अतिपरवलिक आंशिक अवकल समीकरण: Difference between revisions
(Created page with "{{Short description|Type of partial differential equations}} {{more footnotes|date=March 2012}} गणित में, क्रम का एक अतिशयोक्त...") |
No edit summary |
||
(10 intermediate revisions by 6 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Type of partial differential equations}} | {{Short description|Type of partial differential equations}} | ||
गणित में, क्रम <math>n</math> का '''अतिपरवलिक आंशिक अवकल समीकरण''' एक आंशिक अवकल समीकरण पीडीई (PDE) है, जो मोटे तौर पर बोल रहा है, पहले <math>n-1</math> व्युत्पन्न के लिए अच्छी तरह से प्रस्तुत प्रारंभिक मान प्रश्न है। अधिक सटीक रूप से, किसी भी गैर-विशेषता वाले हाइपरसरफेस के साथ मनमाने प्रारंभिक डेटा के लिए कॉची समस्या को स्थानीय रूप से हल किया जा सकता है। यांत्रिकी के कई समीकरण अतिपरवलिक हैं, और इसलिए अतिपरवलिक समीकरणों का अध्ययन पर्याप्त समकालीन रुचि का है। मॉडल अतिपरवलिक समीकरण तरंग समीकरण है। स्थानिक आयाम में, यह है | |||
गणित में, क्रम | |||
: <math>\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2} </math> | : <math>\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2} </math> | ||
समीकरण में | समीकरण में गुण है कि, यदि ''u'' और प्रथम बार व्युत्पन्न रेखा {{nowrap|1=''t'' = 0}} (पर्याप्त समतलता गुणों के साथ) पर प्रारंभिक डेटा को मनमाने ढंग से निर्दिष्ट किया जाता है, तो प्रत्येक समय ''t'' के लिए समाधान उपस्थित होता है। | ||
अतिपरवलिक समीकरणों के समाधान "तरंग-समान" हैं। यदि अतिपरवलिक अवकल समीकरण के प्रारंभिक डेटा में विक्षोभ किया जाता है, तो स्थान के प्रत्येक बिंदु पर एक बार में विक्षोभ ज्ञात नहीं होता है। नियत समय समन्वय के सापेक्ष, विक्षोभ की सीमित प्रसार गति होती है। वे समीकरण की विशेषताओं के साथ चलते हैं। यह विशेषता गुणात्मक रूप से अतिपरवलिक समीकरणों को दीर्घवृत्तीय आंशिक अवकल समीकरणों और परवलयिक आंशिक अवकल समीकरणों से अलग करती है। अर्धवृत्ताकार या परवलयिक समीकरण के प्रारंभिक (या सीमा) डेटा का विक्षोभ एक बार क्षेत्र में अनिवार्य रूप से सभी बिंदुओं से ज्ञात होता है। | |||
यद्यपि अतिशयोक्ति की परिभाषा मौलिक रूप से | यद्यपि अतिशयोक्ति की परिभाषा मौलिक रूप से गुणात्मक है, ऐसे सटीक मानदंड हैं जो विचाराधीन विशेष प्रकार के अवकल समीकरण पर निर्भर करते हैं। माइक्रोलोकल विश्लेषण के संदर्भ में, लार्स गार्डिंग के कारण, रैखिक अवकल संचालकों के लिए एक सुविकसित सिद्धांत है। अरैखिक अवकल समीकरण अतिपरवलयिक होते हैं यदि उनका रैखिकीकरण गर्डिंग के अर्थ में अतिपरवलिक हो। संरक्षण नियमों की प्रणालियों से आने वाले समीकरणों के प्रथम क्रम प्रणालियों के लिए कुछ भिन्न सिद्धांत है। | ||
== परिभाषा == | == परिभाषा == | ||
आंशिक | आंशिक अवकल समीकरण एक बिंदु <math>P</math> पर अतिपरवलिक है, बशर्ते कि <math>P</math> के माध्यम से गुजरने वाली गैर-विशेषता वाले हाइपरसरफेस पर दिए गए किसी भी प्रारंभिक डेटा के लिए <math>P</math> के पास में कॉची समस्या अद्वितीय रूप से हल करने योग्य हो।<ref name="Rozhdestvenskii">{{eom|id=H/h048300|first=B.L.|last= Rozhdestvenskii}}</ref> यहां निर्धारित प्रारंभिक डेटा में अवकल समीकरण के क्रम की तुलना में सतह पर फलन के सभी (अनुप्रस्थ) व्युत्पन्न सम्मिलित हैं। | ||
== उदाहरण == | == उदाहरण == | ||
चरों के रैखिक परिवर्तन से, किसी भी समीकरण का रूप | |||
: <math> A\frac{\partial^2 u}{\partial x^2} + 2B\frac{\partial^2 u}{\partial x\partial y} + C\frac{\partial^2u}{\partial y^2} + \text{(lower order derivative terms)} = 0</math> | : <math> A\frac{\partial^2 u}{\partial x^2} + 2B\frac{\partial^2 u}{\partial x\partial y} + C\frac{\partial^2u}{\partial y^2} + \text{(lower order derivative terms)} = 0</math> | ||
साथ | साथ | ||
:<math> B^2 - A C > 0</math> | :<math> B^2 - A C > 0</math> | ||
समीकरण की गुणात्मक समझ के लिए आवश्यक निचले क्रम | समीकरण की गुणात्मक समझ के लिए आवश्यक निचले क्रम के पदों के अलावा, तरंग समीकरण में परिवर्तित किया जा सकता है।<ref name="Evans 1998">{{Citation | last1=Evans | first1=Lawrence C. | title=Partial differential equations | orig-year=1998 | url=https://www.worldcat.org/oclc/465190110 | publisher=[[American Mathematical Society]] | location=Providence, R.I. | edition=2nd | series=[[Graduate Studies in Mathematics]] | isbn=978-0-8218-4974-3 |mr=2597943 | year=2010 | volume=19 | doi=10.1090/gsm/019| oclc=465190110 }}</ref>{{rp|400}} यह परिभाषा समतलीय अतिपरवलय की परिभाषा के अनुरूप है। | ||
एक आयामी तरंग समीकरण | एक आयामी तरंग समीकरण- | ||
:<math>\frac{\partial^2 u}{\partial t^2} - c^2\frac{\partial^2 u}{\partial x^2} = 0</math> | :<math>\frac{\partial^2 u}{\partial t^2} - c^2\frac{\partial^2 u}{\partial x^2} = 0</math> | ||
अतिपरवलिक समीकरण का उदाहरण है। द्वि-आयामी और त्रि-आयामी तरंग समीकरण भी अतिपरवलिक पीडीई की श्रेणी में आते हैं। इस प्रकार के द्वितीय-क्रम के अतिपरवलिक आंशिक अवकल समीकरण को प्रथम-क्रम के अवकल समीकरणों के अतिपरवलिक प्रणाली में रूपांतरित किया जा सकता है।<ref name="Evans 1998" />{{rp|402}} | |||
== आंशिक अवकल समीकरणों की अतिपरवलिक प्रणाली == | |||
निम्नलिखित <math>s</math> अज्ञात फलनों <math> \vec u = (u_1, \ldots, u_s) </math>, <math> \vec u =\vec u (\vec x,t)</math> के लिए <math>s</math> प्रथम कोटि के आंशिक अवकल समीकरणों की एक प्रणाली है जहाँ <math>\vec x \in \mathbb{R}^d</math>- | |||
निम्नलिखित | |||
{{NumBlk|:|<math> \frac{\partial \vec u}{\partial t} | {{NumBlk|:|<math> \frac{\partial \vec u}{\partial t} | ||
Line 34: | Line 31: | ||
</math>|{{EquationRef|∗}}}} | </math>|{{EquationRef|∗}}}} | ||
जहाँ <math>\vec {f^j} \in C^1(\mathbb{R}^s, \mathbb{R}^s), j = 1, \ldots, d</math> एक बार लगातार अलग-अलग फलन होते हैं, सामान्य रूप से गैर-रेखीय होते हैं। | |||
अगला, प्रत्येक | अगला, प्रत्येक <math>\vec {f^j}</math> के लिए <math>s \times s</math> जैकबियन मैट्रिक्स को परिभाषित करें | ||
:<math>A^j:= | :<math>A^j:= | ||
Line 45: | Line 42: | ||
\end{pmatrix} | \end{pmatrix} | ||
,\text{ for }j = 1, \ldots, d.</math> | ,\text{ for }j = 1, \ldots, d.</math> | ||
प्रणाली ({{EquationNote|∗}}) | प्रणाली ({{EquationNote|∗}}) अतिपरवलिक है यदि सभी <math>\alpha_1, \ldots, \alpha_d \in \mathbb{R}</math> के लिए मैट्रिक्स <math>A := \alpha_1 A^1 + \cdots + \alpha_d A^d</math> में केवल वास्तविक अभिलाक्षणिक मान हैं और विकर्ण है। | ||
केवल वास्तविक | |||
यदि | यदि आव्यूह <math>A</math> के विशिष्ट वास्तविक अभिलाक्षणिक मान हैं, तो यह इस प्रकार है कि यह विकर्णीय है। इस स्थिति में प्रणाली ({{EquationNote|∗}}) को '''पूर्णतः अतिपरवलिक''' कहा जाता है। | ||
यदि मैट्रिक्स <math>A</math> सममित है, यह इस प्रकार है कि यह विकर्णीय है और | यदि मैट्रिक्स <math>A</math> सममित है, तो यह इस प्रकार है कि यह विकर्णीय है और अभिलाक्षणिक मान वास्तविक हैं। इस स्थिति में प्रणाली ({{EquationNote|∗}}) को '''सममित अतिपरवलिक''' कहा जाता है। | ||
== | == अतिपरवलिक प्रणाली और संरक्षण नियम == | ||
अतिपरवलयिक प्रणाली और संरक्षण नियम के बीच एक संबंध है। अज्ञात फलन <math>u = u(\vec x, t)</math> के लिए आंशिक अवकल समीकरण के अतिपरवलयिक प्रणाली पर विचार करें। तब प्रणाली ({{EquationNote|∗}}) का रूप है | |||
{{NumBlk|:|<math> \frac{\partial u}{\partial t} | {{NumBlk|:|<math> \frac{\partial u}{\partial t} | ||
Line 61: | Line 57: | ||
</math>|{{EquationRef|∗∗}}}} | </math>|{{EquationRef|∗∗}}}} | ||
यहाँ, <math>u</math> की व्याख्या उस मात्रा के रूप में की जा सकती है जो <math>\vec f = (f^1, \ldots, f^d)</math> द्वारा दिए गए प्रवाह के अनुसार चलती है। यह देखने के लिए कि मात्रा <math>u</math> संरक्षित है, क्षेत्र <math>\Omega</math> पर ({{EquationNote|∗∗}}) को एकीकृत करें। | |||
:<math>\int_{\Omega} \frac{\partial u}{\partial t} \, d\Omega + \int_{\Omega} \nabla \cdot \vec f(u)\, d\Omega = 0.</math> | :<math>\int_{\Omega} \frac{\partial u}{\partial t} \, d\Omega + \int_{\Omega} \nabla \cdot \vec f(u)\, d\Omega = 0.</math> | ||
यदि <math>u</math> और <math>\vec f</math> पर्याप्त रूप से सुचारू | यदि <math>u</math> और <math>\vec f</math> पर्याप्त रूप से सुचारू फलन हैं, तो हम विचलन प्रमेय का उपयोग कर सकते हैं और सामान्य रूप में मात्रा <math>u</math> के लिए संरक्षण नियम प्राप्त करने के लिए एकीकरण और <math>\partial / \partial t</math> के क्रम को बदल सकते हैं। | ||
:<math> | :<math> | ||
Line 69: | Line 65: | ||
+ \int_{\partial\Omega} \vec f(u) \cdot \vec n \, d\Gamma = 0, | + \int_{\partial\Omega} \vec f(u) \cdot \vec n \, d\Gamma = 0, | ||
</math> | </math> | ||
जिसका अर्थ है कि | जिसका अर्थ है कि क्षेत्र <math>\Omega</math> में <math>u</math> के परिवर्तन की समय दर इसकी सीमा <math>\partial\Omega</math> के माध्यम से <math>u</math> के शुद्ध प्रवाह के बराबर है। चूंकि यह एक समानता है, इसलिए यह निष्कर्ष निकाला जा सकता है कि <math>u</math> <math>\Omega</math> के भीतर संरक्षित है। | ||
== यह भी देखें == | == यह भी देखें == | ||
* | * दीर्घवृत्तीय आंशिक अवकल समीकरण | ||
* | * अल्पदीर्घवृत्तीय संचालक | ||
* परवलयिक आंशिक | * परवलयिक आंशिक अवकल समीकरण | ||
== संदर्भ == | == संदर्भ == | ||
{{Reflist}} | {{Reflist}} | ||
== आगे की पढाई == | == आगे की पढाई == | ||
* A. D. Polyanin, ''Handbook of Linear Partial Differential Equations for Engineers and Scientists'', Chapman & Hall/CRC Press, Boca Raton, 2002. {{ISBN|1-58488-299-9}} | * A. D. Polyanin, ''Handbook of Linear Partial Differential Equations for Engineers and Scientists'', Chapman & Hall/CRC Press, Boca Raton, 2002. {{ISBN|1-58488-299-9}} | ||
== बाहरी कड़ियाँ == | == बाहरी कड़ियाँ == | ||
* {{springer|title=Hyperbolic partial differential equation, numerical methods|id=p/h048310}} | * {{springer|title=Hyperbolic partial differential equation, numerical methods|id=p/h048310}} | ||
Line 93: | Line 81: | ||
* [http://eqworld.ipmnet.ru/en/solutions/npde/npde-toc2.pdf Nonlinear Hyperbolic Equations] at EqWorld: The World of Mathematical Equations. | * [http://eqworld.ipmnet.ru/en/solutions/npde/npde-toc2.pdf Nonlinear Hyperbolic Equations] at EqWorld: The World of Mathematical Equations. | ||
[[Category:Created On 27/12/2022]] | [[Category:Created On 27/12/2022]] | ||
[[Category:Lua-based templates]] | |||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with maths render errors]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Short description with empty Wikidata description]] | |||
[[Category:Template SpringerEOM with broken ref|T]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] |
Latest revision as of 10:22, 29 August 2023
गणित में, क्रम का अतिपरवलिक आंशिक अवकल समीकरण एक आंशिक अवकल समीकरण पीडीई (PDE) है, जो मोटे तौर पर बोल रहा है, पहले व्युत्पन्न के लिए अच्छी तरह से प्रस्तुत प्रारंभिक मान प्रश्न है। अधिक सटीक रूप से, किसी भी गैर-विशेषता वाले हाइपरसरफेस के साथ मनमाने प्रारंभिक डेटा के लिए कॉची समस्या को स्थानीय रूप से हल किया जा सकता है। यांत्रिकी के कई समीकरण अतिपरवलिक हैं, और इसलिए अतिपरवलिक समीकरणों का अध्ययन पर्याप्त समकालीन रुचि का है। मॉडल अतिपरवलिक समीकरण तरंग समीकरण है। स्थानिक आयाम में, यह है
समीकरण में गुण है कि, यदि u और प्रथम बार व्युत्पन्न रेखा t = 0 (पर्याप्त समतलता गुणों के साथ) पर प्रारंभिक डेटा को मनमाने ढंग से निर्दिष्ट किया जाता है, तो प्रत्येक समय t के लिए समाधान उपस्थित होता है।
अतिपरवलिक समीकरणों के समाधान "तरंग-समान" हैं। यदि अतिपरवलिक अवकल समीकरण के प्रारंभिक डेटा में विक्षोभ किया जाता है, तो स्थान के प्रत्येक बिंदु पर एक बार में विक्षोभ ज्ञात नहीं होता है। नियत समय समन्वय के सापेक्ष, विक्षोभ की सीमित प्रसार गति होती है। वे समीकरण की विशेषताओं के साथ चलते हैं। यह विशेषता गुणात्मक रूप से अतिपरवलिक समीकरणों को दीर्घवृत्तीय आंशिक अवकल समीकरणों और परवलयिक आंशिक अवकल समीकरणों से अलग करती है। अर्धवृत्ताकार या परवलयिक समीकरण के प्रारंभिक (या सीमा) डेटा का विक्षोभ एक बार क्षेत्र में अनिवार्य रूप से सभी बिंदुओं से ज्ञात होता है।
यद्यपि अतिशयोक्ति की परिभाषा मौलिक रूप से गुणात्मक है, ऐसे सटीक मानदंड हैं जो विचाराधीन विशेष प्रकार के अवकल समीकरण पर निर्भर करते हैं। माइक्रोलोकल विश्लेषण के संदर्भ में, लार्स गार्डिंग के कारण, रैखिक अवकल संचालकों के लिए एक सुविकसित सिद्धांत है। अरैखिक अवकल समीकरण अतिपरवलयिक होते हैं यदि उनका रैखिकीकरण गर्डिंग के अर्थ में अतिपरवलिक हो। संरक्षण नियमों की प्रणालियों से आने वाले समीकरणों के प्रथम क्रम प्रणालियों के लिए कुछ भिन्न सिद्धांत है।
परिभाषा
आंशिक अवकल समीकरण एक बिंदु पर अतिपरवलिक है, बशर्ते कि के माध्यम से गुजरने वाली गैर-विशेषता वाले हाइपरसरफेस पर दिए गए किसी भी प्रारंभिक डेटा के लिए के पास में कॉची समस्या अद्वितीय रूप से हल करने योग्य हो।[1] यहां निर्धारित प्रारंभिक डेटा में अवकल समीकरण के क्रम की तुलना में सतह पर फलन के सभी (अनुप्रस्थ) व्युत्पन्न सम्मिलित हैं।
उदाहरण
चरों के रैखिक परिवर्तन से, किसी भी समीकरण का रूप
साथ
समीकरण की गुणात्मक समझ के लिए आवश्यक निचले क्रम के पदों के अलावा, तरंग समीकरण में परिवर्तित किया जा सकता है।[2]: 400 यह परिभाषा समतलीय अतिपरवलय की परिभाषा के अनुरूप है।
एक आयामी तरंग समीकरण-
अतिपरवलिक समीकरण का उदाहरण है। द्वि-आयामी और त्रि-आयामी तरंग समीकरण भी अतिपरवलिक पीडीई की श्रेणी में आते हैं। इस प्रकार के द्वितीय-क्रम के अतिपरवलिक आंशिक अवकल समीकरण को प्रथम-क्रम के अवकल समीकरणों के अतिपरवलिक प्रणाली में रूपांतरित किया जा सकता है।[2]: 402
आंशिक अवकल समीकरणों की अतिपरवलिक प्रणाली
निम्नलिखित अज्ञात फलनों , के लिए प्रथम कोटि के आंशिक अवकल समीकरणों की एक प्रणाली है जहाँ -
-
(∗)
जहाँ एक बार लगातार अलग-अलग फलन होते हैं, सामान्य रूप से गैर-रेखीय होते हैं।
अगला, प्रत्येक के लिए जैकबियन मैट्रिक्स को परिभाषित करें
प्रणाली (∗) अतिपरवलिक है यदि सभी के लिए मैट्रिक्स में केवल वास्तविक अभिलाक्षणिक मान हैं और विकर्ण है।
यदि आव्यूह के विशिष्ट वास्तविक अभिलाक्षणिक मान हैं, तो यह इस प्रकार है कि यह विकर्णीय है। इस स्थिति में प्रणाली (∗) को पूर्णतः अतिपरवलिक कहा जाता है।
यदि मैट्रिक्स सममित है, तो यह इस प्रकार है कि यह विकर्णीय है और अभिलाक्षणिक मान वास्तविक हैं। इस स्थिति में प्रणाली (∗) को सममित अतिपरवलिक कहा जाता है।
अतिपरवलिक प्रणाली और संरक्षण नियम
अतिपरवलयिक प्रणाली और संरक्षण नियम के बीच एक संबंध है। अज्ञात फलन के लिए आंशिक अवकल समीकरण के अतिपरवलयिक प्रणाली पर विचार करें। तब प्रणाली (∗) का रूप है
-
(∗∗)
यहाँ, की व्याख्या उस मात्रा के रूप में की जा सकती है जो द्वारा दिए गए प्रवाह के अनुसार चलती है। यह देखने के लिए कि मात्रा संरक्षित है, क्षेत्र पर (∗∗) को एकीकृत करें।
यदि और पर्याप्त रूप से सुचारू फलन हैं, तो हम विचलन प्रमेय का उपयोग कर सकते हैं और सामान्य रूप में मात्रा के लिए संरक्षण नियम प्राप्त करने के लिए एकीकरण और के क्रम को बदल सकते हैं।
जिसका अर्थ है कि क्षेत्र में के परिवर्तन की समय दर इसकी सीमा के माध्यम से के शुद्ध प्रवाह के बराबर है। चूंकि यह एक समानता है, इसलिए यह निष्कर्ष निकाला जा सकता है कि के भीतर संरक्षित है।
यह भी देखें
- दीर्घवृत्तीय आंशिक अवकल समीकरण
- अल्पदीर्घवृत्तीय संचालक
- परवलयिक आंशिक अवकल समीकरण
संदर्भ
- ↑ Rozhdestvenskii, B.L. (2001) [1994], "अतिपरवलिक आंशिक अवकल समीकरण", Encyclopedia of Mathematics, EMS Press
- ↑ 2.0 2.1 Evans, Lawrence C. (2010) [1998], Partial differential equations, Graduate Studies in Mathematics, vol. 19 (2nd ed.), Providence, R.I.: American Mathematical Society, doi:10.1090/gsm/019, ISBN 978-0-8218-4974-3, MR 2597943, OCLC 465190110
आगे की पढाई
- A. D. Polyanin, Handbook of Linear Partial Differential Equations for Engineers and Scientists, Chapman & Hall/CRC Press, Boca Raton, 2002. ISBN 1-58488-299-9
बाहरी कड़ियाँ
- "Hyperbolic partial differential equation, numerical methods", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
- Linear Hyperbolic Equations at EqWorld: The World of Mathematical Equations.
- Nonlinear Hyperbolic Equations at EqWorld: The World of Mathematical Equations.