1 तो नक्शा <math>z\mapsto z\,|z|^{s}</math> क्वैसिकोनफ़ॉर्मल है (यहाँ z एक सम्मिश्र संख्या है) और इसका लगातार विस्फारण होता है <math>\max(1+s, \frac{1}{1+s})</math>. जब एस ≠ 0, यह अर्ध-अनुरूप होमियोमोर्फिज्म का एक उदाहरण है जो चिकना नहीं है। यदि एस = 0, यह केवल पहचान मानचित्र है।
अगर s > -1 तो नक्शा <math>z\mapsto z\,|z|^{s}</math> क्वैसिकोनफ़ॉर्मल है (यहाँ z सम्मिश्र संख्या है) और इसका लगातार विस्फारण होता है <math>\max(1+s, \frac{1}{1+s})</math>. जब एस ≠ 0, यह अर्ध-अनुरूप होमियोमोर्फिज्म का उदाहरण है जो चिकना नहीं है। यदि एस = 0, यह केवल पहचान मानचित्र है।


एक होमोमोर्फिज्म 1-क्वैसिकोनफॉर्मल है अगर और केवल अगर यह अनुरूप है। इसलिए पहचान मानचित्र हमेशा 1-अर्ध-अनुरूप होता है। अगर f : D → D' K-क्वैसिकोनफॉर्मलहै और g : D' → D'' K'-''क्वैसिकोनफॉर्मलहै, तो g o f KK'-क्वैसिकोनफॉर्मलहै। K-क्वैसिकोनफॉर्मलहोमोमोर्फिज्म का व्युत्क्रम K-क्वैसिकोनफॉर्मलहै। 1-क्वैसिकोनफॉर्मल मैप्स का सेट रचना के अंतर्गत एक समूह बनाता है।
होमोमोर्फिज्म 1-क्वैसिकोनफॉर्मल है अगर और केवल अगर यह अनुरूप है। इसलिए पहचान मानचित्र हमेशा 1-अर्ध-अनुरूप होता है। अगर f : D → D' K-क्वैसिकोनफॉर्मलहै और g : D' → D'' K'-''क्वैसिकोनफॉर्मलहै, तो g o f KK'-क्वैसिकोनफॉर्मलहै K-क्वैसिकोनफॉर्मलहोमोमोर्फिज्म का व्युत्क्रम K-क्वैसिकोनफॉर्मलहै। 1-क्वैसिकोनफॉर्मल मैप्स का सेट रचना के अंतर्गत समूह बनाता है।


जटिल तल से K-क्वैसिकोनफॉर्मलमैपिंग का स्थान तीन अलग-अलग बिंदुओं को तीन दिए गए बिंदुओं पर मैप करने के लिए कॉम्पैक्ट है।
जटिल तल से K-क्वैसिकोनफॉर्मलमैपिंग का स्थान तीन अलग-अलग बिंदुओं को तीन दिए गए बिंदुओं पर मैप करने के लिए कॉम्पैक्ट है।
{{Expand section|date=May 2012}}


== मापने योग्य [[रीमैन मैपिंग प्रमेय]] ==
== मापने योग्य [[रीमैन मैपिंग प्रमेय]] ==
दो आयामों में क्वैसिकोनफॉर्मल मैपिंग के सिद्धांत में केंद्रीय महत्व [[मापने योग्य रीमैन मैपिंग प्रमेय]] है, जिसे लार्स अहलफ़ोर्स और लिपमैन बेर्स द्वारा सिद्ध किया गया है। प्रमेय रीमैन मैपिंग प्रमेय को अनुरूप से क्वैसिकोनफॉर्मल होमोमोर्फिम्स तक सामान्यीकृत करता है, और इसे निम्नानुसार कहा गया है। मान लीजिए कि D 'C' में एक सरल रूप से जुड़ा हुआ डोमेन है जो 'C' के बराबर नहीं है, और मान लीजिए कि μ : D → 'C' लेबेस्ग मापने योग्य है और संतुष्ट करता है <math>\|\mu\|_\infty<1</math>. फिर डी से यूनिट डिस्क तक एक क्वासिकोनफॉर्मल होमोमोर्फिज्म एफ है जो सोबोलेव स्पेस डब्ल्यू में है<sup>1,2</sup>(डी) और संबंधित बेल्ट्रामी समीकरण को संतुष्ट करता है ({{EquationNote|1}}) कमजोर समाधान में। रीमैन के मानचित्रण प्रमेय के समान, यह f 3 वास्तविक पैरामीटरों तक अद्वितीय है।
दो आयामों में क्वैसिकोनफॉर्मल मैपिंग के सिद्धांत में केंद्रीय महत्व [[मापने योग्य रीमैन मैपिंग प्रमेय]] है, जिसे लार्स अहलफ़ोर्स और लिपमैन बेर्स द्वारा सिद्ध किया गया है। प्रमेय रीमैन मैपिंग प्रमेय को अनुरूप से क्वैसिकोनफॉर्मल होमोमोर्फिम्स तक सामान्यीकृत करता है, और इसे निम्नानुसार कहा गया है। मान लीजिए कि D 'C' में सरल रूप से जुड़ा हुआ डोमेन है जो 'C' के बराबर नहीं है, और मान लीजिए कि μ : D → 'C' लेबेस्ग मापने योग्य है और संतुष्ट करता है <math>\|\mu\|_\infty<1</math>. फिर d से यूनिट डिस्क तक क्वासिकोनफॉर्मल होमोमोर्फिज्म f है जो सोबोलेव स्पेस में है और संबंधित बेल्ट्रामी समीकरण को संतुष्ट करता है ({{EquationNote|1}}) असक्त समाधान में। रीमैन के मानचित्रण प्रमेय के समान, यह f 3 वास्तविक पैरामीटरों तक अद्वितीय है।


== कम्प्यूटेशनल अर्ध-अनुरूप ज्यामिति ==
== कम्प्यूटेशनल अर्ध-अनुरूप ज्यामिति ==
हाल ही में, अर्ध-अनुरूप ज्यामिति ने विभिन्न क्षेत्रों से ध्यान आकर्षित किया है, जैसे अनुप्रयुक्त गणित, कंप्यूटर दृष्टि और चिकित्सा इमेजिंग। कम्प्यूटेशनल अर्ध-अनुरूप ज्यामिति विकसित की गई है, जो अर्ध-अनुरूप सिद्धांत को असतत सेटिंग में विस्तारित करती है। इसने चिकित्सा छवि विश्लेषण, कंप्यूटर दृष्टि और ग्राफिक्स में कई महत्वपूर्ण अनुप्रयोग पाए हैं।
हाल ही में, अर्ध-अनुरूप ज्यामिति ने विभिन्न क्षेत्रों से ध्यान आकर्षित किया है, जैसे अनुप्रयुक्त गणित, कंप्यूटर दृष्टि और चिकित्सा इमेजिंग कम्प्यूटेशनल अर्ध-अनुरूप ज्यामिति विकसित की गई है, जो अर्ध-अनुरूप सिद्धांत को असतत सेटिंग में विस्तारित करती है। इसने चिकित्सा छवि विश्लेषण, कंप्यूटर दृष्टि और ग्राफिक्स में कई महत्वपूर्ण अनुप्रयोग पाए हैं।


== यह भी देखें ==
== यह भी देखें ==
Line 196: Line 188:
}}.
}}.


{{DEFAULTSORT:Quasiconformal Mapping}}[[Category: अनुरूप मैपिंग]] [[Category: होमोमोर्फिज्म]] [[Category: जटिल विश्लेषण]]
{{DEFAULTSORT:Quasiconformal Mapping}}
 
 


[[Category: Machine Translated Page]]
[[Category:CS1 Deutsch-language sources (de)|Quasiconformal Mapping]]
[[Category:Created On 21/05/2023]]
[[Category:CS1 English-language sources (en)|Quasiconformal Mapping]]
[[Category:Created On 21/05/2023|Quasiconformal Mapping]]
[[Category:Lua-based templates|Quasiconformal Mapping]]
[[Category:Machine Translated Page|Quasiconformal Mapping]]
[[Category:Pages with script errors|Quasiconformal Mapping]]
[[Category:Templates Vigyan Ready|Quasiconformal Mapping]]
[[Category:Templates that add a tracking category|Quasiconformal Mapping]]
[[Category:Templates that generate short descriptions|Quasiconformal Mapping]]
[[Category:Templates using TemplateData|Quasiconformal Mapping]]
[[Category:अनुरूप मैपिंग|Quasiconformal Mapping]]
[[Category:जटिल विश्लेषण|Quasiconformal Mapping]]
[[Category:होमोमोर्फिज्म|Quasiconformal Mapping]]

Latest revision as of 16:58, 25 May 2023

गणितीय जटिल विश्लेषण में, क्वासिकोनफॉर्मल मैपिंग, द्वारा प्रस्तुत किया गया ग्रोट्ज़स्च (1928) और द्वारा नामित अहलफोरस (1935), समतल (ज्यामिति) डोमेन के बीच होमोमोर्फिज़्म है जो पहले क्रम में छोटे वृत्तों को परिबद्ध दीर्घवृत्त उत्केन्द्रता के छोटे दीर्घवृत्तों में ले जाता है।

सहजता से, माना f : D → D′ अभिविन्यास (गणित) हो - विमान में खुले सेटों के बीच होमियोमोर्फिज्म को संरक्षित करना। यदि f निरंतर अवकलनीय है, तो यह K--क्वैसिकोनफ़ॉर्मल है यदि प्रत्येक बिंदु पर f का व्युत्पन्न K द्वारा परिबद्ध उत्केन्द्रता वाले दीर्घवृत्तों को मानचित्र बनाता है।

परिभाषा

मान लीजिए f : D → D' जहां 'C' में D और D' दो डोमेन हैं। f की आवश्यक चिकनीता के आधार पर विभिन्न प्रकार की समकक्ष परिभाषाएं हैं। यदि f को निरंतर कार्य आंशिक डेरिवेटिव माना जाता है, तो f क्वासिकोनफॉर्मल है, बशर्ते यह बेल्ट्रामी समीकरण को संतुष्ट करता हो

 

 

 

 

(1)

कुछ जटिल मूल्यवान लेबेस्ग मापने योग्य μ संतोषजनक समर्थन के लिए |μ| <1 (Bers 1977). यह समीकरण ज्यामितीय व्याख्या को स्वीकार करता है। D को मीट्रिक टेंसर से लैस करें

जहां Ω(z) > 0. फिर f संतुष्ट करता है (1) ठीक है जब यह इस मीट्रिक से लैस d से मानक यूक्लिडियन मीट्रिक से लैस डोमेन d' से अनुरूप परिवर्तन है। तब फलन f को 'μ-कोन्फोर्मल' कहा जाता है। अधिक सामान्यतः, f की निरंतर भिन्नता को असक्त स्थिति से प्रतिस्थापित किया जा सकता है कि एफ सोबोलेव स्पेस W1,2(D) में हो 1,2(D) ऐसे फलन जिनके प्रथम-क्रम के वितरणात्मक डेरिवेटिव Lp स्पेस में हैं| L2(D)। इस स्थिति में, f का असक्त समाधान होना आवश्यक है (1). जब μ लगभग हर जगह शून्य होता है, W में कोई होमियोमोर्फिज्म W1,2(D) है जो कि असक्त समाधान है (1) अनुरूप है।

सहायक मीट्रिक के लिए अपील के बिना, सामान्य यूक्लिडियन मीट्रिक के एफ के अंतर्गत पुलबैक (अंतर ज्यामिति) के प्रभाव पर विचार करें। परिणामी मीट्रिक तब द्वारा दिया जाता है।

जो पृष्ठभूमि यूक्लिडियन मीट्रिक के सापेक्ष है , आइजन वैल्यूज हैं

आइजन वैल्यूज, क्रमशः, स्पर्शरेखा तल में इकाई वृत्त के साथ वापस खींचकर प्राप्त दीर्घवृत्त के प्रमुख और लघु अक्ष की वर्ग लंबाई का प्रतिनिधित्व करते हैं।

तदनुसार, बिंदु z पर f का विस्तार किसके द्वारा परिभाषित किया गया है

K(z) का (अनिवार्य) सर्वोच्च इसके द्वारा दिया गया है।

और इसे f का फैलाव कहा जाता है।

अत्यधिक लंबाई की धारणा पर आधारित परिभाषा इस प्रकार है। यदि कोई परिमित K ऐसा है कि D में वक्रों के प्रत्येक संग्रह 'Γ' के लिए 'Γ' की चरम लंबाई {f o γ : γ ∈ 'Γ'} की चरम लंबाई का अधिक से अधिक K गुना है। फिर f K-क्वैसिकोनफॉर्मल है।

यदि f कुछ परिमित K के लिए K-क्वैसिकोनफॉर्मल है, तो f अर्ध-अनुरूप है।

क्वासिकोनफॉर्मल मैपिंग के बारे में कुछ तथ्य

यदि K > 1 है तो मानचित्र x + iy ↦ Kx + iy और x + iy ↦ x + iKy दोनों क्वासिकोनफॉर्मल हैं और निरंतर फैलाव K हैं।

अगर s > -1 तो नक्शा क्वैसिकोनफ़ॉर्मल है (यहाँ z सम्मिश्र संख्या है) और इसका लगातार विस्फारण होता है . जब एस ≠ 0, यह अर्ध-अनुरूप होमियोमोर्फिज्म का उदाहरण है जो चिकना नहीं है। यदि एस = 0, यह केवल पहचान मानचित्र है।

होमोमोर्फिज्म 1-क्वैसिकोनफॉर्मल है अगर और केवल अगर यह अनुरूप है। इसलिए पहचान मानचित्र हमेशा 1-अर्ध-अनुरूप होता है। अगर f : D → D' K-क्वैसिकोनफॉर्मलहै और g : D' → D K'-क्वैसिकोनफॉर्मलहै, तो g o f KK'-क्वैसिकोनफॉर्मलहै K-क्वैसिकोनफॉर्मलहोमोमोर्फिज्म का व्युत्क्रम K-क्वैसिकोनफॉर्मलहै। 1-क्वैसिकोनफॉर्मल मैप्स का सेट रचना के अंतर्गत समूह बनाता है।

जटिल तल से K-क्वैसिकोनफॉर्मलमैपिंग का स्थान तीन अलग-अलग बिंदुओं को तीन दिए गए बिंदुओं पर मैप करने के लिए कॉम्पैक्ट है।

मापने योग्य रीमैन मैपिंग प्रमेय

दो आयामों में क्वैसिकोनफॉर्मल मैपिंग के सिद्धांत में केंद्रीय महत्व मापने योग्य रीमैन मैपिंग प्रमेय है, जिसे लार्स अहलफ़ोर्स और लिपमैन बेर्स द्वारा सिद्ध किया गया है। प्रमेय रीमैन मैपिंग प्रमेय को अनुरूप से क्वैसिकोनफॉर्मल होमोमोर्फिम्स तक सामान्यीकृत करता है, और इसे निम्नानुसार कहा गया है। मान लीजिए कि D 'C' में सरल रूप से जुड़ा हुआ डोमेन है जो 'C' के बराबर नहीं है, और मान लीजिए कि μ : D → 'C' लेबेस्ग मापने योग्य है और संतुष्ट करता है . फिर d से यूनिट डिस्क तक क्वासिकोनफॉर्मल होमोमोर्फिज्म f है जो सोबोलेव स्पेस w में है और संबंधित बेल्ट्रामी समीकरण को संतुष्ट करता है (1) असक्त समाधान में। रीमैन के मानचित्रण प्रमेय के समान, यह f 3 वास्तविक पैरामीटरों तक अद्वितीय है।

कम्प्यूटेशनल अर्ध-अनुरूप ज्यामिति

हाल ही में, अर्ध-अनुरूप ज्यामिति ने विभिन्न क्षेत्रों से ध्यान आकर्षित किया है, जैसे अनुप्रयुक्त गणित, कंप्यूटर दृष्टि और चिकित्सा इमेजिंग कम्प्यूटेशनल अर्ध-अनुरूप ज्यामिति विकसित की गई है, जो अर्ध-अनुरूप सिद्धांत को असतत सेटिंग में विस्तारित करती है। इसने चिकित्सा छवि विश्लेषण, कंप्यूटर दृष्टि और ग्राफिक्स में कई महत्वपूर्ण अनुप्रयोग पाए हैं।

यह भी देखें

संदर्भ