केप्लर अनुमान: Difference between revisions

From Vigyanwiki
No edit summary
 
(2 intermediate revisions by 2 users not shown)
Line 119: Line 119:
{{Johannes Kepler}}
{{Johannes Kepler}}
{{Authority control}}
{{Authority control}}
[[Category: असतत ज्यामिति]] [[Category: जोहान्स केप्लर]] [[Category: हिल्बर्ट की समस्याएं]] [[Category: अनुमान जो सिद्ध हो चुके हैं]] [[Category: कंप्यूटर-सहायता प्राप्त प्रमाण]] [[Category: क्षेत्रों]] [[Category: पैकिंग की समस्या]]


 
[[Category:All articles covered by WikiProject Wikify]]
 
[[Category:All articles with bare URLs for citations]]
[[Category: Machine Translated Page]]
[[Category:All articles with vague or ambiguous time]]
[[Category:Articles covered by WikiProject Wikify from September 2022]]
[[Category:Articles needing cleanup from September 2022]]
[[Category:Articles with bare URLs for citations from September 2022]]
[[Category:Articles with invalid date parameter in template]]
[[Category:CS1 English-language sources (en)]]
[[Category:CS1 Latina-language sources (la)]]
[[Category:Collapse templates]]
[[Category:Created On 01/05/2023]]
[[Category:Created On 01/05/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages with script errors]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates generating microformats]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that are not mobile friendly]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:Vague or ambiguous time from September 2022]]
[[Category:Wikipedia metatemplates]]
[[Category:अनुमान जो सिद्ध हो चुके हैं]]
[[Category:असतत ज्यामिति]]
[[Category:कंप्यूटर-सहायता प्राप्त प्रमाण]]
[[Category:क्षेत्रों]]
[[Category:जोहान्स केप्लर]]
[[Category:पैकिंग की समस्या]]
[[Category:हिल्बर्ट की समस्याएं]]

Latest revision as of 16:05, 25 May 2023

केप्लर अनुमान 17वीं शताब्दी के गणितज्ञ और खगोलशास्त्री जोहान्स केप्लर के नाम पर रखा गया त्रि-आयामी यूक्लिड के नियमों के अनुरूप अंतरिक्ष में गोलाकार संकुलन के बारे में एक गणितीय प्रमेय है इसमें कहा गया है कि समान आकार के गोलों को भरने की व्यवस्था में चेहरा केंद्रित घन और हेक्सागोनल बंद संकुलन व्यवस्था की तुलना में अधिक औसत घनत्व नहीं है इन व्यवस्थाओं का घनत्व लगभग 74.05% है।

1998 में थॉमस कॉलिस्टर हेल्स द्वारा सुझाए गए दृष्टिकोण का पालन करते हुए फेज टूथ ने 1953 में घोषणा की कि उनके पास केप्लर अनुमान का प्रमाण है हेल्स का प्रमाण कंप्यूटर गणनाओं का उपयोग करके कई अलग-अलग जगहों की जाँच से संबंधित शून्यीकरण

का प्रमाण है रेफरी ने कहा कि वे हेल्स के प्रमाण की शुद्धता के बारे में% शत निश्चित थे केप्लर लर अनुमान को एक प्रमेय के रूप में स्वीकार किया गया था 2014 में हेल्स की अध्यक्षता वाली संयोजन परियोजना टीम ने इसाबेल प्रमाण सहायक और उच्च क्रम की भाषा विद्युत प्रमाण सहायकों के संयोजन का उपयोग करके केप्लर अनुमान के औपचारिक प्रमाण को पूरा करने की घोषणा की 2017 में गठित गणित पाई द्वारा औपचारिक प्रमाण स्वीकार किया गया था।[1]


पृष्ठभूमि

क्यूबिक क्लोज पैकिंग (बाएं) और हेक्सागोनल क्लोज पैकिंग (दाएं) के आरेख।

छोटे समान आकार के गोलों के साथ एक बड़े पात्र को भरने की कल्पना करें जो समान पत्थर के साथ एक चीनी मिट्टी के बरतन को गैलन कहते थे तथा व्यवस्था का घनत्व जग के आयतन से विभाजित सभी पत्थरों के कुल आयतन के बराबर है जग में पत्थरों की संख्या को अधिकतम करने का मतलब है कि जग के किनारों और तली के बीच में पत्थर की एक ऐसी व्यवस्था बनाना जिसमें सबसे अधिक घनत्व हो जिससे संगमरमर को यथा संभव बारीकी से एक साथ एकत्र किया जा सके।

प्रयोग से पता चलता है कि संगमरमर को ढंग से गिराने से उन्हें कसकर व्यवस्थित करने के प्रयास के बिना लगभग 65 प्रतिशत का घनत्व प्राप्त होगा [2] जबकि संगमरमर को सावधानीपूर्वक व्यवस्थित करके उच्च घनत्व प्राप्त किया जा सकता है।

  1. संगमरमर की पहली परत के लिए उन्हें षटकोणीय जाली में व्यवस्थित करें।
  2. संकेत की चिन्ता किए बिना पहली परत में संगमरमर की अगली परत को सबसे निचले स्थान में रखें जिसे आप संगमरमर के बीच पा सकते हैं।
  3. तीसरी और शेष परतों के लिए पिछली परत में सबसे कम अंतराल को भरने की उसी प्रक्रिया को तब तक जारी रखें जब तक कि कंचे किनारे तक नहीं पहुंच जाते।

प्रत्येक चरण में कम से कम दो विकल्प होते हैं तथा अगली परत को कैसे रखा जाए इसलिए गोले को ढेर करने की यह अनियोजित विधि समान रूप से घन एकत्र की अनगिनत संख्या बनाती है इनमें से सबसे प्रसिद्ध घनिष्ठ संकुलन और षटकोणीय घन कहलाते हैं इनमें से प्रत्येक व्यवस्था का औसत घनत्व इस प्रकार है-

केप्लर अनुमान कहता है कि यह सबसे अच्छा है जो किया जा सकता है संगमरमर की किसी भी अन्य व्यवस्था में उच्च औसत घनत्व नहीं है जबकि कई अलग-अलग व्यवस्थाएं संभव होते हुए भी चरण 1-3 के समान प्रक्रिया का पालन करती हैं तथा एक ही जग में अधिक कंचे फिट कर सकते हैं।

उत्पत्ति( 1611)

केपलर अनुमान को दर्शाते हुए स्ट्रेना सेउ डे निवे सेक्सांगुला के आरेखों में से एक

जॉनसन केपलर ने 1611 में सबसे पहले अपने पेपर 'ऑन द सिक्स-कोर्नर्ड स्नोफ्लेक' में कहा था कि उन्होंने 1606 में अंग्रेजी गणितज्ञ और खगोलशास्त्री थॉमस हैरियट के साथ अपने पत्राचार के परिणामस्वरूप गोले की व्यवस्था का अध्ययन करना शुरू कर दिया था जो सर वाल्टर रैले के मित्र और सहायक थे जिन्होंने हैरियट तोप के गोले गिनने के लिए तथा सूत्र खोजने के लिए कहा था जिसके बदले में रेले के गणितज्ञ परिचित को आश्चर्य हुआ कि तोप के गोले को ढेर करने का सबसे अच्छा तरीका क्या था [3] हैरियट ने 1591 में विभिन्न गणितीय तरीके का एक अध्ययन प्रकाशित किया और परमाणु सिद्धांत का एक प्रारंभिक संस्करण विकसित किया।

उन्नीसवीं सदी

केप्लर के पास अनुमान का कोई प्रमाण नहीं था और 1831 में अगला कदम कॉर्ल फ्रेडरिक गाॅस द्वारा उठाया गया था जिन्होंने प्रमाणित किया कि केप्लर अनुमान सही है गोले को एक नियमित जाली समूह में व्यवस्थित करना है।

इसका मतलब यह था कि कोई भी संकुलन व्यवस्था जो केप्लर अनुमान को गलत प्रमाणित करती है वह अनियमित होगी लेकिन सभी संभावित अनियमित व्यवस्थाओं को समाप्त करना बहुत कठिन है और यही कारण है कि केप्लर अनुमान को प्रमाणित करना इतना कठिन हो गया था ये ऐसी अनियमित व्यवस्थाएँ हैं जो एक छोटे पर्याप्त आयतन पर घनिष्ठ संकुलन व्यवस्था की तुलना में सघन हैं लेकिन एक बड़ी मात्रा को भरने के लिए इन व्यवस्थाओं को विस्तारित करने का कोई भी प्रयास उनके घनत्व को कम करने के लिए जाना जाता है।

गॉस के बाद उन्नीसवीं शताब्दी में केपलर अनुमान को सिद्ध करने की दिशा में कोई और प्रगति नहीं हुई 1900 में डेविड हिल्बर्ट ने गणित की तेईस अनसुलझी समस्याओं को अपनी सूची में सम्मिलित किया यह हिल्बर्ट की अठारहवीं समस्या का हिस्सा है।

बीसवीं सदी

समाधान की दिशा में अगला कदम लेज़्लो फेजेस टोथ ने उठाया [[#CITEREF|]] और दिखाया कि सभी व्यवस्थाओं में नियमित और अनियमित के अधिकतम घनत्व को निर्धारित करने की समस्या को परिमित समूह गणनाओं की संख्या में घटाया जा सकता है इसका मतलब यह था कि थकावट सिद्धांत रूप में संभव था कि फेज टूथ ने महसूस किया कि एक तेज़ कंप्यूटर इस सैद्धांतिक परिणाम को समस्या के व्यावहारिक दृष्टिकोण में बदल सकता है।

इस बीच गोले की किसी भी संभावित व्यवस्था के अधिकतम घनत्व के लिए एक ऊपरी सीमा खोजने का प्रयास किया गया अंग्रेजी गणितज्ञ क्लाउड एम्ब्रोस रोजर्स [[#CITEREF|]]) ने लगभग 78 प्रतिशत का ऊपरी बाध्य मान स्थापित किया और बाद में अन्य गणितज्ञों के प्रयासों ने इस मान को थोड़ा कम कर दिया लेकिन यह अभी भी लगभग 74 प्रतिशत घन पैक घनत्व से बहुत बड़ा था।

1990 में डब्ल्यू यू-वाई मैं हसियांग ने केपलर अनुमान को सिद्ध करने का दावा किया जबकि गैबोर फेजेस टूथ ने पेपर की अपनी समीक्षा में कहा था जहाँ तक विवरण का सवाल है मेरी राय है कि कई प्रमुख बयानों में कोई स्वीकार्य प्रमाण नहीं है।

 [[#CITEREF|]]हेल्स ने 1994 में सियांग के कार्य की विस्तृत आलोचना की जिसके लिए [[#CITEREF|]] हसियांग ने जवाब दिया जो कि वर्तमान मे हिसियांग का प्रमाण अधूरा है।[4]


हेल्स का प्रमाण

हेल्स द्वारा सुझाए गए तरीके का पालन फेज टूथ 1953 में तथा थॉमस कैलिस्टर हेल्स फिर मिशिगन विश्वविद्यालय में निर्धारित किया कि सभी व्यवस्थाओं का अधिकतम घनत्व 150 चर के साथ एक समारोह को कम करके पाया जा सकता है 1992 में अपने स्नातक छात्र की सहायता से उन्होंने 5,000 से अधिक अलग-अलग क्षेत्रों के विन्यास के प्रत्येक समूह के लिए इस कार्यक्रम के मूल्य पर कम सीमा खोजने के लिए रैखिक कार्यविधियों को व्यवस्थित रूप से लागू करने के लिए एक शोध कार्यक्रम शुरू किया यदि इनमें से हर एक विन्यास के लिए एक निचली सीमा पाई जा सकती है जो घन एकत्र के लिए समारोह के मान से अधिक है तो केप्लर अनुमान सिद्ध हो जाएगा जो लगभग 100,000 रैखिक समस्याओं को हल करने वाले सभी स्थानों के लिए निचली सीमा खोजने के लिए

1996 में अपनी परियोजना की प्रगति को प्रस्तुत करते समय हेल्स ने कहा कि यह अंत दृष्टि में था लेकिन इसे पूरा होने में एक या दो साल लग सकते हैं अगस्त 1998 में हेल्स ने घोषणा की कि प्रमाण पूरा हो गया था उस समय इसमें 250 पृष्ठों के नोट और 3 गीगाबाइट कंप्यूटर डेटा और परिणाम सम्मिलित थे।

प्रमाण की असामान्य प्रकृति के बाद गणित के इतिहास के संपादक इसे प्रकाशित करने के लिए सहमत हुए तथा इसे बारह रेफरी के एक पैनल द्वारा स्वीकार किया गया 2003 में चार साल के काम के बाद रेफरी के पैनल के प्रमुख गेबोर फेजेस टोथ ने बताया कि पैनल प्रमाण की शुद्धता के बारे में 99 प्रतिशत निश्चित था लेकिन वे सभी कंप्यूटर गणनाओं की शुद्धता को प्रमाणित नहीं कर सके।

[[#CITEREF|]] हील्स 2005 ने अपने प्रमाण के गैर-कंप्यूटर भाग का विस्तार से वर्णन करते हुए एक 100-पृष्ठ का पेपर प्रकाशित किया [[#CITEREF|]] हील्स फॉर्मेट 2006 के बाद के कई पत्रों ने अभिकलन भागों का वर्णन किया हेल्स और फर्ग्यूसन ने 2009 के लिए फुलकर्सन पुरस्कार प्राप्त किया।

एक औपचारिक प्रमाण

जनवरी 2003 में हेल्स ने केपलर अनुमान का पूर्ण औपचारिक प्रमाण प्रस्तुत करने के लिए एक सहयोगी परियोजना की शुरुआत की घोषणा की इसका उद्देश्य एक औपचारिक प्रमाण बनाकर प्रमाण की वैधता के बारे में किसी भी शेष अनिश्चितता को दूर करना था जिसे स्वचालित सबूत जाँच सॉफ़्टवेयर जैसे एचओएल विद्युत और इसाबेल सहायक द्वारा सत्यापित किया जा सकता है इस परियोजना को फ्लाई स्पेक या कीट के मल मूत्रों द्वारा बनाया गया छोटा सा स्थान कहा जाता है केप्लर के औपचारिक प्रमाण के लिए एफ पी और के सर्वप्रथम[when?] हेल्स ने अनुमान लगाया कि एक पूर्ण औपचारिक प्रमाण तैयार करने में लगभग 20 वर्षों का कार्य चलेगा हेल्स ने 2012 में औपचारिक प्रमाण के लिए एक ढ़ॉचा प्रकाशित किया [5] परियोजना के पूरा होने की घोषणा 10 अगस्त 2014 को की गई थी जबकि[6] जनवरी 2015 में हेल्स और 21 सहयोगियों ने केपलर अनुमान का एक औपचारिक प्रमाण शीर्षक से एक पेपर पोस्ट किया जिसमें अनुमान को दिखाने का दावा किया गया था [7] 2017 में गणित के फोरम जर्नल द्वारा औपचारिक प्रमाण स्वीकार किया गया था।[1]


संबंधित समस्याएं

एक्सल थ्यू की प्रमेय नियमित षटकोणीय एकत्र विमान है इसमें सबसे घने वृत्त एकत्र घनत्व हैं π12.

केप्लर अनुमान का द्वि-आयामी एनालॉग प्रमाण प्राथमिक है हेंक और ज़िग्लर ने इस परिणाम का श्रेय 1773 में लाग्रेंज को दिया तथा
2010 से चाउ और चुंग द्वारा एक सरल प्रमाण बिंदुओं के समूह के त्रिभुज का उपयोग करता है जो एक संतृप्त वृत्त के केंद्र हैं।[8]

षटकोणीय मधुकोश अनुमान समान क्षेत्रों में विमान का सबसे कुशल विभाजन नियमित षटकोणीय फर्श है[9]

जो थू के प्रमेय से संबंधित है

द्वादश फलक अनुमान बराबर गोले के एकत्र में एक गोले के वोरोनोई आरेख का आयतन कम से कम एक नियमित द्वादश फलक का आयतन होता है जिसमें अंतःत्रिज्या 1 का प्रमाण [10] जिसके लिए उन्हें एक स्नातक छात्र द्वारा गणित में उत्कृष्ट शोध के लिए 1999 का फ्रैंक और ब्रेनी मॉर्गन पुरस्कार मिला।

एक संबंधित समस्या जिसका प्रमाण केप्लर अनुमान के हेल्स के प्रमाण के समान तकनीकों का उपयोग करता है 1950 के दशक में एल. फेजेस टोथ द्वारा अनुमान लगाया गया है कि

वीयर फेलन संरचना केल्विन अनुमान 3 आयामों में सबसे कुशल फोम इसे केल्विन संरचना द्वारा हल करने का अनुमान लगाया गया था और यह व्यापक रूप से 100 से अधिक वर्षों तक माना जाता था जब तक कि 1993 में संरचना की खोज से अस्वीकृत हो गया तथा संरचना की आश्चर्यजनक खोज और केल्विन अनुमान का खंडन हेल्स के केप्लर अनुमान के प्रमाण को स्वीकार करने में सावधानी का एक कारण है।

उच्च आयामों में गोलाकार पैकिंग
2016 में मरीना वियाज़ोव्स्का ने आयाम 8 और 24 में क्षेत्र के प्रमाण की घोषणा की [11] जबकि 1, 2, 3, 8, और 24 के अलावा अन्य आयामों में कुछ क्षेत्र के एकत्र प्रश्न अभी भी खुला हैं।

उलाम का एकत्रित अनुमान यह अज्ञात है कि क्या कोई उत्तल ठोस है जिसका घनत्व गोले के घनत्व से कम है।

संदर्भ

  1. 1.0 1.1 Hales, Thomas; Adams, Mark; Bauer, Gertrud; Dang, Tat Dat; Harrison, John; Hoang, Le Truong; Kaliszyk, Cezary; Magron, Victor; McLaughlin, Sean; Nguyen, Tat Thang; Nguyen, Quang Truong; Nipkow, Tobias; Obua, Steven; Pleso, Joseph; Rute, Jason; Solovyev, Alexey; Ta, Thi Hoai An; Tran, Nam Trung; Trieu, Thi Diep; Urban, Josef; Vu, Ky; Zumkeller, Roland (29 May 2017). "A Formal Proof of the Kepler Conjecture". Forum of Mathematics, Pi. 5: e2. doi:10.1017/fmp.2017.1.
  2. Li, Shuixiang; Zhao, Liang; Liu, Yuewu (April 2008). "मनमाने आकार के कंटेनर में रैंडम स्फेयर पैकिंग का कंप्यूटर सिमुलेशन". Computers, Materials and Continua. 7: 109–118.
  3. Leutwyler, Kristin (1998-09-14). "ढेर उन्हें तंग". Scientific American (in English). Retrieved 2021-11-15.
  4. Singh, Simon (1997). फर्मेट की अंतिम प्रमेय. New York: Walker. ISBN 978-0-80271-331-5.
  5. Hales, Thomas C. (2012). Dense Sphere Packings: A Blueprint for Formal Proofs. ISBN 978-0-521-61770-3. {{cite book}}: |journal= ignored (help)
  6. "प्रोजेक्ट फ्लाईस्पेक". Google Code.
  7. Hales, Thomas; et al. (9 January 2015). "केपलर अनुमान का एक औपचारिक प्रमाण". arXiv:1501.02155 [math.MG].
  8. Chang, Hai-Chau; Wang, Lih-Chung (22 September 2010). "सर्कल पैकिंग पर थू के प्रमेय का एक सरल प्रमाण". arXiv:1009.4322 [math.MG].
  9. Hales, Thomas C. (20 May 2002). "मधुकोश अनुमान". arXiv:math/9906042.
  10. https://arxiv.org/math/9811079
  11. Klarreich, Erica (March 30, 2016), "Sphere Packing Solved in Higher Dimensions", Quanta Magazine



प्रकाशन

बाहरी संबंध