ऊष्मप्रवैगिकी का शून्य नियम: Difference between revisions

From Vigyanwiki
(Created page with "{{short description|Physical law for definition of temperature}} {{Thermodynamics|laws}} उष्मागतिकी का शून्यवाँ नियम उष्...")
 
No edit summary
 
(11 intermediate revisions by 3 users not shown)
Line 2: Line 2:
{{Thermodynamics|laws}}
{{Thermodynamics|laws}}


उष्मागतिकी का शून्यवाँ नियम उष्मागतिकी के चार प्रमुख नियमों में से एक है। यह [[एन्ट्रापी]] के संदर्भ के बिना तापमान की एक स्वतंत्र परिभाषा प्रदान करता है, जिसे दूसरे नियम में परिभाषित किया गया है। 1930 के दशक में राल्फ एच. फाउलर द्वारा कानून की स्थापना की गई थी, पहले, दूसरे और तीसरे कानूनों को व्यापक रूप से मान्यता दिए जाने के काफी समय बाद।
उष्मागतिकी का शून्यवाँ नियम उष्मागतिकी के चार प्रमुख नियमों में से एक है। यह [[एन्ट्रापी]] के संदर्भ के बिना तापमान की एक स्वतंत्र परिभाषा प्रदान करता है, जिसे दूसरे नियम में परिभाषित किया गया है। 1930 के दशक में राल्फ एच. फाउलर द्वारा नियम की स्थापना की गई थी, पहले, दूसरे और तीसरे नियमों के लंबे समय बाद व्यापक रूप से मान्यता दी गई थी।


शून्यवाँ नियम कहता है कि यदि दो [[ थर्मोडायनामिक प्रणाली ]] एक दूसरे के साथ [[थर्मल संतुलन]] में हैं, और अलग-अलग तीसरे सिस्टम के साथ थर्मल संतुलन में भी हैं, तो तीन सिस्टम एक दूसरे के साथ थर्मल संतुलन में हैं।<ref>Bailyn, M. (1994). ''A Survey of Thermodynamics'', American Institute of Physics Press, New York, {{ISBN|0-88318-797-3}}, p. 22.</ref><ref>[[Edward A. Guggenheim|Guggenheim, E.A.]] (1967). ''Thermodynamics. An Advanced Treatment for Chemists and Physicists'', [[Elsevier|North-Holland Publishing Company.]], Amsterdam, (1st edition 1949) fifth edition 1965, p. 8: "If two systems are both in thermal equilibrium with a third system then they are in thermal equilibrium with each other."</ref><ref>Buchdahl, H.A. (1966). ''The Concepts of Classical Thermodynamics'', Cambridge University Press, Cambridge, p. 29: "... if each of two systems is in equilibrium with a third system then they are in equilibrium with each other."</ref>
शून्यवाँ नियम कहता है कि यदि दो [[ थर्मोडायनामिक प्रणाली |ऊष्मागतिकी प्रणाली]] दूसरे के साथ [[थर्मल संतुलन|ऊष्मीय संतुलन]] में हैं, और अलग-अलग तीसरे प्रणाली के साथ ऊष्मीय संतुलन में भी हैं, तो तीन प्रणाली एक दूसरे के साथ ऊष्मीय संतुलन में हैं।<ref>Bailyn, M. (1994). ''A Survey of Thermodynamics'', American Institute of Physics Press, New York, {{ISBN|0-88318-797-3}}, p. 22.</ref><ref>[[Edward A. Guggenheim|Guggenheim, E.A.]] (1967). ''Thermodynamics. An Advanced Treatment for Chemists and Physicists'', [[Elsevier|North-Holland Publishing Company.]], Amsterdam, (1st edition 1949) fifth edition 1965, p. 8: "If two systems are both in thermal equilibrium with a third system then they are in thermal equilibrium with each other."</ref><ref>Buchdahl, H.A. (1966). ''The Concepts of Classical Thermodynamics'', Cambridge University Press, Cambridge, p. 29: "... if each of two systems is in equilibrium with a third system then they are in equilibrium with each other."</ref>
दो प्रणालियों को थर्मल संतुलन में कहा जाता है यदि वे केवल गर्मी के लिए पारगम्य दीवार से जुड़े होते हैं, और वे समय के साथ नहीं बदलते हैं।<ref name=Carathéodory-1909/>


[[जेम्स क्लर्क मैक्सवेल]] का एक अन्य सूत्रीकरण है सभी ऊष्मा एक ही प्रकार की होती है।<ref name=Maxwell-1871/>कानून का एक और बयान है सभी [[डायथर्मल दीवार]]ें समकक्ष हैं।<ref name=Bailyn-1994/>{{rp|pages=24, 144}}
दो प्रणालियों को ऊष्मीय संतुलन में कहा जाता है यदि वे केवल ऊष्मा के लिए पारगम्य दीवार से जुड़े होते हैं, और वे समय के साथ नहीं बदलते हैं।<ref name="Carathéodory-1909" />


ऊष्मप्रवैगिकी के गणितीय सूत्रीकरण के लिए शून्यवाँ नियम महत्वपूर्ण है। गणितीय रूप से, यह सिस्टम के बीच थर्मल संतुलन के संबंध को एक [[तुल्यता संबंध]] बनाता है, जो प्रत्येक सिस्टम से जुड़े कुछ फ़ंक्शन (गणित) की समानता का प्रतिनिधित्व कर सकता है। एक मात्रा जो दो प्रणालियों के लिए समान होती है, यदि उन्हें एक दूसरे के साथ तापीय संतुलन में रखा जा सकता है, तो तापमान का पैमाना है। ऐसे पैमानों के अस्तित्व के लिए शून्यवाँ नियम आवश्यक है। स्थिति व्यावहारिक थर्मामीटर के उपयोग को सही ठहराती है।<ref name=Lieb-Yngvason-1999/>{{rp|page=56}}
[[जेम्स क्लर्क मैक्सवेल]] का अन्य सूत्रीकरण है सभी ऊष्मा ही प्रकार की होती है।<ref name="Maxwell-1871" /> इस नियम का एक और बयान है सभी [[डायथर्मल दीवार|डायऊष्मीय दीवारें]] समकक्ष हैं।<ref name="Bailyn-1994" />{{rp|pages=24, 144}}
 
ऊष्मप्रवैगिकी के गणितीय सूत्रीकरण के लिए शून्यवाँ नियम महत्वपूर्ण है। गणितीय रूप से, यह प्रणाली के बीच ऊष्मीय संतुलन के संबंध को [[तुल्यता संबंध]] बनाता है, जो प्रत्येक प्रणाली से जुड़े कुछ फ़ंक्शन (गणित) की समानता का प्रतिनिधित्व कर सकता है। मात्रा जो दो प्रणालियों के लिए समान होती है, यदि उन्हें दूसरे के साथ तापीय संतुलन में रखा जा सकता है, तो तापमान का मानक है। ऐसे मानकों के अस्तित्व के लिए शून्यवाँ नियम आवश्यक है। स्थिति व्यावहारिक थर्मामीटर के उपयोग को सही बताती है।<ref name="Lieb-Yngvason-1999" />{{rp|page=56}}


== तुल्यता संबंध ==
== तुल्यता संबंध ==
एक उष्मागतिकीय प्रणाली परिभाषा के अनुसार आंतरिक ऊष्मप्रवैगिकी संतुलन की अपनी स्थिति में होती है, जिसका अर्थ है कि समय के साथ इसकी अवलोकनीय स्थिति (अर्थात [[ macrostate ]]) में कोई परिवर्तन नहीं होता है और इसमें कोई प्रवाह नहीं होता है। शून्य नियम का एक सटीक कथन यह है कि तापीय संतुलन का संबंध थर्मोडायनामिक प्रणालियों के जोड़े पर एक तुल्यता संबंध है।<ref name=Lieb-Yngvason-1999/>{{rp|page=52}} दूसरे शब्दों में, आंतरिक थर्मोडायनामिक संतुलन की अपनी स्थिति में सभी प्रणालियों के सेट को उपसमुच्चय में विभाजित किया जा सकता है जिसमें प्रत्येक प्रणाली एक और केवल एक उपसमुच्चय से संबंधित है, और उस उपसमुच्चय के प्रत्येक अन्य सदस्य के साथ तापीय संतुलन में है, और किसी अन्य उपसमुच्चय के सदस्य के साथ तापीय संतुलन में नहीं है। इसका मतलब यह है कि प्रत्येक प्रणाली को एक अद्वितीय टैग सौंपा जा सकता है, और यदि दो प्रणालियों के टैग समान हैं, तो वे एक दूसरे के साथ थर्मल संतुलन में हैं, और यदि भिन्न हैं, तो वे नहीं हैं। टैगिंग सिस्टम के रूप में अनुभवजन्य तापमान के उपयोग को सही ठहराने के लिए इस संपत्ति का उपयोग किया जाता है। अनुभवजन्य तापमान ऊष्मीय रूप से समतुल्य प्रणालियों के और संबंध प्रदान करता है, जैसे कि गर्माहट या ठंडक के संबंध में क्रम और निरंतरता, लेकिन ये शून्य नियम के मानक कथन से निहित नहीं हैं।
उष्मागतिकीय प्रणाली परिभाषा के अनुसार आंतरिक ऊष्मप्रवैगिकी संतुलन की अपनी स्थिति में होती है, जिसका अर्थ है कि समय के साथ इसकी अवलोकनीय स्थिति (अर्थात् [[ macrostate |मैक्रोस्टेट]]) में कोई परिवर्तन नहीं होता है और इसमें कोई प्रवाह नहीं होता है। शून्य नियम का त्रुटिहीन कथन यह है कि तापीय संतुलन का संबंध ऊष्मागतिकी प्रणालियों के जोड़े पर तुल्यता संबंध है।<ref name=Lieb-Yngvason-1999/>{{rp|page=52}} दूसरे शब्दों में, आंतरिक ऊष्मागतिकी संतुलन की अपनी स्थिति में सभी प्रणालियों के समुच्चय को उपसमुच्चय में विभाजित किया जा सकता है जिसमें प्रत्येक प्रणाली और केवल उपसमुच्चय से संबंधित है, और उस उपसमुच्चय के प्रत्येक अन्य सदस्य के साथ तापीय संतुलन में है, और किसी अन्य उपसमुच्चय के सदस्य के साथ तापीय संतुलन में नहीं है। इसका अर्थ यह है कि प्रत्येक प्रणाली को अद्वितीय टैग सौंपा जा सकता है, और यदि दो प्रणालियों के टैग समान हैं, तो वे दूसरे के साथ ऊष्मीय संतुलन में हैं, और यदि भिन्न हैं, तो वे नहीं हैं। टैगिंग प्रणाली के रूप में अनुभवजन्य तापमान के उपयोग को सही ठहराने के लिए इस गुण का उपयोग किया जाता है। अनुभवजन्य तापमान ऊष्मीय रूप से समतुल्य प्रणालियों के और संबंध प्रदान करता है, जैसे कि गर्माहट या शीतलक के संबंध में क्रम और निरंतरता, किन्तु ये शून्य नियम के मानक कथन से निहित नहीं हैं।
 
यदि यह परिभाषित किया जाता है कि ऊष्मागतिकी प्रणाली स्वयं के साथ ऊष्मीय संतुलन में है (अर्थात, ऊष्मीय संतुलन रिफ्लेक्सिव है), तो शून्य नियम निम्नानुसार कहा जा सकता है:
 
 
यदि कोई पिंड C, दो अन्य पिंडों A और B के साथ तापीय साम्य में है, तो A और B दूसरे के साथ तापीय साम्य में हैं।<ref name="Planck-1914" />
 
 
 
यह कथन जोर देकर कहता है कि तापीय संतुलन ऊष्मागतिकी प्रणालियों के बीच वाम-[[यूक्लिडियन संबंध]] है। यदि हम यह भी परिभाषित करें कि प्रत्येक ऊष्मागतिकी प्रणाली स्वयं के साथ ऊष्मीय संतुलन में है, तो ऊष्मीय संतुलन भी रिफ्लेक्सिव संबंध है। द्विआधारी संबंध जो प्रतिवर्ती और यूक्लिडियन दोनों हैं, तुल्यता संबंध हैं। इस प्रकार, फिर से परोक्ष रूप से रिफ्लेक्सीविटी मानते हुए, शून्य नियम को अधिकांश वाम-यूक्लिडियन कथन के रूप में व्यक्त किया जाता है:
 
 
यदि दो निकाय किसी तीसरे निकाय के साथ तापीय साम्य में हैं, तो वे दूसरे के साथ तापीय साम्य में हैं।<ref name="Buchdahl-1966" />
 
 


यदि यह परिभाषित किया जाता है कि एक थर्मोडायनामिक प्रणाली स्वयं के साथ थर्मल संतुलन में है (अर्थात, थर्मल संतुलन रिफ्लेक्सिव है), तो शून्य नियम निम्नानुसार कहा जा सकता है:
तुल्यता संबंध का परिणाम यह है कि संतुलन संबंध समरूपता तर्क में समरूपता है: यदि A, B के साथ तापीय संतुलन में है, तो B, A के साथ तापीय संतुलन में है। इस प्रकार हम कह सकते हैं कि दो प्रणालियाँ दूसरे के साथ तापीय संतुलन में हैं , या कि वे परस्पर संतुलन में हैं। तुल्यता का अन्य परिणाम यह है कि तापीय संतुलन [[सकर्मक संबंध]] है और इसे कभी-कभी इस प्रकार व्यक्त किया जाता है:<ref name="Lieb-Yngvason-1999" />{{rp|page=56}}<ref name="Kondepudi-2008" />
<ब्लॉककोट>
यदि कोई पिंड C, दो अन्य पिंडों A और B के साथ तापीय साम्य में है, तो A और B एक दूसरे के साथ तापीय साम्य में हैं।<ref name=Planck-1914/></ब्लॉककोट>


यह कथन जोर देकर कहता है कि तापीय संतुलन थर्मोडायनामिक प्रणालियों के बीच एक वाम-[[यूक्लिडियन संबंध]] है। यदि हम यह भी परिभाषित करें कि प्रत्येक थर्मोडायनामिक प्रणाली स्वयं के साथ थर्मल संतुलन में है, तो थर्मल संतुलन भी एक रिफ्लेक्सिव संबंध है। द्विआधारी संबंध जो प्रतिवर्ती और यूक्लिडियन दोनों हैं, तुल्यता संबंध हैं। इस प्रकार, फिर से परोक्ष रूप से रिफ्लेक्सीविटी मानते हुए, शून्य कानून को अक्सर सही-यूक्लिडियन कथन के रूप में व्यक्त किया जाता है:
<ब्लॉककोट>
यदि दो निकाय किसी तीसरे निकाय के साथ तापीय साम्य में हैं, तो वे एक दूसरे के साथ तापीय साम्य में हैं।<ref name=Buchdahl-1966/></ब्लॉककोट>


तुल्यता संबंध का एक परिणाम यह है कि संतुलन संबंध समरूपता # तर्क में समरूपता है: यदि A, B के साथ तापीय संतुलन में है, तो B, A के साथ तापीय संतुलन में है। इस प्रकार हम कह सकते हैं कि दो प्रणालियाँ एक दूसरे के साथ तापीय संतुलन में हैं , या कि वे परस्पर संतुलन में हैं। तुल्यता का एक अन्य परिणाम यह है कि तापीय संतुलन एक [[सकर्मक संबंध]] है और इसे कभी-कभी इस प्रकार व्यक्त किया जाता है:<ref name=Lieb-Yngvason-1999/>{{rp|page=56}}<ref name=Kondepudi-2008/><ब्लॉककोट>
यदि A, B के साथ तापीय साम्य में है और यदि B, C के साथ तापीय साम्य में है, तो A, C के साथ तापीय साम्य में है।
यदि A, B के साथ तापीय साम्य में है और यदि B, C के साथ तापीय साम्य में है, तो A, C के साथ तापीय साम्य में है।
</ब्लॉककोट>


एक प्रतिवर्त, सकर्मक संबंध एक तुल्यता संबंध की गारंटी नहीं देता है। उपरोक्त कथन के सत्य होने के लिए, रिफ्लेक्सिविटी और समरूपता दोनों को अनिवार्य रूप से माना जाना चाहिए।


यह यूक्लिडियन संबंध है जो सीधे [[तापमान माप]] पर लागू होता है। एक आदर्श थर्मामीटर एक ऐसा थर्मामीटर होता है जो मापने वाली प्रणाली की स्थिति को मापनीय रूप से नहीं बदलता है। यह मानते हुए कि एक आदर्श थर्मामीटर का अपरिवर्तनीय पठन समतुल्य थर्मोडायनामिक प्रणालियों के एक सेट के समकक्ष वर्गों के लिए एक मान्य टैगिंग प्रणाली है, तो सिस्टम थर्मल संतुलन में हैं, यदि थर्मामीटर प्रत्येक प्रणाली के लिए समान रीडिंग देता है। यदि सिस्टम थर्मल रूप से जुड़ा हुआ है, तो बाद में किसी एक की स्थिति में कोई परिवर्तन नहीं हो सकता है। यदि रीडिंग अलग-अलग हैं, तो दो प्रणालियों को थर्मल रूप से जोड़ने से दोनों प्रणालियों के राज्यों में बदलाव होता है। ज़ीरोथ कानून इस अंतिम पढ़ने के बारे में कोई जानकारी नहीं देता है।
प्रतिवर्त, सकर्मक संबंध तुल्यता संबंध की गारंटी नहीं देता है। उपरोक्त कथन के सत्य होने के लिए, रिफ्लेक्सिविटी और समरूपता दोनों को अनिवार्य रूप से माना जाना चाहिए।
 
यह यूक्लिडियन संबंध है जो सीधे [[तापमान माप]] पर प्रायुक्त होता है। आदर्श थर्मामीटर ऐसा थर्मामीटर होता है जो मापने वाली प्रणाली की स्थिति को मापनीय रूप से नहीं बदलता है। यह मानते हुए कि आदर्श थर्मामीटर का अपरिवर्तनीय पठन समतुल्य ऊष्मागतिकी प्रणालियों के समुच्चय के समकक्ष वर्गों के लिए मान्य टैगिंग प्रणाली है, तो प्रणाली ऊष्मीय संतुलन में हैं, यदि थर्मामीटर प्रत्येक प्रणाली के लिए समान रीडिंग देता है। यदि प्रणाली ऊष्मीय रूप से जुड़ा हुआ है, तो बाद में किसी की स्थिति में कोई परिवर्तन नहीं हो सकता है। यदि रीडिंग अलग-अलग हैं, तो दो प्रणालियों को ऊष्मीय रूप से जोड़ने से दोनों प्रणालियों के अवस्थाओं में परिवर्तन होता है। ज़ीरोथ नियम इस अंतिम पढ़ने के बारे में कोई जानकारी नहीं देता है।


== तापमान का आधार ==
== तापमान का आधार ==


आजकल, तापमान की दो लगभग अलग-अलग अवधारणाएँ हैं, थर्मोडायनामिक अवधारणा और गैसों और अन्य सामग्रियों के गतिज सिद्धांत की।
आजकल, तापमान की दो अलग -अलग अवधारणाएं ऊष्मागतिकी अवधारणा और गैसों और अन्य सामग्रियों के गतिज सिद्धांत के हैं।
 
शून्यवाँ नियम ऊष्मागतिकी अवधारणा से संबंधित है, किन्तु यह अब तापमान की प्राथमिक अंतर्राष्ट्रीय परिभाषा नहीं है। तापमान की वर्तमान प्राथमिक अंतरराष्ट्रीय परिभाषा बोल्ट्जमान स्थिरांक <math>k_{\mathrm B}</math> के माध्यम से तापमान से संबंधित अणुओं जैसे मुक्त रूप से गतिमान सूक्ष्म कणों की गतिज ऊर्जा के संदर्भ में है। वर्तमान लेख ऊष्मागतिकी अवधारणा के बारे में है, गतिज सिद्धांत अवधारणा के बारे में नहीं है।
 
शून्यवाँ नियम तापीय संतुलन को तुल्यता संबंध के रूप में स्थापित करता है। एक समुच्चय पर एक समानता संबंध (जैसे कि आंतरिक ऊष्मागतिकी संतुलन के अपने स्वयं के राज्य में सभी प्रणालियों का समुच्चय) विभाजित करता है जो अलग-अलग उपसमुच्चय (विच्छेद उपसमुच्चय) के संग्रह में समुच्चय होता है, जहां समुच्चय का कोई भी सदस्य एक और केवल एक ही सबसमुच्चय का सदस्य होता है। शून्य नियम की स्थिति में, इन उपसमुच्चय में ऐसी प्रणालियाँ होती हैं जो परस्पर संतुलन में होती हैं। यह विभाजन उपसमुच्चय के किसी भी सदस्य को उस उपसमुच्चय की पहचान करने वाले लेबल के साथ विशिष्ट रूप से टैग करने की अनुमति देता है जिससे वह संबंधित है। चूंकि लेबलिंग काफी स्वैच्छिक हो सकता है,<ref name=Dugdale-1996/> तापमान ऐसी लेबलिंग प्रक्रिया है जो टैगिंग के लिए [[वास्तविक संख्या प्रणाली]] का उपयोग करती है। ज़ीरोथ नियम इस तरह के लेबलिंग प्रदान करने के लिए [[थर्मामीटर]] के रूप में उपयुक्त ऊष्मागतिकी प्रणाली के उपयोग को उचित ठहराता है, जो तापमान के किसी भी संभावित स्केल अनुभवजन्य स्केल को उत्पन्न करता है, और पूर्ण, या [[थर्मोडायनामिक तापमान|ऊष्मागतिकी तापमान]] स्केल प्रदान करने [[ऊष्मप्रवैगिकी का दूसरा नियम]] दूसरे नियम के उपयोग को उचित ठहराता है। इस तरह के तापमान पैमाने तापमान की अवधारणा के लिए अतिरिक्त निरंतरता और क्रम (अर्थात्, गर्म और ठंडा) गुण लाते हैं।<ref name=Buchdahl-1966/>


शून्यवाँ नियम थर्मोडायनामिक अवधारणा से संबंधित है, लेकिन यह अब तापमान की प्राथमिक अंतर्राष्ट्रीय परिभाषा नहीं है। तापमान की वर्तमान प्राथमिक अंतरराष्ट्रीय परिभाषा बोल्ट्जमान स्थिरांक के माध्यम से तापमान से संबंधित अणुओं जैसे मुक्त रूप से गतिमान सूक्ष्म कणों की गतिज ऊर्जा के संदर्भ में है। <math>k_{\mathrm B}</math>. वर्तमान लेख थर्मोडायनामिक अवधारणा के बारे में है, गतिज सिद्धांत अवधारणा के बारे में नहीं।
ऊष्मप्रवैगिकी मापदंडों के स्थान में, निरंतर तापमान के क्षेत्र सतह बनाते हैं, जो आस-पास की सतहों का प्राकृतिक क्रम प्रदान करता है। इसलिए वैश्विक तापमान समारोह का निर्माण किया जा सकता है जो अवस्थाओं का निरंतर क्रम प्रदान करता है। निरंतर तापमान की सतह की [[आयाम|आयामीता]] ऊष्मागतिकी मापदंडों की संख्या से कम है, इस प्रकार, तीन ऊष्मागतिकी पैरामीटर P, V और N के साथ वर्णित आदर्श गैस के लिए, यह द्वि-आयामी सतह है।


शून्यवाँ नियम तापीय संतुलन को एक तुल्यता संबंध के रूप में स्थापित करता है। एक सेट पर एक तुल्यता संबंध (जैसे कि आंतरिक थर्मोडायनामिक संतुलन की अपनी स्थिति में सभी प्रणालियों का सेट) उस सेट को अलग-अलग उपसमुच्चय (विच्छेद उपसमुच्चय) के संग्रह में विभाजित करता है जहां सेट का कोई भी सदस्य एक और केवल का सदस्य होता है ऐसा ही एक उपसमुच्चय। शून्य नियम के मामले में, इन उपसमुच्चय में ऐसी प्रणालियाँ होती हैं जो परस्पर संतुलन में होती हैं। यह विभाजन उपसमुच्चय के किसी भी सदस्य को उस उपसमुच्चय की पहचान करने वाले लेबल के साथ विशिष्ट रूप से टैग करने की अनुमति देता है जिससे वह संबंधित है। हालांकि लेबलिंग काफी मनमाना हो सकता है,<ref name=Dugdale-1996/>तापमान ऐसी लेबलिंग प्रक्रिया है जो टैगिंग के लिए [[वास्तविक संख्या प्रणाली]] का उपयोग करती है। ज़ीरोथ कानून इस तरह के लेबलिंग प्रदान करने के लिए [[थर्मामीटर]] के रूप में उपयुक्त थर्मोडायनामिक सिस्टम के उपयोग को उचित ठहराता है, जो तापमान के किसी भी संभावित स्केल # अनुभवजन्य स्केल को उत्पन्न करता है, और एक पूर्ण, या [[थर्मोडायनामिक तापमान]] स्केल प्रदान करने [[ऊष्मप्रवैगिकी का दूसरा नियम]] दूसरे कानून के उपयोग को उचित ठहराता है। . इस तरह के तापमान पैमाने तापमान की अवधारणा के लिए अतिरिक्त निरंतरता और ऑर्डरिंग (यानी, गर्म और ठंडा) गुण लाते हैं।<ref name=Buchdahl-1966/>
उदाहरण के लिए, यदि आदर्श गैसों की दो प्रणालियाँ अचल डायऊष्मीय दीवार के पार संयुक्त ऊष्मागतिकी संतुलन में हैं, तब {{sfrac|''P''<sub>1</sub>''V''<sub>1</sub>|''N''<sub>1</sub>}} = {{sfrac|''P''<sub>2</sub>''V''<sub>2</sub>|''N''<sub>2</sub>}} जहां P<sub>i</sub> iवाँ प्रणाली में दबाव है, V<sub>i</sub> मात्रा है, और N<sub>i</sub> गैस की मात्रा (मोल (यूनिट) में, या केवल परमाणुओं की संख्या) है।


ऊष्मप्रवैगिकी मापदंडों के स्थान में, निरंतर तापमान के क्षेत्र एक सतह बनाते हैं, जो आस-पास की सतहों का एक प्राकृतिक क्रम प्रदान करता है। इसलिए एक वैश्विक तापमान समारोह का निर्माण किया जा सकता है जो राज्यों का निरंतर क्रम प्रदान करता है। निरंतर तापमान की सतह की [[आयाम]]ीता थर्मोडायनामिक मापदंडों की संख्या से एक कम है, इस प्रकार, तीन थर्मोडायनामिक पैरामीटर पी, वी और एन के साथ वर्णित एक आदर्श गैस के लिए, यह एक द्वि-आयामी सतह है।
सतह {{sfrac|''PV''|''N''}} = निरंतर समान उष्मागतिक तापमान की सतहों को परिभाषित करता है, और कोई T को परिभाषित करने के लिए लेबल कर सकता है ताकि {{sfrac|''PV''|''N''}} = RT, जहाँ R कुछ अचर है। इन प्रणालियों को अब अन्य प्रणालियों को जांचने के लिए थर्मामीटर के रूप में उपयोग किया जा सकता है। ऐसी प्रणालियों को आदर्श गैस थर्मामीटर के रूप में जाना जाता है।


उदाहरण के लिए, यदि आदर्श गैसों की दो प्रणालियाँ एक अचल डायथर्मल दीवार के पार संयुक्त थर्मोडायनामिक संतुलन में हैं, तब {{sfrac|''P''<sub>1</sub>''V''<sub>1</sub>|''N''<sub>1</sub>}} = {{sfrac|''P''<sub>2</sub>''V''<sub>2</sub>|''N''<sub>2</sub>}} जहां पी<sub>i</sub>Ith सिस्टम में दबाव है, V<sub>i</sub>मात्रा है, और एन<sub>i</sub>गैस की मात्रा (मोल (यूनिट) में, या केवल परमाणुओं की संख्या) है।
मायने में, ज़ीरोथ लॉ में केंद्रित, केवल प्रकार की डायऊष्मीय दीवार या प्रकार की ऊष्मा होती है, जैसा कि मैक्सवेल के डिक्टम द्वारा व्यक्त किया गया है कि सभी ऊष्मा ही प्रकार की होती हैं।<ref name=Maxwell-1871/> किन्तु अन्य अर्थ में, ऊष्मा को अलग-अलग रैंकों में स्थानांतरित किया जाता है, जैसा कि सोमरफेल्ड के डिक्टम उष्मागतिकी द्वारा व्यक्त किया गया है, उन स्थितियों की जांच करता है जो ऊष्मा को काम में बदलने को नियंत्रित करती हैं। यह हमें तापमान को ऊष्मा के कार्य-मूल्य के माप के रूप में पहचानना सिखाता है। उच्च तापमान की ऊष्मा अधिक समृद्ध होती है, अधिक कार्य करने में सक्षम होती है। काम को बिना शर्त उपलब्ध ऊष्मा के रूप में अनंत रूप से उच्च तापमान की ऊष्मा के रूप में माना जा सकता है।<ref name=Sommerfeld-1923/> यही कारण है कि तापमान तुल्यता के शून्य नियम के कथन द्वारा निरुपित विशेष चर है।


सतह {{sfrac|''PV''|''N''}} = निरंतर समान उष्मागतिक तापमान की सतहों को परिभाषित करता है, और कोई टी को परिभाषित करने के लिए लेबल कर सकता है ताकि {{sfrac|''PV''|''N''}} = RT, जहाँ R कुछ अचर है। इन प्रणालियों को अब अन्य प्रणालियों को जांचने के लिए थर्मामीटर के रूप में इस्तेमाल किया जा सकता है। ऐसी प्रणालियों को आदर्श गैस थर्मामीटर के रूप में जाना जाता है।
== केवल ऊष्मा के लिए पारगम्य दीवारों के अस्तित्व पर निर्भरता ==
कैरथेडोरी में (1909)<ref name=Carathéodory-1909/> सिद्धांत, यह पोस्ट किया गया है कि केवल ऊष्मा के लिए पारगम्य दीवारें उपस्थित हैं, चूंकि उस पेपर में ऊष्मा को स्पष्ट रूप से परिभाषित नहीं किया गया है। यह अभिधारणा अस्तित्व की भौतिक अभिधारणा है। यह नहीं कहता कि केवल ही प्रकार की ऊष्मा होती है। कैराथियोडोरी का यह पेपर इस प्रकार की दीवारों के अपने खाते के प्रावधान 4 के रूप में बताता है: जब भी प्रत्येक प्रणाली S<sub>1</sub> और S<sub>2</sub> तीसरी प्रणाली S<sub>3</sub> के साथ संतुलन तक पहुँचने के लिए बनाया गया है समान परिस्थितियों में, प्रणाली S<sub>1</sub> और S<sub>2</sub> परस्पर संतुलन में हैं।<ref name=Carathéodory-1909/>{{rp|at=§6}}


एक मायने में, ज़ीरोथ लॉ में केंद्रित, केवल एक प्रकार की डायथर्मल दीवार या एक प्रकार की ऊष्मा होती है, जैसा कि मैक्सवेल के डिक्टम द्वारा व्यक्त किया गया है कि सभी ऊष्मा एक ही प्रकार की होती हैं।<ref name=Maxwell-1871/>लेकिन एक अन्य अर्थ में, गर्मी को अलग-अलग रैंकों में स्थानांतरित किया जाता है, जैसा कि सोमरफेल्ड के डिक्टम थर्मोडायनामिक्स द्वारा व्यक्त किया गया है, उन स्थितियों की जांच करता है जो गर्मी को काम में बदलने को नियंत्रित करती हैं। यह हमें तापमान को ऊष्मा के कार्य-मूल्य के माप के रूप में पहचानना सिखाता है। उच्च तापमान की ऊष्मा अधिक समृद्ध होती है, अधिक कार्य करने में सक्षम होती है। कार्य को असीम रूप से उच्च तापमान की ऊष्मा के रूप में माना जा सकता है, बिना शर्त उपलब्ध ऊष्मा के रूप में।<ref name=Sommerfeld-1923/>यही कारण है कि तापमान तुल्यता के शून्य नियम के कथन द्वारा इंगित विशेष चर है।
यह पेपर में इस कथन का कार्य है, न कि शून्य नियम के रूप में लेबल किया गया है, केवल कार्य या पदार्थ के हस्तांतरण के अतिरिक्त अन्य ऊर्जा के हस्तांतरण के अस्तित्व के लिए प्रदान करने के लिए, किन्तु यह प्रदान करने के लिए कि इस तरह का स्थानांतरण अद्वितीय है समझ में आता है कि केवल प्रकार की ऐसी दीवार है, और प्रकार का ऐसा स्थानांतरण है। कैराथियोडोरी के इस पेपर के अभिगृहीत में यह संकेत दिया गया है कि ऊष्मागतिकी स्थिति के विनिर्देशन को पूरा करने के लिए त्रुटिहीन रूप से गैर-विरूपण चर की आवश्यकता होती है, आवश्यक विरूपण चर से परे, जो संख्या में प्रतिबंधित नहीं हैं। इसलिए यह बिल्कुल स्पष्ट नहीं है कि कैराथोडोरी का क्या अर्थ है जब वह इस पत्र की प्रस्तावना में लिखता है


== केवल गर्मी के लिए पारगम्य दीवारों के अस्तित्व पर निर्भरता ==
ऊष्मा के अस्तित्व को माने बिना पूरे सिद्धांत को विकसित करना संभव है, जो कि ऐसी मात्रा है जो सामान्य यांत्रिक मात्रा से भिन्न प्रकृति की है।<ref name="Carathéodory-1909" />
कैरथेडोरी में (1909)<ref name=Carathéodory-1909/>सिद्धांत, यह पोस्ट किया गया है कि केवल गर्मी के लिए पारगम्य दीवारें मौजूद हैं, हालांकि उस पेपर में गर्मी को स्पष्ट रूप से परिभाषित नहीं किया गया है। यह अभिधारणा अस्तित्व की एक भौतिक अभिधारणा है। यह नहीं कहता कि केवल एक ही प्रकार की ऊष्मा होती है। कैराथियोडोरी का यह पेपर इस तरह की दीवारों के अपने खाते के प्रावधान 4 के रूप में बताता है: जब भी प्रत्येक सिस्टम एस<sub>1</sub> और एस<sub>2</sub> एक तीसरी प्रणाली S के साथ संतुलन तक पहुँचने के लिए बनाया गया है<sub>3</sub> समान परिस्थितियों में, सिस्टम एस<sub>1</sub> और एस<sub>2</sub> परस्पर संतुलन में हैं।<ref name=Carathéodory-1909/>{{rp|at=§6}}


यह पेपर में इस कथन का कार्य है, न कि शून्य कानून के रूप में लेबल किया गया है, न केवल कार्य या पदार्थ के हस्तांतरण के अलावा अन्य ऊर्जा के हस्तांतरण के अस्तित्व के लिए प्रदान करने के लिए, बल्कि यह प्रदान करने के लिए कि इस तरह का स्थानांतरण अद्वितीय है समझ में आता है कि केवल एक प्रकार की ऐसी दीवार है, और एक प्रकार का ऐसा स्थानांतरण है। कैराथियोडोरी के इस पेपर के अभिगृहीत में यह संकेत दिया गया है कि थर्मोडायनामिक स्थिति के विनिर्देशन को पूरा करने के लिए सटीक रूप से एक गैर-विरूपण चर की आवश्यकता होती है, आवश्यक विरूपण चर से परे, जो संख्या में प्रतिबंधित नहीं हैं। इसलिए यह बिल्कुल स्पष्ट नहीं है कि कैराथोडोरी का क्या अर्थ है जब वह इस पत्र की प्रस्तावना में लिखता है
यह लीब और यंगवासन (1999) की राय है<ref name="Lieb-Yngvason-1999" /> कि एंट्रॉपी वृद्धि के नियम के सांख्यिकीय यांत्रिकी से व्युत्पत्ति ऐसा लक्ष्य है जो अब तक गहन विचारकों से दूर है।<ref name="Lieb-Yngvason-1999" />{{rp|page=5}} इस प्रकार यह विचार विचार के लिए खुला रहता है कि उष्मागतिकी के लिए सुसंगत आदिम अवधारणाओं के रूप में ऊष्मा और तापमान के अस्तित्व की आवश्यकता है, जैसा कि व्यक्त किया गया है, उदाहरण के लिए, मैक्सवेल और प्लैंक द्वारा। दूसरी ओर, प्लैंक (1926)<ref name="Planck-1926" /> प्राकृतिक ऊष्मागतिकी प्रक्रियाओं में घर्षण की अपरिवर्तनीय और सार्वभौमिक प्रकृति का उल्लेख करते हुए, स्पष्ट किया कि दूसरे नियम को ऊष्मा या तापमान के संदर्भ के बिना कैसे कहा जा सकता है।<ref name="Planck-1926" />
<ब्लॉककोट>
ऊष्मा के अस्तित्व को माने बिना पूरे सिद्धांत को विकसित करना संभव है, जो कि एक ऐसी मात्रा है जो सामान्य यांत्रिक मात्रा से भिन्न प्रकृति की है।<ref name=Carathéodory-1909/></ब्लॉककोट>


यह लीब और यंगवासन (1999) की राय है<ref name=Lieb-Yngvason-1999/>कि एंट्रॉपी वृद्धि के कानून के सांख्यिकीय यांत्रिकी से व्युत्पत्ति एक ऐसा लक्ष्य है जो अब तक गहन विचारकों से दूर है।<ref name=Lieb-Yngvason-1999/>{{rp|page=5}} इस प्रकार यह विचार विचार के लिए खुला रहता है कि उष्मागतिकी के लिए सुसंगत आदिम अवधारणाओं के रूप में ऊष्मा और तापमान के अस्तित्व की आवश्यकता है, जैसा कि व्यक्त किया गया है, उदाहरण के लिए, मैक्सवेल और प्लैंक द्वारा। दूसरी ओर, प्लैंक (1926)<ref name=Planck-1926/>प्राकृतिक थर्मोडायनामिक प्रक्रियाओं में घर्षण की अपरिवर्तनीय और सार्वभौमिक प्रकृति का उल्लेख करते हुए, स्पष्ट किया कि दूसरे नियम को गर्मी या तापमान के संदर्भ के बिना कैसे कहा जा सकता है।<ref name=Planck-1926/>




== इतिहास ==
== इतिहास ==
1871 में मैक्सवेल में ज़ीरोथ लॉ शब्द गढ़े जाने से बहुत पहले लिखा गया था<ref name=Maxwell-1871/>कुछ विस्तार से विचारों पर चर्चा की जिसे उन्होंने इन शब्दों में संक्षेपित किया सभी ऊष्मा एक ही प्रकार की होती है।<ref name=Maxwell-1871/>आधुनिक सिद्धांतवादी कभी-कभी इस विचार को एक अद्वितीय एक-आयामी गर्मता के कई गुना अस्तित्व की कल्पना करते हुए व्यक्त करते हैं, जिसमें प्रत्येक उचित तापमान पैमाने में एक मोनोटोनिक मानचित्रण होता है।<ref name=Serrin-1986/>इसे इस कथन द्वारा व्यक्त किया जा सकता है कि केवल एक ही प्रकार का तापमान होता है, भले ही विभिन्न प्रकार के पैमानों में इसे व्यक्त किया गया हो। इस विचार की एक और आधुनिक अभिव्यक्ति यह है कि सभी डायथर्मल दीवारें समान हैं।<ref name=Bailyn-1994/>{{rp|page=23}} इसे यह कहकर भी व्यक्त किया जा सकता है कि थर्मोडायनामिक प्रणालियों के बीच ठीक एक प्रकार का गैर-यांत्रिक, गैर-पदार्थ-स्थानांतरण संपर्क संतुलन है।
1871 में मैक्सवेल में ज़ीरोथ लॉ शब्द गढ़े जाने से बहुत पहले लिखा गया था<ref name=Maxwell-1871/> कुछ विस्तार से विचारों पर चर्चा की जिसे उन्होंने इन शब्दों में संक्षेपित किया सभी ऊष्मा ही प्रकार की होती है।<ref name=Maxwell-1871/> आधुनिक सिद्धांतवादी कभी-कभी इस विचार को अद्वितीय एक-आयामी गर्मता के कई गुना अस्तित्व की कल्पना करते हुए व्यक्त करते हैं, जिसमें प्रत्येक उचित तापमान पैमाने में मोनोटोनिक मानचित्रण होता है।<ref name=Serrin-1986/> इसे इस कथन द्वारा व्यक्त किया जा सकता है कि केवल ही प्रकार का तापमान होता है, तथापि विभिन्न प्रकार के मानकों में इसे व्यक्त किया गया हो। इस विचार की और आधुनिक अभिव्यक्ति यह है कि सभी डायऊष्मीय दीवारें समान हैं।<ref name=Bailyn-1994/>{{rp|page=23}} इसे यह कहकर भी व्यक्त किया जा सकता है कि ऊष्मागतिकी प्रणालियों के बीच ठीक प्रकार का गैर-यांत्रिक, गैर-पदार्थ-स्थानांतरण संपर्क संतुलन है।
 
[[अर्नोल्ड सोमरफेल्ड]] के अनुसार, राल्फ एच. फाउलर ने [[मेघनाद सहा|मेघनाद साहा]] और बी.एन. श्रीवास्तव द्वारा 1935 के पाठ पर चर्चा करते हुए<ref name="Saha-Srivastava-1935" /> ऊष्मप्रवैगिकी के शून्य नियम को गढ़ा था।<ref name=Sommerfeld-1951-1955/> 


[[अर्नोल्ड सोमरफेल्ड]] के अनुसार, राल्फ एच. फाउलर ने ऊष्मप्रवैगिकी के शून्य नियम को गढ़ा<ref name=Sommerfeld-1951-1955/>[[मेघनाद सहा]] और बी.एन. द्वारा 1935 के पाठ पर चर्चा करते हुए। श्रीवास्तव।<ref name=Saha-Srivastava-1935/>
वे पृष्ठ 1 पर लिखते हैं कि प्रत्येक भौतिक मात्रा को संख्यात्मक शब्दों में मापने योग्य होना चाहिए। वे मानते हैं कि तापमान भौतिक मात्रा है और फिर कथन को घटाते हैं यदि पिंड {{mvar|A}} दो निकायों के साथ तापमान संतुलन में है {{mvar|B}} और {{mvar|C}}, तब {{mvar|B}} और {{mvar|C}} स्वयं दूसरे के साथ तापमान संतुलन में हैं।<ref name=Saha-Srivastava-1935/> फिर वे स्व-स्थायी पैराग्राफ को इटैलिकाइज़ करते हैं, जैसे कि उनके मूल अभिधारणा को बताते हैं:
 
भौतिक गुणों में से कोई भी {{mvar|A}} जो ऊष्मा के उपयोग के साथ बदलता है, उसे देखा जा सकता है और तापमान के मापन के लिए उपयोग किया जा सकता है।<ref name="Saha-Srivastava-1935" />


वे पृष्ठ 1 पर लिखते हैं कि प्रत्येक भौतिक मात्रा को संख्यात्मक शब्दों में मापने योग्य होना चाहिए। वे मानते हैं कि तापमान एक भौतिक मात्रा है और फिर कथन को घटाते हैं यदि एक पिंड {{mvar|A}} दो निकायों के साथ तापमान संतुलन में है {{mvar|B}} और {{mvar|C}}, तब {{mvar|B}} और {{mvar|C}} स्वयं एक दूसरे के साथ तापमान संतुलन में हैं।<ref name=Saha-Srivastava-1935/>फिर वे एक स्व-स्थायी पैराग्राफ को इटैलिकाइज़ करते हैं, जैसे कि उनके मूल अभिधारणा को बताते हैं:
<ब्लॉककोट>
के भौतिक गुणों में से कोई भी {{mvar|A}} जो ऊष्मा के उपयोग के साथ बदलता है, उसे देखा जा सकता है और तापमान के मापन के लिए उपयोग किया जा सकता है।<ref name=Saha-Srivastava-1935/></ब्लॉककोट>
वे स्वयं यहां ऊष्मप्रवैगिकी के शून्य नियम वाक्यांश का उपयोग नहीं करते हैं।
वे स्वयं यहां ऊष्मप्रवैगिकी के शून्य नियम वाक्यांश का उपयोग नहीं करते हैं।
इस पाठ से बहुत पहले भौतिक विज्ञान के साहित्य में इन समान भौतिक विचारों के बहुत से बयान हैं, बहुत ही समान भाषा में। यहाँ जो नया था वह उष्मप्रवैगिकी का लेबल ज़ीरोथ नियम था।


फाउलर और गुगेनहाइम (1936/1965)<ref name=Fowler-Guggenheim-1939-1965/>शून्यवाँ नियम को इस प्रकार लिखा है:
इस पाठ से बहुत पहले भौतिक विज्ञान के साहित्य में इन समान भौतिक विचारों के बहुत से बयान हैं, बहुत ही समान भाषा में है। यहाँ जो नया था वह उष्मप्रवैगिकी का लेबल ज़ीरोथ नियम था।
<ब्लॉककोट>
 
... हम अभिधारणा का परिचय देते हैं: यदि दो समुच्चय एक तीसरे समुच्चय के साथ तापीय संतुलन में हैं, तो वे एक दूसरे के साथ तापीय संतुलन में हैं।<ref name=Fowler-Guggenheim-1939-1965/></ब्लॉककोट>
फाउलर और गुगेनहाइम (1936/1965)<ref name="Fowler-Guggenheim-1939-1965" /> शून्यवाँ नियम को इस प्रकार लिखा है:
 
... हम अभिधारणा का परिचय देते हैं: यदि दो समुच्चय तीसरे समुच्चय के साथ तापीय संतुलन में हैं, तो वे दूसरे के साथ तापीय संतुलन में हैं।<ref name="Fowler-Guggenheim-1939-1965" />


इसके बाद उन्होंने इसका प्रस्ताव रखा
इसके बाद उन्होंने इसका प्रस्ताव रखा
<ब्लॉककोट>
 
... यह पालन करने के लिए दिखाया जा सकता है कि कई विधानसभाओं के बीच थर्मल संतुलन की स्थिति विधानसभाओं के थर्मोडायनामिक राज्यों के एक निश्चित एकल-मूल्यवान कार्य की समानता है, जिसे तापमान कहा जा सकता है {{mvar|t}}, तापमान पढ़ने वाले थर्मामीटर के रूप में उपयोग की जाने वाली असेंबली में से कोई भी {{mvar|t}} उपयुक्त पैमाने पर। तापमान के अस्तित्व के इस अभिधारणा को लाभ के साथ ऊष्मप्रवैगिकी के शून्य नियम के रूप में जाना जा सकता है।<ref name=Fowler-Guggenheim-1939-1965/></ब्लॉककोट>
... यह अनुसरण करने के लिए दिखाया जा सकता है कि कई असेंबली के बीच ऊष्मीय संतुलन की स्थिति असेंबली के ऊष्मागतिकी अवस्थाओं के निश्चित एकल-मूल्यवान कार्य की समानता है, जिसे तापमान {{mvar|t}} कहा जा सकता है, थर्मामीटर के रूप में एक उपयुक्त पैमाने पर तापमान {{mvar|t}} को पढ़ते हैं। तापमान के अस्तित्व की इस स्थिति को लाभ के साथ ऊष्मप्रवैगिकी के शून्य नियम के रूप में जाना जा सकता है।<ref name="Fowler-Guggenheim-1939-1965" />
इस वर्तमान लेख का पहला वाक्य इसी कथन का एक संस्करण है। फाउलर और गुगेनहाइम के अस्तित्व के बयान में यह स्पष्ट रूप से स्पष्ट नहीं है कि तापमान एक प्रणाली की स्थिति की एक अनूठी विशेषता को संदर्भित करता है, जैसे कि हॉटनेस मैनिफोल्ड के विचार में व्यक्त किया गया है। साथ ही उनका बयान स्पष्ट रूप से सांख्यिकीय यांत्रिक असेंबली को संदर्भित करता है, स्पष्ट रूप से मैक्रोस्कोपिक थर्मोडायनामिक रूप से परिभाषित प्रणालियों के लिए नहीं।
 
इस वर्तमान लेख का पहला वाक्य इसी कथन का संस्करण है। फाउलर और गुगेनहाइम के अस्तित्व के बयान में यह स्पष्ट रूप से स्पष्ट नहीं है कि तापमान प्रणाली की स्थिति की अनूठी विशेषता को संदर्भित करता है, जैसे कि हॉटनेस मैनिफोल्ड के विचार में व्यक्त किया गया है। इसके अतिरिक्त उनका कथन स्पष्ट रूप से सांख्यिकीय यांत्रिक असेंबली को स्पष्ट रूप से मैक्रोस्कोपिक थर्मोडायनामिक रूप से परिभाषित प्रणालियों के लिए स्पष्ट रूप से नहीं बताता है।


==उद्धरण==
==उद्धरण==
Line 251: Line 264:
*{{cite book |last=Atkins |first=Peter |author-link=Peter Atkins |year=2007 |title=Four Laws That Drive the Universe |publisher=Oxford University Press |location=New York |isbn=978-0-19-923236-9}}
*{{cite book |last=Atkins |first=Peter |author-link=Peter Atkins |year=2007 |title=Four Laws That Drive the Universe |publisher=Oxford University Press |location=New York |isbn=978-0-19-923236-9}}


{{DEFAULTSORT:Zeroth Law Of Thermodynamics}}[[Category: ऊष्मप्रवैगिकी के नियम|0]]
{{DEFAULTSORT:Zeroth Law Of Thermodynamics}}
 
 


[[Category: Machine Translated Page]]
[[Category:All articles with incomplete citations]]
[[Category:Created On 31/03/2023]]
[[Category:Articles with incomplete citations from March 2021]]
[[Category:CS1 Deutsch-language sources (de)]]
[[Category:Chemistry sidebar templates|Zeroth Law Of Thermodynamics]]
[[Category:Created On 31/03/2023|Zeroth Law Of Thermodynamics]]
[[Category:Lua-based templates|Zeroth Law Of Thermodynamics]]
[[Category:Machine Translated Page|Zeroth Law Of Thermodynamics]]
[[Category:Mechanics templates|Zeroth Law Of Thermodynamics]]
[[Category:Pages with broken file links|Zeroth Law Of Thermodynamics]]
[[Category:Pages with maths render errors|Zeroth Law Of Thermodynamics]]
[[Category:Pages with script errors|Zeroth Law Of Thermodynamics]]
[[Category:Physics sidebar templates|Zeroth Law Of Thermodynamics]]
[[Category:Sidebars with styles needing conversion|Zeroth Law Of Thermodynamics]]
[[Category:Templates Vigyan Ready|Zeroth Law Of Thermodynamics]]
[[Category:Templates that add a tracking category|Zeroth Law Of Thermodynamics]]
[[Category:Templates that generate short descriptions|Zeroth Law Of Thermodynamics]]
[[Category:Templates using TemplateData|Zeroth Law Of Thermodynamics]]
[[Category:ऊष्मप्रवैगिकी के नियम|0]]

Latest revision as of 15:53, 29 May 2023

उष्मागतिकी का शून्यवाँ नियम उष्मागतिकी के चार प्रमुख नियमों में से एक है। यह एन्ट्रापी के संदर्भ के बिना तापमान की एक स्वतंत्र परिभाषा प्रदान करता है, जिसे दूसरे नियम में परिभाषित किया गया है। 1930 के दशक में राल्फ एच. फाउलर द्वारा नियम की स्थापना की गई थी, पहले, दूसरे और तीसरे नियमों के लंबे समय बाद व्यापक रूप से मान्यता दी गई थी।

शून्यवाँ नियम कहता है कि यदि दो ऊष्मागतिकी प्रणाली दूसरे के साथ ऊष्मीय संतुलन में हैं, और अलग-अलग तीसरे प्रणाली के साथ ऊष्मीय संतुलन में भी हैं, तो तीन प्रणाली एक दूसरे के साथ ऊष्मीय संतुलन में हैं।[1][2][3]

दो प्रणालियों को ऊष्मीय संतुलन में कहा जाता है यदि वे केवल ऊष्मा के लिए पारगम्य दीवार से जुड़े होते हैं, और वे समय के साथ नहीं बदलते हैं।[4]

जेम्स क्लर्क मैक्सवेल का अन्य सूत्रीकरण है सभी ऊष्मा ही प्रकार की होती है।[5] इस नियम का एक और बयान है सभी डायऊष्मीय दीवारें समकक्ष हैं।[6]: 24, 144 

ऊष्मप्रवैगिकी के गणितीय सूत्रीकरण के लिए शून्यवाँ नियम महत्वपूर्ण है। गणितीय रूप से, यह प्रणाली के बीच ऊष्मीय संतुलन के संबंध को तुल्यता संबंध बनाता है, जो प्रत्येक प्रणाली से जुड़े कुछ फ़ंक्शन (गणित) की समानता का प्रतिनिधित्व कर सकता है। मात्रा जो दो प्रणालियों के लिए समान होती है, यदि उन्हें दूसरे के साथ तापीय संतुलन में रखा जा सकता है, तो तापमान का मानक है। ऐसे मानकों के अस्तित्व के लिए शून्यवाँ नियम आवश्यक है। स्थिति व्यावहारिक थर्मामीटर के उपयोग को सही बताती है।[7]: 56 

तुल्यता संबंध

उष्मागतिकीय प्रणाली परिभाषा के अनुसार आंतरिक ऊष्मप्रवैगिकी संतुलन की अपनी स्थिति में होती है, जिसका अर्थ है कि समय के साथ इसकी अवलोकनीय स्थिति (अर्थात् मैक्रोस्टेट) में कोई परिवर्तन नहीं होता है और इसमें कोई प्रवाह नहीं होता है। शून्य नियम का त्रुटिहीन कथन यह है कि तापीय संतुलन का संबंध ऊष्मागतिकी प्रणालियों के जोड़े पर तुल्यता संबंध है।[7]: 52  दूसरे शब्दों में, आंतरिक ऊष्मागतिकी संतुलन की अपनी स्थिति में सभी प्रणालियों के समुच्चय को उपसमुच्चय में विभाजित किया जा सकता है जिसमें प्रत्येक प्रणाली और केवल उपसमुच्चय से संबंधित है, और उस उपसमुच्चय के प्रत्येक अन्य सदस्य के साथ तापीय संतुलन में है, और किसी अन्य उपसमुच्चय के सदस्य के साथ तापीय संतुलन में नहीं है। इसका अर्थ यह है कि प्रत्येक प्रणाली को अद्वितीय टैग सौंपा जा सकता है, और यदि दो प्रणालियों के टैग समान हैं, तो वे दूसरे के साथ ऊष्मीय संतुलन में हैं, और यदि भिन्न हैं, तो वे नहीं हैं। टैगिंग प्रणाली के रूप में अनुभवजन्य तापमान के उपयोग को सही ठहराने के लिए इस गुण का उपयोग किया जाता है। अनुभवजन्य तापमान ऊष्मीय रूप से समतुल्य प्रणालियों के और संबंध प्रदान करता है, जैसे कि गर्माहट या शीतलक के संबंध में क्रम और निरंतरता, किन्तु ये शून्य नियम के मानक कथन से निहित नहीं हैं।

यदि यह परिभाषित किया जाता है कि ऊष्मागतिकी प्रणाली स्वयं के साथ ऊष्मीय संतुलन में है (अर्थात, ऊष्मीय संतुलन रिफ्लेक्सिव है), तो शून्य नियम निम्नानुसार कहा जा सकता है:


यदि कोई पिंड C, दो अन्य पिंडों A और B के साथ तापीय साम्य में है, तो A और B दूसरे के साथ तापीय साम्य में हैं।[8]


यह कथन जोर देकर कहता है कि तापीय संतुलन ऊष्मागतिकी प्रणालियों के बीच वाम-यूक्लिडियन संबंध है। यदि हम यह भी परिभाषित करें कि प्रत्येक ऊष्मागतिकी प्रणाली स्वयं के साथ ऊष्मीय संतुलन में है, तो ऊष्मीय संतुलन भी रिफ्लेक्सिव संबंध है। द्विआधारी संबंध जो प्रतिवर्ती और यूक्लिडियन दोनों हैं, तुल्यता संबंध हैं। इस प्रकार, फिर से परोक्ष रूप से रिफ्लेक्सीविटी मानते हुए, शून्य नियम को अधिकांश वाम-यूक्लिडियन कथन के रूप में व्यक्त किया जाता है:


यदि दो निकाय किसी तीसरे निकाय के साथ तापीय साम्य में हैं, तो वे दूसरे के साथ तापीय साम्य में हैं।[9]


तुल्यता संबंध का परिणाम यह है कि संतुलन संबंध समरूपता तर्क में समरूपता है: यदि A, B के साथ तापीय संतुलन में है, तो B, A के साथ तापीय संतुलन में है। इस प्रकार हम कह सकते हैं कि दो प्रणालियाँ दूसरे के साथ तापीय संतुलन में हैं , या कि वे परस्पर संतुलन में हैं। तुल्यता का अन्य परिणाम यह है कि तापीय संतुलन सकर्मक संबंध है और इसे कभी-कभी इस प्रकार व्यक्त किया जाता है:[7]: 56 [10]


यदि A, B के साथ तापीय साम्य में है और यदि B, C के साथ तापीय साम्य में है, तो A, C के साथ तापीय साम्य में है।


प्रतिवर्त, सकर्मक संबंध तुल्यता संबंध की गारंटी नहीं देता है। उपरोक्त कथन के सत्य होने के लिए, रिफ्लेक्सिविटी और समरूपता दोनों को अनिवार्य रूप से माना जाना चाहिए।

यह यूक्लिडियन संबंध है जो सीधे तापमान माप पर प्रायुक्त होता है। आदर्श थर्मामीटर ऐसा थर्मामीटर होता है जो मापने वाली प्रणाली की स्थिति को मापनीय रूप से नहीं बदलता है। यह मानते हुए कि आदर्श थर्मामीटर का अपरिवर्तनीय पठन समतुल्य ऊष्मागतिकी प्रणालियों के समुच्चय के समकक्ष वर्गों के लिए मान्य टैगिंग प्रणाली है, तो प्रणाली ऊष्मीय संतुलन में हैं, यदि थर्मामीटर प्रत्येक प्रणाली के लिए समान रीडिंग देता है। यदि प्रणाली ऊष्मीय रूप से जुड़ा हुआ है, तो बाद में किसी की स्थिति में कोई परिवर्तन नहीं हो सकता है। यदि रीडिंग अलग-अलग हैं, तो दो प्रणालियों को ऊष्मीय रूप से जोड़ने से दोनों प्रणालियों के अवस्थाओं में परिवर्तन होता है। ज़ीरोथ नियम इस अंतिम पढ़ने के बारे में कोई जानकारी नहीं देता है।

तापमान का आधार

आजकल, तापमान की दो अलग -अलग अवधारणाएं ऊष्मागतिकी अवधारणा और गैसों और अन्य सामग्रियों के गतिज सिद्धांत के हैं।

शून्यवाँ नियम ऊष्मागतिकी अवधारणा से संबंधित है, किन्तु यह अब तापमान की प्राथमिक अंतर्राष्ट्रीय परिभाषा नहीं है। तापमान की वर्तमान प्राथमिक अंतरराष्ट्रीय परिभाषा बोल्ट्जमान स्थिरांक के माध्यम से तापमान से संबंधित अणुओं जैसे मुक्त रूप से गतिमान सूक्ष्म कणों की गतिज ऊर्जा के संदर्भ में है। वर्तमान लेख ऊष्मागतिकी अवधारणा के बारे में है, गतिज सिद्धांत अवधारणा के बारे में नहीं है।

शून्यवाँ नियम तापीय संतुलन को तुल्यता संबंध के रूप में स्थापित करता है। एक समुच्चय पर एक समानता संबंध (जैसे कि आंतरिक ऊष्मागतिकी संतुलन के अपने स्वयं के राज्य में सभी प्रणालियों का समुच्चय) विभाजित करता है जो अलग-अलग उपसमुच्चय (विच्छेद उपसमुच्चय) के संग्रह में समुच्चय होता है, जहां समुच्चय का कोई भी सदस्य एक और केवल एक ही सबसमुच्चय का सदस्य होता है। शून्य नियम की स्थिति में, इन उपसमुच्चय में ऐसी प्रणालियाँ होती हैं जो परस्पर संतुलन में होती हैं। यह विभाजन उपसमुच्चय के किसी भी सदस्य को उस उपसमुच्चय की पहचान करने वाले लेबल के साथ विशिष्ट रूप से टैग करने की अनुमति देता है जिससे वह संबंधित है। चूंकि लेबलिंग काफी स्वैच्छिक हो सकता है,[11] तापमान ऐसी लेबलिंग प्रक्रिया है जो टैगिंग के लिए वास्तविक संख्या प्रणाली का उपयोग करती है। ज़ीरोथ नियम इस तरह के लेबलिंग प्रदान करने के लिए थर्मामीटर के रूप में उपयुक्त ऊष्मागतिकी प्रणाली के उपयोग को उचित ठहराता है, जो तापमान के किसी भी संभावित स्केल अनुभवजन्य स्केल को उत्पन्न करता है, और पूर्ण, या ऊष्मागतिकी तापमान स्केल प्रदान करने ऊष्मप्रवैगिकी का दूसरा नियम दूसरे नियम के उपयोग को उचित ठहराता है। इस तरह के तापमान पैमाने तापमान की अवधारणा के लिए अतिरिक्त निरंतरता और क्रम (अर्थात्, गर्म और ठंडा) गुण लाते हैं।[9]

ऊष्मप्रवैगिकी मापदंडों के स्थान में, निरंतर तापमान के क्षेत्र सतह बनाते हैं, जो आस-पास की सतहों का प्राकृतिक क्रम प्रदान करता है। इसलिए वैश्विक तापमान समारोह का निर्माण किया जा सकता है जो अवस्थाओं का निरंतर क्रम प्रदान करता है। निरंतर तापमान की सतह की आयामीता ऊष्मागतिकी मापदंडों की संख्या से कम है, इस प्रकार, तीन ऊष्मागतिकी पैरामीटर P, V और N के साथ वर्णित आदर्श गैस के लिए, यह द्वि-आयामी सतह है।

उदाहरण के लिए, यदि आदर्श गैसों की दो प्रणालियाँ अचल डायऊष्मीय दीवार के पार संयुक्त ऊष्मागतिकी संतुलन में हैं, तब P1V1/N1 = P2V2/N2 जहां Pi iवाँ प्रणाली में दबाव है, Vi मात्रा है, और Ni गैस की मात्रा (मोल (यूनिट) में, या केवल परमाणुओं की संख्या) है।

सतह PV/N = निरंतर समान उष्मागतिक तापमान की सतहों को परिभाषित करता है, और कोई T को परिभाषित करने के लिए लेबल कर सकता है ताकि PV/N = RT, जहाँ R कुछ अचर है। इन प्रणालियों को अब अन्य प्रणालियों को जांचने के लिए थर्मामीटर के रूप में उपयोग किया जा सकता है। ऐसी प्रणालियों को आदर्श गैस थर्मामीटर के रूप में जाना जाता है।

मायने में, ज़ीरोथ लॉ में केंद्रित, केवल प्रकार की डायऊष्मीय दीवार या प्रकार की ऊष्मा होती है, जैसा कि मैक्सवेल के डिक्टम द्वारा व्यक्त किया गया है कि सभी ऊष्मा ही प्रकार की होती हैं।[5] किन्तु अन्य अर्थ में, ऊष्मा को अलग-अलग रैंकों में स्थानांतरित किया जाता है, जैसा कि सोमरफेल्ड के डिक्टम उष्मागतिकी द्वारा व्यक्त किया गया है, उन स्थितियों की जांच करता है जो ऊष्मा को काम में बदलने को नियंत्रित करती हैं। यह हमें तापमान को ऊष्मा के कार्य-मूल्य के माप के रूप में पहचानना सिखाता है। उच्च तापमान की ऊष्मा अधिक समृद्ध होती है, अधिक कार्य करने में सक्षम होती है। काम को बिना शर्त उपलब्ध ऊष्मा के रूप में अनंत रूप से उच्च तापमान की ऊष्मा के रूप में माना जा सकता है।[12] यही कारण है कि तापमान तुल्यता के शून्य नियम के कथन द्वारा निरुपित विशेष चर है।

केवल ऊष्मा के लिए पारगम्य दीवारों के अस्तित्व पर निर्भरता

कैरथेडोरी में (1909)[4] सिद्धांत, यह पोस्ट किया गया है कि केवल ऊष्मा के लिए पारगम्य दीवारें उपस्थित हैं, चूंकि उस पेपर में ऊष्मा को स्पष्ट रूप से परिभाषित नहीं किया गया है। यह अभिधारणा अस्तित्व की भौतिक अभिधारणा है। यह नहीं कहता कि केवल ही प्रकार की ऊष्मा होती है। कैराथियोडोरी का यह पेपर इस प्रकार की दीवारों के अपने खाते के प्रावधान 4 के रूप में बताता है: जब भी प्रत्येक प्रणाली S1 और S2 तीसरी प्रणाली S3 के साथ संतुलन तक पहुँचने के लिए बनाया गया है समान परिस्थितियों में, प्रणाली S1 और S2 परस्पर संतुलन में हैं।[4]: §6 

यह पेपर में इस कथन का कार्य है, न कि शून्य नियम के रूप में लेबल किया गया है, न केवल कार्य या पदार्थ के हस्तांतरण के अतिरिक्त अन्य ऊर्जा के हस्तांतरण के अस्तित्व के लिए प्रदान करने के लिए, किन्तु यह प्रदान करने के लिए कि इस तरह का स्थानांतरण अद्वितीय है समझ में आता है कि केवल प्रकार की ऐसी दीवार है, और प्रकार का ऐसा स्थानांतरण है। कैराथियोडोरी के इस पेपर के अभिगृहीत में यह संकेत दिया गया है कि ऊष्मागतिकी स्थिति के विनिर्देशन को पूरा करने के लिए त्रुटिहीन रूप से गैर-विरूपण चर की आवश्यकता होती है, आवश्यक विरूपण चर से परे, जो संख्या में प्रतिबंधित नहीं हैं। इसलिए यह बिल्कुल स्पष्ट नहीं है कि कैराथोडोरी का क्या अर्थ है जब वह इस पत्र की प्रस्तावना में लिखता है

ऊष्मा के अस्तित्व को माने बिना पूरे सिद्धांत को विकसित करना संभव है, जो कि ऐसी मात्रा है जो सामान्य यांत्रिक मात्रा से भिन्न प्रकृति की है।[4]

यह लीब और यंगवासन (1999) की राय है[7] कि एंट्रॉपी वृद्धि के नियम के सांख्यिकीय यांत्रिकी से व्युत्पत्ति ऐसा लक्ष्य है जो अब तक गहन विचारकों से दूर है।[7]: 5  इस प्रकार यह विचार विचार के लिए खुला रहता है कि उष्मागतिकी के लिए सुसंगत आदिम अवधारणाओं के रूप में ऊष्मा और तापमान के अस्तित्व की आवश्यकता है, जैसा कि व्यक्त किया गया है, उदाहरण के लिए, मैक्सवेल और प्लैंक द्वारा। दूसरी ओर, प्लैंक (1926)[13] प्राकृतिक ऊष्मागतिकी प्रक्रियाओं में घर्षण की अपरिवर्तनीय और सार्वभौमिक प्रकृति का उल्लेख करते हुए, स्पष्ट किया कि दूसरे नियम को ऊष्मा या तापमान के संदर्भ के बिना कैसे कहा जा सकता है।[13]


इतिहास

1871 में मैक्सवेल में ज़ीरोथ लॉ शब्द गढ़े जाने से बहुत पहले लिखा गया था[5] कुछ विस्तार से विचारों पर चर्चा की जिसे उन्होंने इन शब्दों में संक्षेपित किया सभी ऊष्मा ही प्रकार की होती है।[5] आधुनिक सिद्धांतवादी कभी-कभी इस विचार को अद्वितीय एक-आयामी गर्मता के कई गुना अस्तित्व की कल्पना करते हुए व्यक्त करते हैं, जिसमें प्रत्येक उचित तापमान पैमाने में मोनोटोनिक मानचित्रण होता है।[14] इसे इस कथन द्वारा व्यक्त किया जा सकता है कि केवल ही प्रकार का तापमान होता है, तथापि विभिन्न प्रकार के मानकों में इसे व्यक्त किया गया हो। इस विचार की और आधुनिक अभिव्यक्ति यह है कि सभी डायऊष्मीय दीवारें समान हैं।[6]: 23  इसे यह कहकर भी व्यक्त किया जा सकता है कि ऊष्मागतिकी प्रणालियों के बीच ठीक प्रकार का गैर-यांत्रिक, गैर-पदार्थ-स्थानांतरण संपर्क संतुलन है।

अर्नोल्ड सोमरफेल्ड के अनुसार, राल्फ एच. फाउलर ने मेघनाद साहा और बी.एन. श्रीवास्तव द्वारा 1935 के पाठ पर चर्चा करते हुए[15] ऊष्मप्रवैगिकी के शून्य नियम को गढ़ा था।[16]

वे पृष्ठ 1 पर लिखते हैं कि प्रत्येक भौतिक मात्रा को संख्यात्मक शब्दों में मापने योग्य होना चाहिए। वे मानते हैं कि तापमान भौतिक मात्रा है और फिर कथन को घटाते हैं यदि पिंड A दो निकायों के साथ तापमान संतुलन में है B और C, तब B और C स्वयं दूसरे के साथ तापमान संतुलन में हैं।[15] फिर वे स्व-स्थायी पैराग्राफ को इटैलिकाइज़ करते हैं, जैसे कि उनके मूल अभिधारणा को बताते हैं:

भौतिक गुणों में से कोई भी A जो ऊष्मा के उपयोग के साथ बदलता है, उसे देखा जा सकता है और तापमान के मापन के लिए उपयोग किया जा सकता है।[15]

वे स्वयं यहां ऊष्मप्रवैगिकी के शून्य नियम वाक्यांश का उपयोग नहीं करते हैं।

इस पाठ से बहुत पहले भौतिक विज्ञान के साहित्य में इन समान भौतिक विचारों के बहुत से बयान हैं, बहुत ही समान भाषा में है। यहाँ जो नया था वह उष्मप्रवैगिकी का लेबल ज़ीरोथ नियम था।

फाउलर और गुगेनहाइम (1936/1965)[17] शून्यवाँ नियम को इस प्रकार लिखा है:

... हम अभिधारणा का परिचय देते हैं: यदि दो समुच्चय तीसरे समुच्चय के साथ तापीय संतुलन में हैं, तो वे दूसरे के साथ तापीय संतुलन में हैं।[17]

इसके बाद उन्होंने इसका प्रस्ताव रखा

... यह अनुसरण करने के लिए दिखाया जा सकता है कि कई असेंबली के बीच ऊष्मीय संतुलन की स्थिति असेंबली के ऊष्मागतिकी अवस्थाओं के निश्चित एकल-मूल्यवान कार्य की समानता है, जिसे तापमान t कहा जा सकता है, थर्मामीटर के रूप में एक उपयुक्त पैमाने पर तापमान t को पढ़ते हैं। तापमान के अस्तित्व की इस स्थिति को लाभ के साथ ऊष्मप्रवैगिकी के शून्य नियम के रूप में जाना जा सकता है।[17]

इस वर्तमान लेख का पहला वाक्य इसी कथन का संस्करण है। फाउलर और गुगेनहाइम के अस्तित्व के बयान में यह स्पष्ट रूप से स्पष्ट नहीं है कि तापमान प्रणाली की स्थिति की अनूठी विशेषता को संदर्भित करता है, जैसे कि हॉटनेस मैनिफोल्ड के विचार में व्यक्त किया गया है। इसके अतिरिक्त उनका कथन स्पष्ट रूप से सांख्यिकीय यांत्रिक असेंबली को स्पष्ट रूप से मैक्रोस्कोपिक थर्मोडायनामिक रूप से परिभाषित प्रणालियों के लिए स्पष्ट रूप से नहीं बताता है।

उद्धरण

  1. Bailyn, M. (1994). A Survey of Thermodynamics, American Institute of Physics Press, New York, ISBN 0-88318-797-3, p. 22.
  2. Guggenheim, E.A. (1967). Thermodynamics. An Advanced Treatment for Chemists and Physicists, North-Holland Publishing Company., Amsterdam, (1st edition 1949) fifth edition 1965, p. 8: "If two systems are both in thermal equilibrium with a third system then they are in thermal equilibrium with each other."
  3. Buchdahl, H.A. (1966). The Concepts of Classical Thermodynamics, Cambridge University Press, Cambridge, p. 29: "... if each of two systems is in equilibrium with a third system then they are in equilibrium with each other."
  4. 4.0 4.1 4.2 4.3 Carathéodory, C. (1909). "Untersuchungen über die Grundlagen der Thermodynamik" [Study of the fundamentals of thermodynamics]. Mathematische Annalen (in Deutsch). 67 (3): 355–386. doi:10.1007/BF01450409. S2CID 118230148.
    A translation may be found at "Carathéodory - Thermodynamics" (PDF). neo-classical-physics.info. A partly-reliable translation is given in
    Kestin, J. (1976). The Second Law of Thermodynamics. Stroudsburg PA: Dowden, Hutchinson & Ross.
  5. 5.0 5.1 5.2 5.3 Maxwell, J. Clerk (1871). Theory of Heat. London, UK: Longmans, Green, and Co. p. 57.
  6. 6.0 6.1 Bailyn, M. (1994). A Survey of Thermodynamics. New York, NY: American Institute of Physics Press. ISBN 978-0-88318-797-5.
  7. 7.0 7.1 7.2 7.3 7.4 Lieb, E.H.; Yngvason, J. (1999). "The physics and mathematics of the second law of thermodynamics". Physics Reports. 310 (1): 1–96. arXiv:cond-mat/9708200. Bibcode:1999PhR...310....1L. doi:10.1016/S0370-1573(98)00082-9. S2CID 119620408.
  8. Planck, M. (1914). The Theory of Heat Radiation. Translated by Masius, M. (from 2nd German edition). Philadelphia, PA: P. Blakiston's Son & Co. p. 2.
  9. 9.0 9.1 Buchdahl, H. A. (1966). The Concepts of Classical Thermodynamics. Cambridge University Press. p. 73.
  10. Kondepudi, D. (2008). Introduction to Modern Thermodynamics. Wiley. p. 7. ISBN 978-0470-01598-8.
  11. Dugdale, J. S. (1996). Entropy and its Physical Interpretation. Taylor & Francis. p. 35. ISBN 0-7484-0569-0.
  12. Sommerfeld, A. (1923). Atomic Structure and Spectral Lines, p. 36. London, UK: Methuen. (Translated from the third German edition by H.L. Brose.)
  13. 13.0 13.1 Planck, M. (1926). "Über die Begründing des zweiten Hauptsatzes der Thermodynamik". S.B. Preuß. Akad. Wiss. Phys. Math. Kl.: 453–463.[full citation needed]
  14. Serrin, J. (1986). "Chapter 1, An outline of thermodynamical structure". In Serrin, J. (ed.). New Perspectives in Thermodynamics. Berlin, DE: Springer. pp. 3–32, esp. 6. ISBN 3-540-15931-2.
  15. 15.0 15.1 15.2 Saha, M.N., Srivastava, B.N. (1935). A Treatise on Heat. , p. 1. Allahabad and Calcutta: The Indian Press. (Including Kinetic Theory of Gases, Thermodynamics and Recent Advances in Statistical Thermodynamics) (The second and revised edition of A Text Book of Heat.)
  16. Sommerfeld, A. (1951/1955). Thermodynamics and Statistical Mechanics, p. 1, vol. 5 of Lectures on Theoretical Physics, edited by F. Bopp, J. Meixner, translated by J. Kestin, Academic Press, New York.
  17. 17.0 17.1 17.2 Fowler, R.; Guggenheim, E.A. (1965) [1939]. Statistical Thermodynamics (corrected ed.). Cambridge UK: Cambridge University Press. p. 56. A version of Statistical Mechanics for Students of Physics and Chemistry. (first printing 1939, reprinted with corrections 1965)


अग्रिम पठन