मार्टिंगेल (संभाव्यता सिद्धांत): Difference between revisions

From Vigyanwiki
No edit summary
 
(7 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{Short description|Model in probability theory}}
{{Short description|Model in probability theory}}
{{For|the martingale betting strategy|martingale (betting system)}}
{{For|मार्टिंगेल बेटिंग की रणनीति|मार्टिंगेल (बेटिंग सिस्टम)}}


संभाव्यता सिद्धांत में, एक मार्टिंगेल यादृच्छिक चर (यानी, एक स्टोकेस्टिक प्रक्रिया) का [[अनुक्रम]] है, जिसके लिए, किसी विशेष समय पर, अनुक्रम में अगले मूल्य की [[सशर्त अपेक्षा]] सभी पूर्व मूल्यों के बावजूद वर्तमान मूल्य के बराबर होती है।
संभाव्यता सिद्धांत में, मार्टिंगेल यादृच्छिक चर (अर्थात, स्टोकेस्टिक प्रक्रिया) का [[अनुक्रम]] है | जिसके लिए, किसी विशेष समय पर, अनुक्रम में अगले मूल्य की [[सशर्त अपेक्षा]] सभी पूर्व मूल्य के अतिरिक्त वर्तमान मूल्य के समान होती है।[[Image:HittingTimes1.png|thumb|340px|रुकी हुई प्रक्रिया#ब्राउनियन गति मार्टिंगेल का उदाहरण है। यह दिवालिएपन की संभावना के साथ एक समान सिक्का-टॉस बेटिंग का मॉडल कर सकता है।]]
[[Image:HittingTimes1.png|thumb|340px|रुकी हुई प्रक्रिया#ब्राउनियन गति मार्टिंगेल का एक उदाहरण है। यह दिवालिएपन की संभावना के साथ एक समान सिक्का-टॉस सट्टेबाजी का मॉडल कर सकता है।]]


== इतिहास ==
== इतिहास ==
मूल रूप से, [[मार्टिंगेल (सट्टेबाजी प्रणाली)]] [[सट्टेबाजी की रणनीति]] के एक वर्ग को संदर्भित करता है जो 18 वीं शताब्दी के [[फ्रांस]] में लोकप्रिय था।<ref>{{cite book| first=N. J. |last=Balsara|title=वायदा व्यापारियों के लिए धन प्रबंधन रणनीतियाँ|publisher= Wiley Finance|year= 1992| isbn =978-0-471-52215-7 |page=[https://archive.org/details/moneymanagements00bals/page/122 122]|url=https://archive.org/details/moneymanagements00bals| url-access=registration | quote=martingale. }}</ref><ref>{{cite journal|url=http://www.jehps.net/juin2009/Mansuy.pdf|title=शब्द "मार्टिंगेल" की उत्पत्ति|last1=Mansuy|first1=Roger|date=June 2009|volume=5|number=1|journal=Electronic Journal for History of Probability and Statistics|access-date=2011-10-22|archive-url=https://web.archive.org/web/20120131103618/http://www.jehps.net/juin2009/Mansuy.pdf|archive-date=2012-01-31|url-status=live}}</ref> इन रणनीतियों में से सबसे सरल एक गेम के लिए डिज़ाइन की गई थी जिसमें [[जुआरी]] अपनी हिस्सेदारी जीतता है यदि एक सिक्का ऊपर आता है और अगर सिक्का ऊपर आता है तो उसे खो देता है। रणनीति में जुआरी को हर हार के बाद अपनी शर्त को दोगुना करने के लिए कहा गया था ताकि पहली जीत पिछले सभी नुकसानों की भरपाई कर सके और साथ ही मूल हिस्सेदारी के बराबर लाभ जीत सके। जैसे-जैसे जुआरी का धन और उपलब्ध समय संयुक्त रूप से अनंत तक पहुंचता है, अंतत: फ़्लिपिंग हेड्स की उनकी संभावना 1 तक पहुंच जाती है, जिससे मार्टिंगेल सट्टेबाजी की रणनीति लगभग निश्चित प्रतीत होती है। हालाँकि, दांव की [[घातीय वृद्धि]] अंततः सीमित बैंकरोल के कारण अपने उपयोगकर्ताओं को दिवालिया कर देती है। रुकी हुई प्रक्रिया#ब्राउनियन गति, जो मार्टिंगेल प्रक्रिया है, का उपयोग ऐसे खेलों के प्रक्षेपवक्र को मॉडल करने के लिए किया जा सकता है।
मूल रूप से, [[मार्टिंगेल (सट्टेबाजी प्रणाली)|मार्टिंगेल (बेटिंग सिस्टम)]] [[सट्टेबाजी की रणनीति|बेटिंग की रणनीति]] के वर्ग को संदर्भित करता है | जो 18 वीं शताब्दी के [[फ्रांस]] में लोकप्रिय था।<ref>{{cite book| first=N. J. |last=Balsara|title=वायदा व्यापारियों के लिए धन प्रबंधन रणनीतियाँ|publisher= Wiley Finance|year= 1992| isbn =978-0-471-52215-7 |page=[https://archive.org/details/moneymanagements00bals/page/122 122]|url=https://archive.org/details/moneymanagements00bals| url-access=registration | quote=martingale. }}</ref><ref>{{cite journal|url=http://www.jehps.net/juin2009/Mansuy.pdf|title=शब्द "मार्टिंगेल" की उत्पत्ति|last1=Mansuy|first1=Roger|date=June 2009|volume=5|number=1|journal=Electronic Journal for History of Probability and Statistics|access-date=2011-10-22|archive-url=https://web.archive.org/web/20120131103618/http://www.jehps.net/juin2009/Mansuy.pdf|archive-date=2012-01-31|url-status=live}}</ref> इन रणनीतियों में से सबसे सरल गेम के लिए रचना की गई थी जिसमें [[जुआरी]] अपनी भागीदारी जीतता है | यदि सिक्का ऊपर आता है और यदि सिक्का ऊपर आता है तो उसे खो देता है। रणनीति में जुआरी को प्रत्येक हार के बाद अपनी नियम को दोगुना करने के लिए कहा गया था | जिससे पहली जीत पिछले सभी हानि की भरपाई कर सके और साथ ही मूल भागीदारी के समान लाभ जीत सके। जैसे-जैसे जुआरी का धन और उपलब्ध समय संयुक्त रूप से अनंत तक पहुंचता है | अंतत: फ़्लिपिंग हेड्स की उनकी संभावना 1 तक पहुंच जाती है | जिससे मार्टिंगेल बेटिंग की रणनीति लगभग निश्चित प्रतीत होती है। चूँकि, दांव की [[घातीय वृद्धि]] अंततः सीमित बैंकरोल के कारण अपने उपयोगकर्ताओं को दिवालिया कर देती है। रुकी हुई प्रक्रिया ब्राउनियन गति, जो मार्टिंगेल प्रक्रिया है, जिसका उपयोग ऐसे खेलों के प्रक्षेपवक्र को मॉडल करने के लिए किया जा सकता है।


संभाव्यता सिद्धांत में मार्टिंगेल की अवधारणा पॉल लेवी (गणितज्ञ) | पॉल लेवी द्वारा 1934 में पेश की गई थी, हालांकि उन्होंने इसका नाम नहीं लिया। मार्टिंगेल शब्द बाद में किसके द्वारा पेश किया गया था {{harvtxt|Ville|1939}}, जिन्होंने परिभाषा को निरंतर मार्टिंगेल्स तक विस्तारित किया। सिद्धांत का अधिकांश मूल विकास दूसरों के बीच [[जोसफ लियो डूब]] द्वारा किया गया था। उस काम के लिए प्रेरणा का एक हिस्सा मौके के खेल में सफल सट्टेबाजी की रणनीतियों की असंभवता को दिखाना था।
संभाव्यता सिद्धांत में मार्टिंगेल की अवधारणा पॉल लेवी (गणितज्ञ) द्वारा 1934 में प्रस्तुत की गई थी | चूँकि उन्होंने इसका नाम नहीं लिया है। {{harvtxt|विल|1939}} मार्टिंगेल शब्द बाद में किसके द्वारा प्रस्तुत किया गया था | जिन्होंने परिभाषा को निरंतर मार्टिंगेल्स तक विस्तारित किया। सिद्धांत का अधिकांश मूल विकास दूसरों के बीच [[जोसफ लियो डूब]] द्वारा किया गया था। उस काम के लिए प्रेरणा का एक भाग मौके के खेल में सफल बेटिंग की रणनीतियों की असंभवता को दिखाना था।


== परिभाषाएँ ==
== परिभाषाएँ ==
[[असतत-समय स्टोकेस्टिक प्रक्रिया]] की एक मूल परिभाषा | डिस्क्रीट-टाइम मार्टिंगेल असतत-टाइम स्टोचैस्टिक प्रक्रिया है (अर्थात, यादृच्छिक चर का एक क्रम) ''X''<sub>1</sub>, एक्स<sub>2</sub>, एक्स<sub>3</sub>, ... जो किसी भी समय n के लिए संतुष्ट करता है,
[[असतत-समय स्टोकेस्टिक प्रक्रिया]] की मूल परिभाषा डिस्क्रीट-टाइम मार्टिंगेल असतत-टाइम स्टोचैस्टिक प्रक्रिया है (अर्थात, यादृच्छिक चर का क्रम) ''X''<sub>1</sub>, ''X''<sub>2</sub>, ''X''<sub>3</sub>, ... जो किसी भी समय n के लिए संतुष्ट करता है |


:<math>\mathbf{E} ( \vert X_n \vert )< \infty </math>
:<math>\mathbf{E} ( \vert X_n \vert )< \infty </math>
:<math>\mathbf{E} (X_{n+1}\mid X_1,\ldots,X_n)=X_n.</math>
:<math>\mathbf{E} (X_{n+1}\mid X_1,\ldots,X_n)=X_n.</math>
अर्थात्, पिछले सभी अवलोकनों को देखते हुए, अगले अवलोकन का [[सशर्त अपेक्षित मूल्य]], सबसे हाल के अवलोकन के बराबर है।
अर्थात्, पिछले सभी अवलोकनों को देखते हुए, अगले अवलोकन का [[सशर्त अपेक्षित मूल्य]], सबसे हाल के अवलोकन के समान है।


=== दूसरे अनुक्रम के संबंध में मार्टिंगेल अनुक्रम ===
=== दूसरे अनुक्रम के संबंध में मार्टिंगेल अनुक्रम ===


अधिक सामान्यतः, एक अनुक्रम वाई<sub>1</sub>, और<sub>2</sub>, और<sub>3</sub>... को अन्य क्रम ''X'' के संबंध में मार्टिंगेल कहा जाता है<sub>1</sub>, एक्स<sub>2</sub>, एक्स<sub>3</sub>... अगर सभी के लिए n
अधिक सामान्यतः, अनुक्रम ''Y''<sub>1</sub>, ''Y''<sub>2</sub>, ''Y''<sub>3</sub>... को अन्य क्रम ''X<sub>1</sub>, X<sub>2</sub>, X<sub>3</sub>...''  के संबंध में मार्टिंगेल कहा जाता है यदि सभी n के लिए  


:<math>\mathbf{E} ( \vert Y_n \vert )< \infty </math>
:<math>\mathbf{E} ( \vert Y_n \vert )< \infty </math>
:<math>\mathbf{E} (Y_{n+1}\mid X_1,\ldots,X_n)=Y_n.</math>
:<math>\mathbf{E} (Y_{n+1}\mid X_1,\ldots,X_n)=Y_n.</math>
इसी तरह, एक सतत समय | निरंतर-समय मार्टिंगेल स्टोकास्टिक प्रक्रिया '' एक्स के संबंध में<sub>t</sub>एक स्टोकेस्टिक प्रक्रिया वाई है<sub>t</sub>ऐसा कि सभी के लिए टी
इसी तरह, सतत समय निरंतर-समय मार्टिंगेल स्टोकास्टिक प्रक्रिया ''X<sub>t</sub> के संबंध में एक स्टोकेस्टिक प्रक्रिया Y<sub>t</sub> है | ऐसा कि सभी टी के लिए''


:<math>\mathbf{E} ( \vert Y_t \vert )<\infty </math>
:<math>\mathbf{E} ( \vert Y_t \vert )<\infty </math>
:<math>\mathbf{E} ( Y_{t} \mid \{ X_{\tau}, \tau \leq s \} ) = Y_s\quad \forall s \le t.</math>
:<math>\mathbf{E} ( Y_{t} \mid \{ X_{\tau}, \tau \leq s \} ) = Y_s\quad \forall s \le t.</math>
यह संपत्ति को व्यक्त करता है कि समय टी पर अवलोकन की सशर्त अपेक्षा, सभी अवलोकनों को समय तक दिया जाता है <math> s </math>, समय s पर अवलोकन के बराबर है (बेशक, बशर्ते कि s ≤ t)। ध्यान दें कि दूसरी संपत्ति का तात्पर्य है <math>Y_n</math> के संबंध में मापने योग्य है <math>X_1 \dots X_n</math>.
यह स्थिति को व्यक्त करता है कि समय t पर अवलोकन की सशर्त अपेक्षा, समय s सभी अवलोकनों को समय तक दिया जाता है | समय <math> s </math>, पर अवलोकन के समान है (निश्चित, परंतु कि s ≤ t)। ध्यान दें कि दूसरी स्थिति का तात्पर्य है कि <math>Y_n</math> <math>X_1 \dots X_n</math> के संबंध में मापने योग्य है |


=== सामान्य परिभाषा ===
=== सामान्य परिभाषा ===


पूर्ण सामान्यता में, एक स्टोकेस्टिक प्रक्रिया <math>Y:T\times\Omega\to S</math> [[बनच स्थान]] में मान लेना <math>S</math> आदर्श के साथ <math>\lVert \cdot \rVert_{S}</math> फिल्ट्रेशन के संबंध में मार्टिंगेल है <math>\Sigma_*</math> और [[संभाव्यता माप]] <math>\mathbb P</math>अगर
पूर्ण सामान्यता में, स्टोकेस्टिक प्रक्रिया <math>Y:T\times\Omega\to S</math>   [[बनच स्थान|बनच स्पेस]] में मूल्य लेना <math>S</math> आदर्श के साथ <math>\lVert \cdot \rVert_{S}</math> फिल्ट्रेशन के संबंध में मार्टिंगेल है <math>\Sigma_*</math> और [[संभाव्यता माप]] <math>\mathbb P</math>यदि
* एस<sub></sub> अंतर्निहित [[संभाव्यता स्थान]] (Ω, Σ,<math>\mathbb P</math>);
 
* Y निस्पंदन Σ के लिए [[अनुकूलित प्रक्रिया]] है<sub>∗</sub>, यानी, [[ सूचकांक सेट ]] टी में प्रत्येक टी के लिए, यादृच्छिक चर वाई<sub>t</sub>एक Σ है<sub>''t''</sub>-[[मापने योग्य समारोह]];
पूर्ण सामान्यता में, मानक <math>Y:T\times\Omega\to S</math> के साथ बैनाच स्पेस <math>S</math> में मान लेते हुए एक स्टोचैस्टिक प्रक्रिया <math>\lVert \cdot \rVert_{S}</math> फिल्ट्रेशन <math>\Sigma_*</math> के संबंध में मार्टिंगेल है और [[संभाव्यता माप]] <math>\mathbb P</math> यदि
* प्रत्येक टी के लिए, वाई<sub>t</sub>एलपी स्पेस में स्थित है | एल<sup>पी</सुप> स्पेस एल<sup>1</sup>(ओह, एस<sub>''t''</sub>, <math>\mathbb P</math>; सी), यानी
*Σ∗ अंतर्निहित [[संभाव्यता स्थान|संभाव्यता स्पेस]] (Ω, Σ,<math>\mathbb P</math>); का एक निस्पंदन है |
*Y को फिल्ट्रेशन Σ अर्थात [[ सूचकांक सेट |सूचकांक समुच्चय]] T में प्रत्येक t के लिए [[अनुकूलित प्रक्रिया]] गया है | यादृच्छिक चर Y<sub>t</sub> एक Σ<sub>t</sub> मापने योग्य फलन है |
*प्रत्येक t Y<sub>t</sub> के लिए Lp स्थान L1(Ω, Σt, <math>\mathbb P</math> | अर्थात में निहित है।
::<math>\mathbf{E}_{\mathbb{P}} (\lVert Y_{t} \rVert_{S}) < + \infty;</math>
::<math>\mathbf{E}_{\mathbb{P}} (\lVert Y_{t} \rVert_{S}) < + \infty;</math>
* सभी s और t के साथ s < t और सभी F ∈ Σ के लिए<sub>''s''</sub>,
* सभी s और t<sub>''s''</sub>, के साथ s < t और सभी F ∈ Σ के लिए |
::<math>\mathbf{E}_{\mathbb{P}}  \left([Y_t-Y_s]\chi_F\right) =0,</math>
::<math>\mathbf{E}_{\mathbb{P}}  \left([Y_t-Y_s]\chi_F\right) =0,</math>
: जहां χ<sub>F</sub>घटना एफ के [[सूचक समारोह]] को दर्शाता है। ग्रिमेट और स्टिर्जेकर की संभाव्यता और यादृच्छिक प्रक्रियाओं में, इस अंतिम स्थिति को इस रूप में दर्शाया गया है
: जहां χ<sub>F</sub> घटना एफ के [[सूचक समारोह|सूचक फलन]] को दर्शाता है। ग्रिमेट और स्टिर्जेकर की संभाव्यता और यादृच्छिक प्रक्रियाओं में, इस अंतिम स्थिति को इस रूप में दर्शाया गया है |
::<math>Y_s = \mathbf{E}_{\mathbb{P}} ( Y_t \mid \Sigma_s ),</math>
::<math>Y_s = \mathbf{E}_{\mathbb{P}} ( Y_t \mid \Sigma_s ),</math>
: जो सशर्त अपेक्षा का एक सामान्य रूप है।<ref>{{cite book|first1=G. |last1=Grimmett |first2= D.|last2= Stirzaker|title=संभाव्यता और यादृच्छिक प्रक्रियाएं|edition= 3rd|publisher= Oxford University Press|year= 2001| isbn =978-0-19-857223-7}}</ref>
: जो सशर्त अपेक्षा का सामान्य रूप है।<ref>{{cite book|first1=G. |last1=Grimmett |first2= D.|last2= Stirzaker|title=संभाव्यता और यादृच्छिक प्रक्रियाएं|edition= 3rd|publisher= Oxford University Press|year= 2001| isbn =978-0-19-857223-7}}</ref>
यह ध्यान रखना महत्वपूर्ण है कि मार्टिंगेल होने की संपत्ति में निस्पंदन और संभाव्यता माप दोनों शामिल हैं (जिसके संबंध में अपेक्षाएं ली गई हैं)। यह संभव है कि वाई एक माप के संबंध में मार्टिंगेल हो सकता है लेकिन दूसरा नहीं; गिरसानोव प्रमेय एक उपाय खोजने का एक तरीका प्रदान करता है जिसके संबंध में एक इटो प्रक्रिया मार्टिंगेल है।
यह ध्यान रखना महत्वपूर्ण है कि मार्टिंगेल होने की स्थिति में निस्पंदन और संभाव्यता माप दोनों सम्मिलित हैं (जिसके संबंध में अपेक्षाएं ली गई हैं)। यह संभव है कि Y माप के संबंध में मार्टिंगेल हो सकता है | किन्तु दूसरा नहीं गिरसानोव प्रमेय उपाय खोजने का विधि प्रदान करता है | जिसके संबंध में इटो प्रक्रिया मार्टिंगेल है।


बनच स्पेस सेटिंग में सशर्त अपेक्षा को ऑपरेटर नोटेशन में भी दर्शाया गया है <math>\mathbf{E}^{\Sigma_s} Y_t</math>.<ref>{{cite book|last=Bogachev|first=Vladimir|title=गाऊसी उपाय|publisher=American Mathematical Society|pages=372–373|year=1998|isbn=978-1470418694}}</ref>
बनच स्पेस सेटिंग <math>\mathbf{E}^{\Sigma_s} Y_t</math> में सशर्त अपेक्षा को संचालक नोटेशन में भी दर्शाया गया है |<ref>{{cite book|last=Bogachev|first=Vladimir|title=गाऊसी उपाय|publisher=American Mathematical Society|pages=372–373|year=1998|isbn=978-1470418694}}</ref>


=== मार्टिंगेल्स के उदाहरण ===


== मार्टिंगेल्स == के उदाहरण
=== निष्पक्ष यादृच्छिक चलना (किसी भी आयाम में) मार्टिंगेल का उदाहरण है। ===
* एक निष्पक्ष यादृच्छिक चलना (किसी भी आयाम में) मार्टिंगेल का एक उदाहरण है।
* जुआरी का भाग्य (पूंजी) मार्टिंगेल है | यदि जुआरी द्वारा खेले जाने वाले सभी बेटिंग के खेल निष्पक्ष हैं। अधिक विशिष्ट होने के लिए: मूल्य लीजिए X<sub>n</sub> एक निष्पक्ष सिक्के के उछाल के बाद जुआरी का भाग्य है | जहां जुआरी $ 1 जीतता है | यदि सिक्का शीर्ष पर आता है और $ 1 खो देता है | यदि यह पूंछ में आता है। अगले परीक्षण के बाद जुआरी का सशर्त अपेक्षित भाग्य, इतिहास को देखते हुए, उनके वर्तमान भाग्य के समान है। यह क्रम इस प्रकार मार्टिंगेल है।
* एक जुआरी का भाग्य (पूंजी) एक मार्टिंगेल है यदि जुआरी द्वारा खेले जाने वाले सभी सट्टेबाजी के खेल निष्पक्ष हैं। अधिक विशिष्ट होने के लिए: मान लीजिए X<sub>n</sub>एक निष्पक्ष सिक्के के उछाल के बाद एक जुआरी का भाग्य है, जहां जुआरी $ 1 जीतता है यदि सिक्का शीर्ष पर आता है और $ 1 खो देता है यदि यह पूंछ में आता है। अगले परीक्षण के बाद जुआरी का सशर्त अपेक्षित भाग्य, इतिहास को देखते हुए, उनके वर्तमान भाग्य के बराबर है। यह क्रम इस प्रकार मार्टिंगेल है।
* माना ''Y<sub>n</sub>'' = ''X<sub>n</sub>''<sup>2</sup> − ''n'' जहां X<sub>n</sub> पिछले उदाहरण से जुआरी का भाग्य है। फिर अनुक्रम {y<sub>n</sub>: n = 1, 2, 3, ...} मार्टिंगेल है। इसका उपयोग यह दिखाने के लिए किया जा सकता है कि जुआरी का कुल लाभ या हानि की संख्या के [[वर्गमूल]] के योग या ऋण के बीच सामान्यतः भिन्न होता है।
* माना वाई<sub>n</sub>= एक्स<sub>n</sub><sup>2</sup> − n जहां X<sub>n</sub>पिछले उदाहरण से जुआरी का भाग्य है। फिर अनुक्रम {वाई<sub>n</sub>: n = 1, 2, 3, ...} मार्टिंगेल है। इसका उपयोग यह दिखाने के लिए किया जा सकता है कि जुआरी का कुल लाभ या हानि कदमों की संख्या के [[वर्गमूल]] के योग या ऋण के बीच मोटे तौर पर भिन्न होता है।
*([[अब्राहम डी मोइवरे]] के मार्टिंगेल) अब मान लीजिए कि सिक्का अनुचित है अर्थात पक्षपाती है | संभावना p के ऊपर आने की संभावना है और प्रायिकता q = 1 - p पूंछ है।
* ([[अब्राहम डी मोइवरे]] के मार्टिंगेल) अब मान लीजिए कि सिक्का अनुचित है, यानी, पक्षपाती, शीर्ष आने की संभावना पी और पूंछ की संभावना q=1 − p। होने देना


::<math>X_{n+1}=X_n\pm 1</math>
::<math>X_{n+1}=X_n\pm 1</math>
:साथ में + सिर के मामले में और - पूंछ के मामले में। होने देना
:"हेड्स" के स्थिति में "+" और "टेल्स" के स्थिति में "-" के साथ होने देना


::<math>Y_n=(q/p)^{X_n}.</math>
::<math>Y_n=(q/p)^{X_n}.</math>
: तब { वाई<sub>n</sub>: n = 1, 2, 3, ...} {X के संबंध में मार्टिंगेल है<sub>n</sub>: एन = 1, 2, 3, ...}इसे दिखाने के लिए
:फिर {Y<sub>n</sub>: n = 1, 2, 3, ...} {X<sub>n</sub>: n = 1, 2, 3, ...} के संबंध में मार्टिंगेल है, इसे दिखाने के लिए
:: <math>
:: <math>
\begin{align}
\begin{align}
Line 64: Line 65:
\end{align}
\end{align}
</math>
</math>
* पोल्या के कलश में कई अलग-अलग रंग के पत्थर होते हैं; प्रत्येक पुनरावृत्त विधि में कलश से एक कंचा यादृच्छिक रूप से चुना जाता है और उसी रंग के कई अन्य मार्बल से प्रतिस्थापित किया जाता है। किसी दिए गए रंग के लिए, उस रंग के कलश में मार्बल का अंश मार्टिंगेल है। उदाहरण के लिए, यदि वर्तमान में 95% मार्बल्स लाल हैं, हालांकि अगले पुनरावृत्ति में दूसरे रंग की तुलना में लाल मार्बल जोड़ने की अधिक संभावना है, यह पूर्वाग्रह इस तथ्य से बिल्कुल संतुलित है कि अधिक लाल मार्बल जोड़ने से अंश बहुत कम बदल जाता है समान संख्या में गैर-लाल कंचे जोड़ने से होगा।
* पोल्या के कलश में कई अलग-अलग रंग के पत्थर होते हैं | प्रत्येक पुनरावृत्त विधि में कलश से कंचा यादृच्छिक रूप से चुना जाता है और उसी रंग के कई अन्य मार्बल से प्रतिस्थापित किया जाता है। किसी दिए गए रंग के लिए, उस रंग के कलश में मार्बल का अंश मार्टिंगेल है। उदाहरण के लिए, यदि वर्तमान में 95% मार्बल्स लाल हैं | चूँकि अगले पुनरावृत्ति में दूसरे रंग की तुलना में लाल मार्बल जोड़ने की अधिक संभावना है, यह पूर्वाग्रह इस तथ्य से बिल्कुल संतुलित है कि अधिक लाल मार्बल जोड़ने से अंश बहुत कम बदल जाता है | समान संख्या में गैर-लाल कंचे जोड़ने से होता है।
* (सांख्यिकी में [[संभावना-अनुपात परीक्षण]]) एक यादृच्छिक चर X को या तो प्रायिकता घनत्व f या किसी भिन्न प्रायिकता घनत्व g के अनुसार वितरित किया जाता है। एक [[यादृच्छिक नमूना]] X<sub>1</sub>, ..., एक्स<sub>''n''</sub> लिया जाता है। चलो वाई<sub>''n''</sub> संभावना अनुपात हो
*(सांख्यिकी में [[संभावना-अनुपात परीक्षण]]) एक यादृच्छिक चर X को या तो प्रायिकता घनत्व f या एक भिन्न प्रायिकता घनत्व g के अनुसार वितरित किया जाता है। एक [[यादृच्छिक नमूना]] X1, ..., Xn लिया जाता है। बता दें कि Y<sub>''n''</sub> "संभावना अनुपात" है |


::<math>Y_n=\prod_{i=1}^n\frac{g(X_i)}{f(X_i)}</math>
::<math>Y_n=\prod_{i=1}^n\frac{g(X_i)}{f(X_i)}</math>
:यदि X वास्तव में g के बजाय घनत्व f के अनुसार वितरित किया जाता है, तो { Y<sub>n</sub>: n = 1, 2, 3, ...} {एक्स के संबंध में मार्टिंगेल है<sub>n</sub>: n = 1, 2, 3, ...}।
:यदि X वास्तव में g के अतिरिक्त घनत्व f के अनुसार वितरित किया जाता है, तो { Y<sub>n</sub>: n = 1, 2, 3, ...} {X<sub>n</sub>: n = 1, 2, 3, ... के संबंध में मार्टिंगेल है}।
[[Image:Martingale1.svg|thumb|250px|सॉफ्टवेयर-निर्मित ज़रेबंद श्रृंखला।]]* एक पारिस्थितिक समुदाय में (प्रजातियों का एक समूह जो एक विशेष ट्रॉफिक स्तर में हैं, एक स्थानीय क्षेत्र में समान संसाधनों के लिए प्रतिस्पर्धा कर रहे हैं), निश्चित आकार की किसी विशेष प्रजाति के व्यक्तियों की संख्या (असतत) समय का एक कार्य है, और हो सकता है यादृच्छिक चर के अनुक्रम के रूप में देखा जाना चाहिए। यह अनुक्रम जैव विविधता और बायोग्राफी के एकीकृत तटस्थ सिद्धांत के तहत मार्टिंगेल है।
[[Image:Martingale1.svg|thumb|250px|सॉफ्टवेयर-निर्मित मार्टिंगेल श्रृंखला।]]* पारिस्थितिक समुदाय में (प्रजातियों का समूह जो एक विशेष ट्रॉफिक स्तर में हैं, स्थानीय क्षेत्र में समान संसाधनों के लिए प्रतिस्पर्धा कर रहे हैं), निश्चित आकार की किसी विशेष प्रजाति के व्यक्तियों की संख्या (असतत) समय का कार्य है, और हो सकता है यादृच्छिक चर के अनुक्रम के रूप में देखा जाना चाहिए। यह अनुक्रम जैव विविधता और बायोग्राफी के एकीकृत तटस्थ सिद्धांत के अनुसार मार्टिंगेल है।
*यदि {एन<sub>t</sub>: t ≥ 0} तीव्रता λ के साथ [[पॉइसन प्रक्रिया]] है, फिर मुआवजा पोइसन प्रक्रिया { N<sub>t</sub>− λt : t ≥ 0 } एक सतत-समय मार्टिंगेल है जिसमें विच्छिन्नता का वर्गीकरण है|दाएं-निरंतर/बाएं-सीमा नमूना पथ
*यदि {N<sub>t</sub>: t ≥ 0} तीव्रता λ के साथ [[पॉइसन प्रक्रिया]] है, फिर मुआवजा पोइसन प्रक्रिया { N<sub>t</sub>− λt : t ≥ 0 } सतत-समय मार्टिंगेल है | जिसमें विच्छिन्नता का वर्गीकरण है| दाएं-निरंतर/बाएं-सीमा नमूना पथ है |


* वाल्ड का मार्टिंगेल
* वाल्ड का मार्टिंगेल


* <math>d</math>-आयामी प्रक्रिया <math>M=(M^{(1)},\dots,M^{(d)})</math> किसी जगह में <math>S^d</math> में मार्टिंगेल है <math>S^d</math> यदि प्रत्येक घटक <math>T_i(M)=M^{(i)}</math> में एक आयामी मार्टिंगेल है <math>S</math>.
* <math>d</math>-आयामी प्रक्रिया <math>M=(M^{(1)},\dots,M^{(d)})</math> किसी स्पेस में <math>S^d</math> <math>S^d</math> में मार्टिंगेल है यदि प्रत्येक घटक <math>T_i(M)=M^{(i)}</math> <math>S</math> में आयामी मार्टिंगेल है |


== सबमार्टिंगलेस, सुपरमार्टिंगेल्स, और हार्मोनिक कार्यों से संबंध==
== सबमार्टिंगलेस, सुपरमार्टिंगेल्स, और हार्मोनिक कार्यों से संबंध==


मार्टिंगेल के दो लोकप्रिय सामान्यीकरण हैं जिनमें ऐसे मामले भी शामिल हैं जब वर्तमान अवलोकन X<sub>n</sub>जरूरी नहीं कि भविष्य की सशर्त अपेक्षा [एक्स<sub>''n''+1</sub>| एक्स<sub>1</sub>,...,एक्स<sub>n</sub>] बल्कि इसके बजाय सशर्त अपेक्षा पर एक ऊपरी या निचली सीमा। ये परिभाषाएं मार्टिंगेल सिद्धांत और [[संभावित सिद्धांत]] के बीच संबंध को दर्शाती हैं, जो हार्मोनिक कार्यों का अध्ययन है। ठीक वैसे ही जैसे एक सतत-समय मार्टिंगेल E[X<sub>''t''</sub>| {एक्स<sub>''τ''</sub>: τ ≤ s}] - एक्स<sub>''s''</sub>= 0 ∀s ≤ t, एक हार्मोनिक फ़ंक्शन f आंशिक अंतर समीकरण Δf = 0 को संतुष्ट करता है जहां Δ [[लाप्लास ऑपरेटर]] है। एक [[एक प्रकार कि गति]] प्रक्रिया W को देखते हुए<sub>''t''</sub> और एक हार्मोनिक फ़ंक्शन f, परिणामी प्रक्रिया f(W<sub>''t''</sub>) मार्टिंगेल भी है।
मार्टिंगेल के दो लोकप्रिय सामान्यीकरण हैं | जिनमें ऐसे स्थिति भी सम्मिलित हैं जब वर्तमान अवलोकन X<sub>n</sub> आवश्यक नहीं कि भविष्य की सशर्त अपेक्षा ''E''[''X<sub>n</sub>''<sub>+1</sub> | ''X''<sub>1</sub>,...,''X<sub>n</sub>''] किन्तु इसके अतिरिक्त सशर्त अपेक्षा पर ऊपरी या निचली सीमा ये परिभाषाएं मार्टिंगेल सिद्धांत और [[संभावित सिद्धांत]] के बीच संबंध को दर्शाती हैं | जो हार्मोनिक कार्यों का अध्ययन है। ठीक वैसे ही जैसे सतत-समय मार्टिंगेल E[X<sub>''t''</sub>| {X<sub>''τ''</sub>: τ ≤ s}] - X<sub>''s''</sub>= 0 ∀s ≤ t, हार्मोनिक फलन f आंशिक अंतर समीकरण Δf = 0 को संतुष्ट करता है जहां Δ [[लाप्लास ऑपरेटर|लाप्लास संचालक]] है। [[एक प्रकार कि गति]] प्रक्रिया W<sub>''t''</sub> को देखते हुए और हार्मोनिक फलन f, परिणामी प्रक्रिया f(W<sub>''t''</sub>) मार्टिंगेल भी है।
* असतत-समय की सबमार्टिंगेल एक अनुक्रम है <math>X_1,X_2,X_3,\ldots</math> [[इंटीग्रेबल फंक्शन]] का यादृच्छिक चर संतोषजनक
* असतत-समय की सबमार्टिंगेल अनुक्रम है | <math>X_1,X_2,X_3,\ldots</math> [[इंटीग्रेबल फंक्शन|इंटीग्रेबल फलन]] का यादृच्छिक चर संतोषजनक है |
::<math>\operatorname E[X_{n+1}\mid X_1,\ldots,X_n] \ge X_n.</math>
::<math>\operatorname E[X_{n+1}\mid X_1,\ldots,X_n] \ge X_n.</math>
: इसी तरह, एक सतत समय सबमार्टिंगेल संतुष्ट करता है
: इसी तरह, सतत समय सबमार्टिंगेल संतुष्ट करता है |
::<math>\operatorname E[X_t\mid\{X_\tau : \tau \le s\}] \ge X_s \quad \forall s \le t.</math>
::<math>\operatorname E[X_t\mid\{X_\tau : \tau \le s\}] \ge X_s \quad \forall s \le t.</math>
: संभावित सिद्धांत में, एक [[सबहार्मोनिक फ़ंक्शन]] f संतुष्ट करता है Δf ≥ 0। कोई भी सबहार्मोनिक फ़ंक्शन जो एक गेंद की सीमा पर सभी बिंदुओं के लिए एक हार्मोनिक फ़ंक्शन द्वारा ऊपर से घिरा होता है, गेंद के अंदर सभी बिंदुओं के लिए हार्मोनिक फ़ंक्शन द्वारा ऊपर से घिरा होता है। इसी तरह, यदि एक सबमार्टिंगेल और एक मार्टिंगेल की एक निश्चित समय के लिए समान अपेक्षाएं हैं, तो सबमार्टिंगेल का इतिहास मार्टिंगेल के इतिहास से ऊपर की ओर बंधा हुआ है। मोटे तौर पर, [[उपसर्ग]] उप- सुसंगत है क्योंकि वर्तमान अवलोकन X<sub>n</sub>सप्रतिबंध अपेक्षा E[X] से कम (या उसके बराबर) है<sub>n</sub><sub>+1</sub>| एक्स<sub>1</sub>,...,एक्स<sub>n</sub>]। नतीजतन, वर्तमान अवलोकन भविष्य की सशर्त अपेक्षा से नीचे समर्थन प्रदान करता है, और प्रक्रिया भविष्य के समय में बढ़ने लगती है।
: संभावित सिद्धांत में, [[सबहार्मोनिक फ़ंक्शन|सबहार्मोनिक फलन]] f संतुष्ट करता है | Δf ≥ 0। कोई भी सबहार्मोनिक फलन जो गेंद की सीमा पर सभी बिंदुओं के लिए हार्मोनिक फलन द्वारा ऊपर से घिरा होता है | गेंद के अंदर सभी बिंदुओं के लिए हार्मोनिक फलन द्वारा ऊपर से घिरा होता है। इसी तरह, यदि सबमार्टिंगेल और मार्टिंगेल की निश्चित समय के लिए समान अपेक्षाएं हैं, तो सबमार्टिंगेल का इतिहास मार्टिंगेल के इतिहास से ऊपर की ओर बंधा हुआ है। सामान्यतः, [[उपसर्ग]] उप- सुसंगत है | क्योंकि वर्तमान अवलोकन X<sub>n</sub> सप्रतिबंध अपेक्षा E[X<sub>n</sub><sub>+1</sub>] से कम (या उसके समान) है| [''X''<sub>1</sub>,...,''X<sub>n</sub>''] परिणाम स्वरुप, वर्तमान अवलोकन भविष्य की सशर्त अपेक्षा से नीचे समर्थन प्रदान करता है, और प्रक्रिया भविष्य के समय में बढ़ने लगती है।
* समान रूप से, एक असतत-समय 'सुपरमार्टिंगेल' संतुष्ट करता है
* समान रूप से, असतत-समय 'सुपरमार्टिंगेल' संतुष्ट करता है |
::<math>\operatorname E[X_{n+1}\mid X_1,\ldots,X_n] \le X_n.</math>
::<math>\operatorname E[X_{n+1}\mid X_1,\ldots,X_n] \le X_n.</math>
: इसी तरह, एक सतत समय सुपरमार्टिंगेल संतुष्ट करता है
: इसी तरह, सतत समय सुपरमार्टिंगेल संतुष्ट करता है
::<math>\operatorname E[X_t\mid\{X_\tau : \tau \le s\}] \le X_s \quad \forall s \le t.</math>
::<math>\operatorname E[X_t\mid\{X_\tau : \tau \le s\}] \le X_s \quad \forall s \le t.</math>
: संभावित सिद्धांत में, एक [[सुपरहार्मोनिक समारोह]] एफ संतुष्ट करता है Δf ≤ 0। कोई भी सुपरहार्मोनिक फ़ंक्शन जो गेंद की सीमा पर सभी बिंदुओं के लिए हार्मोनिक फ़ंक्शन द्वारा नीचे घिरा हुआ है, गेंद के अंदर सभी बिंदुओं के लिए हार्मोनिक फ़ंक्शन से नीचे घिरा हुआ है। इसी तरह, अगर एक सुपरमार्टिंगेल और एक मार्टिंगेल के पास एक निश्चित समय के लिए समान अपेक्षाएं हैं, तो सुपरमार्टिंगेल का इतिहास मार्टिंगेल के इतिहास से नीचे बंधा हुआ है। मोटे तौर पर, उपसर्ग सुपर- सुसंगत है क्योंकि वर्तमान अवलोकन X<sub>n</sub>सप्रतिबंध अपेक्षा E[X] से अधिक (या बराबर) है<sub>n</sub><sub>+1</sub>| एक्स<sub>1</sub>,...,एक्स<sub>n</sub>]। नतीजतन, वर्तमान अवलोकन भविष्य की सशर्त अपेक्षा से ऊपर से समर्थन प्रदान करता है, और प्रक्रिया भविष्य के समय में कम हो जाती है।
: संभावित सिद्धांत में, [[सबहार्मोनिक फ़ंक्शन|सुपरहार्मोनिक फलन]] f संतुष्ट करता है | Δf ≥ 0। कोई भी सबहार्मोनिक फलन जो गेंद की सीमा पर सभी बिंदुओं के लिए हार्मोनिक फलन द्वारा ऊपर से घिरा होता है | गेंद के अंदर सभी बिंदुओं के लिए हार्मोनिक फलन द्वारा ऊपर से घिरा होता है। इसी तरह, यदि सबमार्टिंगेल और मार्टिंगेल की निश्चित समय के लिए समान अपेक्षाएं हैं, तो सबमार्टिंगेल का इतिहास मार्टिंगेल के इतिहास से ऊपर की ओर बंधा हुआ है। सामान्यतः, [[उपसर्ग]] उप- सुसंगत है | क्योंकि वर्तमान अवलोकन X<sub>n</sub> सप्रतिबंध अपेक्षा E[X<sub>n</sub><sub>+1</sub>] से कम (या उसके समान) है| [''X''<sub>1</sub>,...,''X<sub>n</sub>''] परिणाम स्वरुप, वर्तमान अवलोकन भविष्य की सशर्त अपेक्षा से नीचे समर्थन प्रदान करता है, और प्रक्रिया भविष्य के समय में बढ़ने लगती है।


=== सबमार्टिंगेल्स और सुपरमार्टिंगल्स === के उदाहरण
=== '''सबमार्टिंगेल्स और सुपरमार्टिंगल्स के उदाहरण''' ===
* प्रत्येक मार्टिंगेल एक सबमार्टिंगेल और एक सुपरमार्टिंगेल भी है। इसके विपरीत, कोई भी स्टोकेस्टिक प्रक्रिया जो सबमार्टिंगेल और सुपरमार्टिंगेल दोनों है, मार्टिंगेल है।
* प्रत्येक मार्टिंगेल सबमार्टिंगेल और सुपरमार्टिंगेल भी है। इसके विपरीत, कोई भी स्टोकेस्टिक प्रक्रिया जो सबमार्टिंगेल और सुपरमार्टिंगेल दोनों है, मार्टिंगेल है।
* फिर से उस जुआरी पर विचार करें जो सिक्का ऊपर आने पर $ 1 जीतता है और सिक्का आने पर $ 1 खो देता है। अब मान लीजिए कि सिक्का पक्षपाती हो सकता है, जिससे कि यह संभाव्यता पी के साथ शीर्ष पर आ जाए।
* फिर से उस जुआरी पर विचार करें | जो सिक्का ऊपर आने पर $ 1 जीतता है और सिक्का आने पर $ 1 खो देता है। अब मूल्य लीजिए कि सिक्का पक्षपाती हो सकता है | जिससे कि यह संभाव्यता p के साथ शीर्ष पर आ जाए।
** यदि p 1/2 के बराबर है, तो जुआरी औसतन न तो पैसे जीतता है और न ही हारता है, और समय के साथ जुआरी का भाग्य मार्टिंगेल होता है।
** यदि p 1/2 के समान है, तो जुआरी औसतन न तो पैसे जीतता है और न ही हारता है, और समय के साथ जुआरी का भाग्य मार्टिंगेल होता है।
** यदि पी 1/2 से कम है, तो जुआरी औसतन पैसा खोता है, और समय के साथ जुआरी का भाग्य एक सुपरमार्टिंगेल है।
** यदि p 1/2 से कम है, तो जुआरी औसतन पैसा खोता है, और समय के साथ जुआरी का भाग्य सुपरमार्टिंगेल है।
** यदि पी 1/2 से अधिक है, तो जुआरी औसतन पैसा जीतता है, और समय के साथ जुआरी का भाग्य एक सबमार्टिंगेल है।
** यदि p 1/2 से अधिक है, तो जुआरी औसतन पैसा जीतता है, और समय के साथ जुआरी का भाग्य सबमार्टिंगेल है।
* जेन्सेन की असमानता द्वारा मार्टिंगेल का एक उत्तल कार्य एक सबमार्टिंगेल है। उदाहरण के लिए, फेयर कॉइन गेम में जुआरी के भाग्य का वर्ग एक सबमार्टिंगेल है (जो इस तथ्य से भी अनुसरण करता है कि X<sub>n</sub><sup>2</sup> − n मार्टिंगेल है)। इसी तरह, मार्टिंगेल का एक अवतल कार्य एक सुपरमार्टिंगेल है।
* जेन्सेन की असमानता द्वारा मार्टिंगेल का उत्तल कार्य सबमार्टिंगेल है। उदाहरण के लिए, फेयर कॉइन गेम में जुआरी के भाग्य का वर्ग सबमार्टिंगेल है | (जो इस तथ्य से भी अनुसरण करता है कि X<sub>n</sub><sup>2</sup> − n मार्टिंगेल है)। इसी तरह, मार्टिंगेल का अवतल कार्य सुपरमार्टिंगेल है।


== मार्टिंगलेस और रुकने का समय ==
== मार्टिंगलेस और रुकने का समय ==
{{Main|Stopping time}}
{{Main|रुकने का समय}}
 
यादृच्छिक चर X<sub>1</sub>, X<sub>2</sub>,X<sub>3</sub>, .. के अनुक्रम के संबंध में [[रुकने का समय]]. स्थिति के साथ यादृच्छिक चर τ है | जो प्रत्येक t के लिए, घटना τ = t की घटना या गैर-घटना केवल X<sub>1</sub>, X<sub>2</sub>, X<sub>3</sub>, ..., X<sub>''t''</sub> के मूल्य पर निर्भर करती है | परिभाषा के पीछे अंतर्ज्ञान यह है कि किसी विशेष समय t पर, आप अब तक के अनुक्रम को देख सकते हैं और बता सकते हैं कि क्या यह रुकने का समय है। वास्तविक जीवन में उदाहरण वह समय हो सकता है जब जुआरी जुआ टेबल छोड़ देता है, जो उनकी पिछली जीत का कार्य हो सकता है | (उदाहरण के लिए, वह केवल तभी जा सकता है जब वह टूट जाता है), किन्तु वह जाना नहीं चुन सकता है या उन खेलों के परिणाम पर आधारित रहें जो अभी तक नहीं खेले गए हैं।
 
कुछ संदर्भों में रुकने के समय की अवधारणा को केवल यह आवश्यक करके परिभाषित किया जाता है कि घटना τ = t का होना या न होना X<sub>''t''+1</sub>, X<sub>''t''+2</sub>, ... की [[सांख्यिकीय स्वतंत्रता]] है किन्तु ऐसा नहीं है कि यह समय-समय पर प्रक्रिया के इतिहास द्वारा पूरी तरह से निर्धारित किया जाता है। यह ऊपर के पैराग्राफ में दिखाई देने वाली स्थिति की तुलना में अशक्त स्थिति है, किन्तु कुछ प्रमाण में काम करने के लिए पर्याप्त शक्तिशाली है जिसमें रुकने के समय का उपयोग किया जाता है।


यादृच्छिक चर X के अनुक्रम के संबंध में [[रुकने का समय]]<sub>1</sub>, एक्स<sub>2</sub>, एक्स<sub>3</sub>, ... संपत्ति के साथ एक यादृच्छिक चर τ है जो प्रत्येक t के लिए, घटना τ = t की घटना या गैर-घटना केवल X के मूल्यों पर निर्भर करती है<sub>1</sub>, एक्स<sub>2</sub>, एक्स<sub>3</sub>, ..., एक्स<sub>''t''</sub>. परिभाषा के पीछे अंतर्ज्ञान यह है कि किसी विशेष समय t पर, आप अब तक के अनुक्रम को देख सकते हैं और बता सकते हैं कि क्या यह रुकने का समय है। वास्तविक जीवन में एक उदाहरण वह समय हो सकता है जब एक जुआरी जुआ टेबल छोड़ देता है, जो उनकी पिछली जीत का एक कार्य हो सकता है (उदाहरण के लिए, वह केवल तभी जा सकता है जब वह टूट जाता है), लेकिन वह जाना नहीं चुन सकता है या उन खेलों के परिणाम पर आधारित रहें जो अभी तक नहीं खेले गए हैं।


कुछ संदर्भों में रुकने के समय की अवधारणा को केवल यह आवश्यक करके परिभाषित किया जाता है कि घटना τ = t का होना या न होना X की [[सांख्यिकीय स्वतंत्रता]] है<sub>''t''&nbsp;+&nbsp;1</sub>, एक्स<sub>''t''&nbsp;+&nbsp;2</sub>, ... लेकिन ऐसा नहीं है कि यह समय-समय पर प्रक्रिया के इतिहास द्वारा पूरी तरह से निर्धारित किया जाता है। यह ऊपर के पैराग्राफ में दिखाई देने वाली स्थिति की तुलना में एक कमजोर स्थिति है, लेकिन कुछ सबूतों में काम करने के लिए पर्याप्त मजबूत है जिसमें रुकने के समय का उपयोग किया जाता है।


मार्टिंगेल्स के मूल गुणों में से एक यह है कि, यदि <math>(X_t)_{t>0}</math> एक (उप-/सुपर-) ज़रेबंद है और <math>\tau</math> एक रुकने का समय है, फिर इसी रुकी हुई प्रक्रिया <math>(X_t^\tau)_{t>0}</math> द्वारा परिभाषित <math>X_t^\tau:=X_{\min\{\tau,t\}}</math> एक (उप-/सुपर-) मार्टिंगेल भी है।
मार्टिंगेल्स के मूल गुणों में से एक यह है कि, यदि <math>(X_t)_{t>0}</math> एक (उप-/सुपर-) मार्टिंगेल है और <math>\tau</math> रुकने का समय है | फिर इसी रुकी हुई प्रक्रिया <math>(X_t^\tau)_{t>0}</math> द्वारा परिभाषित <math>X_t^\tau:=X_{\min\{\tau,t\}}</math> (उप-/सुपर-) मार्टिंगेल भी है।


स्टॉप मार्टिंगेल की अवधारणा महत्वपूर्ण प्रमेयों की एक श्रृंखला की ओर ले जाती है, उदाहरण के लिए, वैकल्पिक स्टॉपिंग प्रमेय जिसमें कहा गया है कि, कुछ शर्तों के तहत, स्टॉपिंग समय पर मार्टिंगेल का अपेक्षित मूल्य इसके प्रारंभिक मूल्य के बराबर है।
स्टॉप मार्टिंगेल की अवधारणा महत्वपूर्ण प्रमेयों की श्रृंखला की ओर ले जाती है | उदाहरण के लिए, वैकल्पिक स्टॉपिंग प्रमेय जिसमें कहा गया है कि, कुछ नियमो के अनुसार, स्टॉपिंग समय पर मार्टिंगेल का अपेक्षित मूल्य इसके प्रारंभिक मूल्य के समान है।


== यह भी देखें ==
== यह भी देखें ==
Line 114: Line 117:
* एक प्रकार कि गति
* एक प्रकार कि गति
* [[संदेह मेर्टिंगेल]]
* [[संदेह मेर्टिंगेल]]
* दूब के ज़रेबंद अभिसरण प्रमेय
* दूब के मार्टिंगेल अभिसरण प्रमेय
* दूब की ज़रेबंद असमानता
* दूब की मार्टिंगेल असमानता
* दूब-मेयर अपघटन प्रमेय
* दूब-मेयर अपघटन प्रमेय
* [[स्थानीय मार्टिंगेल]]
* [[स्थानीय मार्टिंगेल]]
* [[मार्कोव श्रृंखला]]
* [[मार्कोव श्रृंखला]]
* [[मार्कोव संपत्ति]]
* [[मार्कोव संपत्ति]]
* मार्टिंगेल (सट्टेबाजी प्रणाली)
* मार्टिंगेल (बेटिंग सिस्टम)
* [[मार्टिंगेल केंद्रीय सीमा प्रमेय]]
* [[मार्टिंगेल केंद्रीय सीमा प्रमेय]]
* [[मार्टिंगेल अंतर अनुक्रम]]
* [[मार्टिंगेल अंतर अनुक्रम]]
Line 134: Line 137:
==संदर्भ==
==संदर्भ==
* {{springer|title=Martingale|id=p/m062570}}
* {{springer|title=Martingale|id=p/m062570}}
* {{cite journal|title=The Splendors and Miseries of Martingales|journal= Electronic Journal for History of Probability and Statistics|volume=5|date=June 2009|issue=1|url=http://www.jehps.net/juin2009.html}} Entire issue dedicated to Martingale probability theory (Laurent Mazliak and Glenn Shafer, Editors).
* {{cite journal|title=The Splendors and Miseries of Martingales|journal= Electronic Journal for History of Probability and Statistics|volume=5|date=June 2009|issue=1|url=http://www.jehps.net/juin2009.html}} Entire issue dedicated to Martingale probability theory (Laurent Mazliak and Glenn Shafer, Editors).
* {{cite book|first1=Paolo |last1=Baldi |first2=Laurent |last2=Mazliak |first3=Pierre |last3=Priouret|title=Martingales and Markov Chains|publisher= Chapman and Hall|year=1991| isbn =978-1-584-88329-6}}
* {{cite book|first1=Paolo |last1=Baldi |first2=Laurent |last2=Mazliak |first3=Pierre |last3=Priouret|title=Martingales and Markov Chains|publisher= Chapman and Hall|year=1991| isbn =978-1-584-88329-6}}
* {{cite book| author-link=David Williams (mathematician)|first=David |last=Williams|title=Probability with Martingales|publisher= Cambridge University Press|year=1991| isbn =978-0-521-40605-5}}
* {{cite book| author-link=David Williams (mathematician)|first=David |last=Williams|title=Probability with Martingales|publisher= Cambridge University Press|year=1991| isbn =978-0-521-40605-5}}
Line 142: Line 145:
|title=Étude critique de la notion de collectif|journal= Bulletin of the American Mathematical Society|language=fr|series=Monographies des Probabilités |volume=3 |issue= 11|pages= 824–825|place=Paris|year=1939|id=[https://dx.doi.org/10.1090/S0002-9904-1939-07089-4 Review by Doob]|url=https://books.google.com/books?id=ETY7AQAAIAAJ|doi= 10.1090/S0002-9904-1939-07089-4|doi-access=free}}
|title=Étude critique de la notion de collectif|journal= Bulletin of the American Mathematical Society|language=fr|series=Monographies des Probabilités |volume=3 |issue= 11|pages= 824–825|place=Paris|year=1939|id=[https://dx.doi.org/10.1090/S0002-9904-1939-07089-4 Review by Doob]|url=https://books.google.com/books?id=ETY7AQAAIAAJ|doi= 10.1090/S0002-9904-1939-07089-4|doi-access=free}}


{{Stochastic processes}}
[[Category:Articles with hatnote templates targeting a nonexistent page]]
 
[[Category:CS1 français-language sources (fr)]]
[[Category: स्टचास्तिक प्रोसेसेज़]] [[Category: मार्टिंगेल सिद्धांत]] [[Category: खेल सिद्धांत]] [[Category: पॉल लेवी (गणितज्ञ)]]  
[[Category:Collapse templates]]
 
 
 
[[Category: Machine Translated Page]]
[[Category:Created On 20/05/2023]]
[[Category:Created On 20/05/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Multi-column templates]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages using div col with small parameter]]
[[Category:Pages with script errors]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates generating microformats]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that are not mobile friendly]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:Templates using under-protected Lua modules]]
[[Category:Wikipedia fully protected templates|Div col]]
[[Category:Wikipedia metatemplates]]
[[Category:खेल सिद्धांत]]
[[Category:पॉल लेवी (गणितज्ञ)]]
[[Category:मार्टिंगेल सिद्धांत]]
[[Category:स्टचास्तिक प्रोसेसेज़]]

Latest revision as of 16:57, 13 September 2023

संभाव्यता सिद्धांत में, मार्टिंगेल यादृच्छिक चर (अर्थात, स्टोकेस्टिक प्रक्रिया) का अनुक्रम है | जिसके लिए, किसी विशेष समय पर, अनुक्रम में अगले मूल्य की सशर्त अपेक्षा सभी पूर्व मूल्य के अतिरिक्त वर्तमान मूल्य के समान होती है।

रुकी हुई प्रक्रिया#ब्राउनियन गति मार्टिंगेल का उदाहरण है। यह दिवालिएपन की संभावना के साथ एक समान सिक्का-टॉस बेटिंग का मॉडल कर सकता है।

इतिहास

मूल रूप से, मार्टिंगेल (बेटिंग सिस्टम) बेटिंग की रणनीति के वर्ग को संदर्भित करता है | जो 18 वीं शताब्दी के फ्रांस में लोकप्रिय था।[1][2] इन रणनीतियों में से सबसे सरल गेम के लिए रचना की गई थी जिसमें जुआरी अपनी भागीदारी जीतता है | यदि सिक्का ऊपर आता है और यदि सिक्का ऊपर आता है तो उसे खो देता है। रणनीति में जुआरी को प्रत्येक हार के बाद अपनी नियम को दोगुना करने के लिए कहा गया था | जिससे पहली जीत पिछले सभी हानि की भरपाई कर सके और साथ ही मूल भागीदारी के समान लाभ जीत सके। जैसे-जैसे जुआरी का धन और उपलब्ध समय संयुक्त रूप से अनंत तक पहुंचता है | अंतत: फ़्लिपिंग हेड्स की उनकी संभावना 1 तक पहुंच जाती है | जिससे मार्टिंगेल बेटिंग की रणनीति लगभग निश्चित प्रतीत होती है। चूँकि, दांव की घातीय वृद्धि अंततः सीमित बैंकरोल के कारण अपने उपयोगकर्ताओं को दिवालिया कर देती है। रुकी हुई प्रक्रिया ब्राउनियन गति, जो मार्टिंगेल प्रक्रिया है, जिसका उपयोग ऐसे खेलों के प्रक्षेपवक्र को मॉडल करने के लिए किया जा सकता है।

संभाव्यता सिद्धांत में मार्टिंगेल की अवधारणा पॉल लेवी (गणितज्ञ) द्वारा 1934 में प्रस्तुत की गई थी | चूँकि उन्होंने इसका नाम नहीं लिया है। विल (1939) मार्टिंगेल शब्द बाद में किसके द्वारा प्रस्तुत किया गया था | जिन्होंने परिभाषा को निरंतर मार्टिंगेल्स तक विस्तारित किया। सिद्धांत का अधिकांश मूल विकास दूसरों के बीच जोसफ लियो डूब द्वारा किया गया था। उस काम के लिए प्रेरणा का एक भाग मौके के खेल में सफल बेटिंग की रणनीतियों की असंभवता को दिखाना था।

परिभाषाएँ

असतत-समय स्टोकेस्टिक प्रक्रिया की मूल परिभाषा डिस्क्रीट-टाइम मार्टिंगेल असतत-टाइम स्टोचैस्टिक प्रक्रिया है (अर्थात, यादृच्छिक चर का क्रम) X1, X2, X3, ... जो किसी भी समय n के लिए संतुष्ट करता है |

अर्थात्, पिछले सभी अवलोकनों को देखते हुए, अगले अवलोकन का सशर्त अपेक्षित मूल्य, सबसे हाल के अवलोकन के समान है।

दूसरे अनुक्रम के संबंध में मार्टिंगेल अनुक्रम

अधिक सामान्यतः, अनुक्रम Y1, Y2, Y3... को अन्य क्रम X1, X2, X3... के संबंध में मार्टिंगेल कहा जाता है यदि सभी n के लिए

इसी तरह, सतत समय निरंतर-समय मार्टिंगेल स्टोकास्टिक प्रक्रिया Xt के संबंध में एक स्टोकेस्टिक प्रक्रिया Yt है | ऐसा कि सभी टी के लिए

यह स्थिति को व्यक्त करता है कि समय t पर अवलोकन की सशर्त अपेक्षा, समय s सभी अवलोकनों को समय तक दिया जाता है | समय , पर अवलोकन के समान है (निश्चित, परंतु कि s ≤ t)। ध्यान दें कि दूसरी स्थिति का तात्पर्य है कि के संबंध में मापने योग्य है |

सामान्य परिभाषा

पूर्ण सामान्यता में, स्टोकेस्टिक प्रक्रिया बनच स्पेस में मूल्य लेना आदर्श के साथ फिल्ट्रेशन के संबंध में मार्टिंगेल है और संभाव्यता माप यदि

पूर्ण सामान्यता में, मानक के साथ बैनाच स्पेस में मान लेते हुए एक स्टोचैस्टिक प्रक्रिया फिल्ट्रेशन के संबंध में मार्टिंगेल है और संभाव्यता माप यदि

  • सभी s और ts, के साथ s < t और सभी F ∈ Σ के लिए |
जहां χF घटना एफ के सूचक फलन को दर्शाता है। ग्रिमेट और स्टिर्जेकर की संभाव्यता और यादृच्छिक प्रक्रियाओं में, इस अंतिम स्थिति को इस रूप में दर्शाया गया है |
जो सशर्त अपेक्षा का सामान्य रूप है।[3]

यह ध्यान रखना महत्वपूर्ण है कि मार्टिंगेल होने की स्थिति में निस्पंदन और संभाव्यता माप दोनों सम्मिलित हैं (जिसके संबंध में अपेक्षाएं ली गई हैं)। यह संभव है कि Y माप के संबंध में मार्टिंगेल हो सकता है | किन्तु दूसरा नहीं गिरसानोव प्रमेय उपाय खोजने का विधि प्रदान करता है | जिसके संबंध में इटो प्रक्रिया मार्टिंगेल है।

बनच स्पेस सेटिंग में सशर्त अपेक्षा को संचालक नोटेशन में भी दर्शाया गया है |[4]

मार्टिंगेल्स के उदाहरण

निष्पक्ष यादृच्छिक चलना (किसी भी आयाम में) मार्टिंगेल का उदाहरण है।

  • जुआरी का भाग्य (पूंजी) मार्टिंगेल है | यदि जुआरी द्वारा खेले जाने वाले सभी बेटिंग के खेल निष्पक्ष हैं। अधिक विशिष्ट होने के लिए: मूल्य लीजिए Xn एक निष्पक्ष सिक्के के उछाल के बाद जुआरी का भाग्य है | जहां जुआरी $ 1 जीतता है | यदि सिक्का शीर्ष पर आता है और $ 1 खो देता है | यदि यह पूंछ में आता है। अगले परीक्षण के बाद जुआरी का सशर्त अपेक्षित भाग्य, इतिहास को देखते हुए, उनके वर्तमान भाग्य के समान है। यह क्रम इस प्रकार मार्टिंगेल है।
  • माना Yn = Xn2n जहां Xn पिछले उदाहरण से जुआरी का भाग्य है। फिर अनुक्रम {yn: n = 1, 2, 3, ...} मार्टिंगेल है। इसका उपयोग यह दिखाने के लिए किया जा सकता है कि जुआरी का कुल लाभ या हानि की संख्या के वर्गमूल के योग या ऋण के बीच सामान्यतः भिन्न होता है।
  • (अब्राहम डी मोइवरे के मार्टिंगेल) अब मान लीजिए कि सिक्का अनुचित है अर्थात पक्षपाती है | संभावना p के ऊपर आने की संभावना है और प्रायिकता q = 1 - p पूंछ है।
"हेड्स" के स्थिति में "+" और "टेल्स" के स्थिति में "-" के साथ होने देना
फिर {Yn: n = 1, 2, 3, ...} {Xn: n = 1, 2, 3, ...} के संबंध में मार्टिंगेल है, इसे दिखाने के लिए
  • पोल्या के कलश में कई अलग-अलग रंग के पत्थर होते हैं | प्रत्येक पुनरावृत्त विधि में कलश से कंचा यादृच्छिक रूप से चुना जाता है और उसी रंग के कई अन्य मार्बल से प्रतिस्थापित किया जाता है। किसी दिए गए रंग के लिए, उस रंग के कलश में मार्बल का अंश मार्टिंगेल है। उदाहरण के लिए, यदि वर्तमान में 95% मार्बल्स लाल हैं | चूँकि अगले पुनरावृत्ति में दूसरे रंग की तुलना में लाल मार्बल जोड़ने की अधिक संभावना है, यह पूर्वाग्रह इस तथ्य से बिल्कुल संतुलित है कि अधिक लाल मार्बल जोड़ने से अंश बहुत कम बदल जाता है | समान संख्या में गैर-लाल कंचे जोड़ने से होता है।
  • (सांख्यिकी में संभावना-अनुपात परीक्षण) एक यादृच्छिक चर X को या तो प्रायिकता घनत्व f या एक भिन्न प्रायिकता घनत्व g के अनुसार वितरित किया जाता है। एक यादृच्छिक नमूना X1, ..., Xn लिया जाता है। बता दें कि Yn "संभावना अनुपात" है |
यदि X वास्तव में g के अतिरिक्त घनत्व f के अनुसार वितरित किया जाता है, तो { Yn: n = 1, 2, 3, ...} {Xn: n = 1, 2, 3, ... के संबंध में मार्टिंगेल है}।
सॉफ्टवेयर-निर्मित मार्टिंगेल श्रृंखला।

* पारिस्थितिक समुदाय में (प्रजातियों का समूह जो एक विशेष ट्रॉफिक स्तर में हैं, स्थानीय क्षेत्र में समान संसाधनों के लिए प्रतिस्पर्धा कर रहे हैं), निश्चित आकार की किसी विशेष प्रजाति के व्यक्तियों की संख्या (असतत) समय का कार्य है, और हो सकता है यादृच्छिक चर के अनुक्रम के रूप में देखा जाना चाहिए। यह अनुक्रम जैव विविधता और बायोग्राफी के एकीकृत तटस्थ सिद्धांत के अनुसार मार्टिंगेल है।

  • यदि {Nt: t ≥ 0} तीव्रता λ के साथ पॉइसन प्रक्रिया है, फिर मुआवजा पोइसन प्रक्रिया { Nt− λt : t ≥ 0 } सतत-समय मार्टिंगेल है | जिसमें विच्छिन्नता का वर्गीकरण है| दाएं-निरंतर/बाएं-सीमा नमूना पथ है |
  • वाल्ड का मार्टिंगेल
  • -आयामी प्रक्रिया किसी स्पेस में में मार्टिंगेल है यदि प्रत्येक घटक में आयामी मार्टिंगेल है |

सबमार्टिंगलेस, सुपरमार्टिंगेल्स, और हार्मोनिक कार्यों से संबंध

मार्टिंगेल के दो लोकप्रिय सामान्यीकरण हैं | जिनमें ऐसे स्थिति भी सम्मिलित हैं जब वर्तमान अवलोकन Xn आवश्यक नहीं कि भविष्य की सशर्त अपेक्षा E[Xn+1 | X1,...,Xn] किन्तु इसके अतिरिक्त सशर्त अपेक्षा पर ऊपरी या निचली सीमा ये परिभाषाएं मार्टिंगेल सिद्धांत और संभावित सिद्धांत के बीच संबंध को दर्शाती हैं | जो हार्मोनिक कार्यों का अध्ययन है। ठीक वैसे ही जैसे सतत-समय मार्टिंगेल E[Xt| {Xτ: τ ≤ s}] - Xs= 0 ∀s ≤ t, हार्मोनिक फलन f आंशिक अंतर समीकरण Δf = 0 को संतुष्ट करता है जहां Δ लाप्लास संचालक है। एक प्रकार कि गति प्रक्रिया Wt को देखते हुए और हार्मोनिक फलन f, परिणामी प्रक्रिया f(Wt) मार्टिंगेल भी है।

  • असतत-समय की सबमार्टिंगेल अनुक्रम है | इंटीग्रेबल फलन का यादृच्छिक चर संतोषजनक है |
इसी तरह, सतत समय सबमार्टिंगेल संतुष्ट करता है |
संभावित सिद्धांत में, सबहार्मोनिक फलन f संतुष्ट करता है | Δf ≥ 0। कोई भी सबहार्मोनिक फलन जो गेंद की सीमा पर सभी बिंदुओं के लिए हार्मोनिक फलन द्वारा ऊपर से घिरा होता है | गेंद के अंदर सभी बिंदुओं के लिए हार्मोनिक फलन द्वारा ऊपर से घिरा होता है। इसी तरह, यदि सबमार्टिंगेल और मार्टिंगेल की निश्चित समय के लिए समान अपेक्षाएं हैं, तो सबमार्टिंगेल का इतिहास मार्टिंगेल के इतिहास से ऊपर की ओर बंधा हुआ है। सामान्यतः, उपसर्ग उप- सुसंगत है | क्योंकि वर्तमान अवलोकन Xn सप्रतिबंध अपेक्षा E[Xn+1] से कम (या उसके समान) है| [X1,...,Xn] परिणाम स्वरुप, वर्तमान अवलोकन भविष्य की सशर्त अपेक्षा से नीचे समर्थन प्रदान करता है, और प्रक्रिया भविष्य के समय में बढ़ने लगती है।
  • समान रूप से, असतत-समय 'सुपरमार्टिंगेल' संतुष्ट करता है |
इसी तरह, सतत समय सुपरमार्टिंगेल संतुष्ट करता है
संभावित सिद्धांत में, सुपरहार्मोनिक फलन f संतुष्ट करता है | Δf ≥ 0। कोई भी सबहार्मोनिक फलन जो गेंद की सीमा पर सभी बिंदुओं के लिए हार्मोनिक फलन द्वारा ऊपर से घिरा होता है | गेंद के अंदर सभी बिंदुओं के लिए हार्मोनिक फलन द्वारा ऊपर से घिरा होता है। इसी तरह, यदि सबमार्टिंगेल और मार्टिंगेल की निश्चित समय के लिए समान अपेक्षाएं हैं, तो सबमार्टिंगेल का इतिहास मार्टिंगेल के इतिहास से ऊपर की ओर बंधा हुआ है। सामान्यतः, उपसर्ग उप- सुसंगत है | क्योंकि वर्तमान अवलोकन Xn सप्रतिबंध अपेक्षा E[Xn+1] से कम (या उसके समान) है| [X1,...,Xn] परिणाम स्वरुप, वर्तमान अवलोकन भविष्य की सशर्त अपेक्षा से नीचे समर्थन प्रदान करता है, और प्रक्रिया भविष्य के समय में बढ़ने लगती है।

सबमार्टिंगेल्स और सुपरमार्टिंगल्स के उदाहरण

  • प्रत्येक मार्टिंगेल सबमार्टिंगेल और सुपरमार्टिंगेल भी है। इसके विपरीत, कोई भी स्टोकेस्टिक प्रक्रिया जो सबमार्टिंगेल और सुपरमार्टिंगेल दोनों है, मार्टिंगेल है।
  • फिर से उस जुआरी पर विचार करें | जो सिक्का ऊपर आने पर $ 1 जीतता है और सिक्का आने पर $ 1 खो देता है। अब मूल्य लीजिए कि सिक्का पक्षपाती हो सकता है | जिससे कि यह संभाव्यता p के साथ शीर्ष पर आ जाए।
    • यदि p 1/2 के समान है, तो जुआरी औसतन न तो पैसे जीतता है और न ही हारता है, और समय के साथ जुआरी का भाग्य मार्टिंगेल होता है।
    • यदि p 1/2 से कम है, तो जुआरी औसतन पैसा खोता है, और समय के साथ जुआरी का भाग्य सुपरमार्टिंगेल है।
    • यदि p 1/2 से अधिक है, तो जुआरी औसतन पैसा जीतता है, और समय के साथ जुआरी का भाग्य सबमार्टिंगेल है।
  • जेन्सेन की असमानता द्वारा मार्टिंगेल का उत्तल कार्य सबमार्टिंगेल है। उदाहरण के लिए, फेयर कॉइन गेम में जुआरी के भाग्य का वर्ग सबमार्टिंगेल है | (जो इस तथ्य से भी अनुसरण करता है कि Xn2 − n मार्टिंगेल है)। इसी तरह, मार्टिंगेल का अवतल कार्य सुपरमार्टिंगेल है।

मार्टिंगलेस और रुकने का समय

यादृच्छिक चर X1, X2,X3, .. के अनुक्रम के संबंध में रुकने का समय. स्थिति के साथ यादृच्छिक चर τ है | जो प्रत्येक t के लिए, घटना τ = t की घटना या गैर-घटना केवल X1, X2, X3, ..., Xt के मूल्य पर निर्भर करती है | परिभाषा के पीछे अंतर्ज्ञान यह है कि किसी विशेष समय t पर, आप अब तक के अनुक्रम को देख सकते हैं और बता सकते हैं कि क्या यह रुकने का समय है। वास्तविक जीवन में उदाहरण वह समय हो सकता है जब जुआरी जुआ टेबल छोड़ देता है, जो उनकी पिछली जीत का कार्य हो सकता है | (उदाहरण के लिए, वह केवल तभी जा सकता है जब वह टूट जाता है), किन्तु वह जाना नहीं चुन सकता है या उन खेलों के परिणाम पर आधारित रहें जो अभी तक नहीं खेले गए हैं।

कुछ संदर्भों में रुकने के समय की अवधारणा को केवल यह आवश्यक करके परिभाषित किया जाता है कि घटना τ = t का होना या न होना Xt+1, Xt+2, ... की सांख्यिकीय स्वतंत्रता है किन्तु ऐसा नहीं है कि यह समय-समय पर प्रक्रिया के इतिहास द्वारा पूरी तरह से निर्धारित किया जाता है। यह ऊपर के पैराग्राफ में दिखाई देने वाली स्थिति की तुलना में अशक्त स्थिति है, किन्तु कुछ प्रमाण में काम करने के लिए पर्याप्त शक्तिशाली है जिसमें रुकने के समय का उपयोग किया जाता है।


मार्टिंगेल्स के मूल गुणों में से एक यह है कि, यदि एक (उप-/सुपर-) मार्टिंगेल है और रुकने का समय है | फिर इसी रुकी हुई प्रक्रिया द्वारा परिभाषित (उप-/सुपर-) मार्टिंगेल भी है।

स्टॉप मार्टिंगेल की अवधारणा महत्वपूर्ण प्रमेयों की श्रृंखला की ओर ले जाती है | उदाहरण के लिए, वैकल्पिक स्टॉपिंग प्रमेय जिसमें कहा गया है कि, कुछ नियमो के अनुसार, स्टॉपिंग समय पर मार्टिंगेल का अपेक्षित मूल्य इसके प्रारंभिक मूल्य के समान है।

यह भी देखें

टिप्पणियाँ

  1. Balsara, N. J. (1992). वायदा व्यापारियों के लिए धन प्रबंधन रणनीतियाँ. Wiley Finance. p. 122. ISBN 978-0-471-52215-7. martingale.
  2. Mansuy, Roger (June 2009). "शब्द "मार्टिंगेल" की उत्पत्ति" (PDF). Electronic Journal for History of Probability and Statistics. 5 (1). Archived (PDF) from the original on 2012-01-31. Retrieved 2011-10-22.
  3. Grimmett, G.; Stirzaker, D. (2001). संभाव्यता और यादृच्छिक प्रक्रियाएं (3rd ed.). Oxford University Press. ISBN 978-0-19-857223-7.
  4. Bogachev, Vladimir (1998). गाऊसी उपाय. American Mathematical Society. pp. 372–373. ISBN 978-1470418694.


संदर्भ