ऊर्जा अपवाह: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(5 intermediate revisions by 4 users not shown)
Line 1: Line 1:
यांत्रिक प्रणालियों के [[कंप्यूटर सिमुलेशन]] में समय के साथ बंद प्रणाली की कुल ऊर्जा में क्रमिक परिवर्तन ऊर्जा बहाव के रूप में है। यांत्रिकी के नियमों के अनुसार ऊर्जा गतिमान स्थिर रूप में बनी रहनी चाहिए और उसे परिवर्तित नहीं होनी चाहिए। चूंकि, सिमुलेशन में ऊर्जा कम समय के पैमाने पर उतार-चढ़ाव कर सकती है और इस प्रकार [[संख्यात्मक साधारण अंतर समीकरण]] की कलाकृतियों के कारण बहुत लंबे समय के पैमाने पर बढ़ या घट सकती है, जो परिमित समय Δ''t'' चरण के उपयोग के साथ उत्पन्न होती है। यह कुछ सीमा तक [[फ्लाइंग आइस क्यूब]] समस्या के समान होती है, जिसके द्वारा ऊर्जा के समविभाजन पर नियंत्रण में संख्यात्मक त्रुटियां कंपन ऊर्जा में बदल सकती हैं।
यांत्रिक प्रणालियों के [[कंप्यूटर सिमुलेशन]] में समय के साथ बंद प्रणाली की कुल ऊर्जा में क्रमिक परिवर्तन ऊर्जा अपवाह के रूप में है। यांत्रिकी के नियमों के अनुसार ऊर्जा गतिमान स्थिर रूप में बनी रहनी चाहिए और उसे परिवर्तित नहीं होनी चाहिए। चूंकि, सिमुलेशन में ऊर्जा कम समय के पैमाने पर उतार-चढ़ाव कर सकती है और इस प्रकार संख्यात्मक साधारण अंतर समीकरण की कलाकृतियों के कारण बहुत लंबे समय के पैमाने पर बढ़ या घट सकती है, जो परिमित समय Δ''t'' चरण के उपयोग के साथ उत्पन्न होती है। यह कुछ सीमा तक फ्लाइंग आइस क्यूब समस्या के समान होती है, जिसके द्वारा ऊर्जा के समविभाजन पर नियंत्रण में संख्यात्मक त्रुटियां कंपन ऊर्जा में बदल सकती हैं।


और इस प्रकार विशेष रूप से ऊर्जा में तेजी से वृद्धि होने की प्रवृत्ति को अंतःबोध के द्वारा सहज रूप से समझा जा सकता है क्योंकि प्रत्येक चरण में एक छोटे से पर्टर्बेशन δv को वास्तविक वेग v<sub>true</sub> के रूप में प्रस्तुत किया जाता है, जो v के साथ असंबंधित है और जो सरल समाकलन विधियों के लिए सही रूप में होता है और इस प्रकार ऊर्जा में द्वितीय क्रम में वृद्धि होती है।
और इस प्रकार विशेष रूप से ऊर्जा में तेजी से वृद्धि होने की प्रवृत्ति को अंतःबोध के द्वारा सहज रूप से समझा जा सकता है क्योंकि प्रत्येक चरण में एक छोटे से पर्टर्बेशन δv को वास्तविक वेग v<sub>true</sub> के रूप में प्रस्तुत किया जाता है, जो v के साथ असंबंधित है और जो सरल समाकलन विधियों के लिए सही रूप में होता है और इस प्रकार ऊर्जा में द्वितीय क्रम में वृद्धि होती है।


:<math>E = \sum m \mathbf{v}^{2} = \sum m \mathbf{v}_\mathrm{true}^{2} + \sum m \ \delta \mathbf{v}^{2}</math>
:<math>E = \sum m \mathbf{v}^{2} = \sum m \mathbf{v}_\mathrm{true}^{2} + \sum m \ \delta \mathbf{v}^{2}</math>
क्रॉस टर्म में v · δv शून्य रूप में होते है, क्योंकि इनमे कोई संबंध नहीं है।
क्रॉस टर्म में v · δv शून्य रूप में होते है, क्योंकि इनमे कोई संबंध नहीं है।


ऊर्जा बहाव सामान्यतः डैम्पिंग संख्यात्मक समाकलन योजनाओं के लिए पर्याप्त रूप में होता है, जैसे कि रँग-कुट्टा समूह पूरक रूप में नहीं है और जो सामान्यतः [[समघाती समाकलन]] का प्रयोग [[आणविक गतिकी|आणविक गतिशीलता]] में किया जाता है, जैसे कि [[वेरलेट एकीकरण|वेरलेट]] समाकलक समूह बहुत लंबे समय के पैमाने पर ऊर्जा में वृद्धि प्रदर्शित करते हैं, चूंकि इनमे त्रुटि लगभग स्थिर रहती है। ये समाकलक वास्तव में प्रणाली के [[हैमिल्टनियन यांत्रिकी]] को पुन: उत्पन्न नहीं करते हैं; इसके अतिरिक्त वे नजदीकी से संबंधित शैडो हैमिल्टनियन को पुन: निर्माण करते हैं जिनके परिमाण के कई वर्गों को वे अधिक बारीकी से संरक्षित करते हैं।<ref name="Hammonds_2020" /><ref name="Hammonds_2021">{{cite journal |last=Hammonds |first=KD |author2=Heyes DM |year=2021 |title=शास्त्रीय NVE आणविक गतिकी सिमुलेशन में शैडो हैमिल्टनियन जिसमें कूलम्ब इंटरैक्शन शामिल है|journal=Journal of Chemical Physics |volume=154 |issue=17 |pages=174102_1–174102_18 |doi=10.1063/5.0048194 |pmid=34241067 |bibcode=2021JChPh.154q4102H |issn=0021-9606 |doi-access=free}</ref> और इस प्रकार वास्तविक हैमिल्टनियन के लिए ऊर्जा संरक्षण की सटीकता समय के चरण पर निर्भर करते हैं। {{cite journal |last1=गैन | first1=जेसन | last2=शैलो | first2=डेविड | title=छाया द्रव्यमान और सहानुभूतिपूर्ण संख्यात्मक एकीकरण में वेग और संवेग के बीच संबंध| journal=भौतिक समीक्षा ई | publisher=अमेरिकन फिजिकल सोसायटी (एपीएस) | volume=61 | issue=4 | date=2000-04-01 | issn=1063-651X | doi=10.1103/physreve.61.4587 | pages=4587–4592| pmid=11088259 | bibcode=2000PhRvE..61.4587G}}<ref name="Engle">{{cite journal | last1=Engle | first1=Robert D. | last2=Skeel |first2=Robert D. | last3=Drees | first3=Matthew | title=छाया हैमिल्टनियन के साथ ऊर्जा बहाव की निगरानी करना| journal=Journal of Computational Physics | publisher=Elsevier BV | volume=206 | issue=2 | year=2005 | issn=0021-9991 | doi=10.1016/j.jcp.2004.12.009 | pages=432–452| bibcode=2005JCoPh.206..432E }}</ref> एक संमिश्रण के संशोधित हेमिल्टनियन से परिकलित ऊर्जा <math>\mathcal{O}\left(\Delta t^{p}\right)</math> वास्तविक हैमिल्टनियन के रूप में होती है।
ऊर्जा अपवाह सामान्यतः डैम्पिंग संख्यात्मक समाकलन योजनाओं के लिए पर्याप्त रूप में होता है, जैसे कि रँग-कुट्टा समूह पूरक रूप में नहीं है और जो सामान्यतः समघाती समाकलन का प्रयोग [[आणविक गतिकी|आणविक गतिशीलता]] में किया जाता है, जैसे कि [[वेरलेट एकीकरण|वेरलेट]] समाकलक समूह बहुत लंबे समय के पैमाने पर ऊर्जा में वृद्धि प्रदर्शित करते हैं, चूंकि इनमे त्रुटि लगभग स्थिर रहती है। ये समाकलक वास्तव में प्रणाली के [[हैमिल्टनियन यांत्रिकी]] को पुन: उत्पन्न नहीं करते हैं; इसके अतिरिक्त वे नजदीकी से संबंधित शैडो हैमिल्टनियन को पुन: निर्माण करते हैं जिनके परिमाण के कई वर्गों को वे अधिक बारीकी से संरक्षित करते हैं।<ref name="Hammonds_2020" /><ref name="Hammonds_2021">{{cite journal |last=Hammonds |first=KD |author2=Heyes DM |year=2021 |title=शास्त्रीय NVE आणविक गतिकी सिमुलेशन में शैडो हैमिल्टनियन जिसमें कूलम्ब इंटरैक्शन शामिल है|journal=Journal of Chemical Physics |volume=154 |issue=17 |pages=174102_1–174102_18 |doi=10.1063/5.0048194 |pmid=34241067 |bibcode=2021JChPh.154q4102H |issn=0021-9606 |doi-access=free}</ref> और इस प्रकार वास्तविक हैमिल्टनियन के लिए ऊर्जा संरक्षण की सटीकता समय के चरण पर निर्भर करते हैं।<ref name="Engle">{{cite journal | last1=Engle | first1=Robert D. | last2=Skeel |first2=Robert D. | last3=Drees | first3=Matthew | title=छाया हैमिल्टनियन के साथ ऊर्जा बहाव की निगरानी करना| journal=Journal of Computational Physics | publisher=Elsevier BV | volume=206 | issue=2 | year=2005 | issn=0021-9991 | doi=10.1016/j.jcp.2004.12.009 | pages=432–452| bibcode=2005JCoPh.206..432E }}</ref> एक संमिश्रण के संशोधित हेमिल्टनियन से परिकलित ऊर्जा <math>\mathcal{O}\left(\Delta t^{p}\right)</math> वास्तविक हैमिल्टनियन के रूप में होती है।


ऊर्जा का प्रवाह पैरामीट्रिक अनुनाद के समान है, इस परिमित असतत टाइमस्टेपिंग योजना के परिणामस्वरूप वेग अपडेट की [[आवृत्ति]] के निकट आवृत्ति के साथ गति के गैर-भौतिक सीमित नमूने के रूप में होते है। इस प्रकार अधिकतम चरण आकार पर प्रतिबंध जो किसी दिए गए प्रणाली की गति के सबसे तेज़ [[मौलिक मोड]] की अवधि के समानुपाती होता है। एक प्राकृतिक आवृत्ति ω के साथ गति के लिए कृत्रिम अनुनाद पेश की जाती है जब वेग की आवृत्ति अद्यतन, <math>\frac{2\pi}{\Delta t}</math> ω से संबंधित होती है,
ऊर्जा का प्रवाह पैरामीट्रिक अनुनाद के समान है, इस परिमित असतत टाइमस्टेपिंग योजना के परिणामस्वरूप वेग अपडेट की [[आवृत्ति]] के निकट आवृत्ति के साथ गति के गैर-भौतिक सीमित नमूने के रूप में होते है। इस प्रकार अधिकतम चरण आकार पर प्रतिबंध जो किसी दिए गए प्रणाली की गति के सबसे तेज़ [[मौलिक मोड]] की अवधि के समानुपाती होता है। एक प्राकृतिक आवृत्ति ω के साथ गति के लिए कृत्रिम अनुनाद पेश की जाती है जब वेग की आवृत्ति अद्यतन, <math>\frac{2\pi}{\Delta t}</math> ω से संबंधित होती है,


:<math>\frac{n}{m}\omega = \frac{2\pi}{\Delta t}</math>
:<math>\frac{n}{m}\omega = \frac{2\pi}{\Delta t}</math>
जहाँ n और m अनुनाद क्रम का वर्णन करने वाले पूर्णांक हैं। वेरलेट समाकलन के लिए, चौथे क्रम तक अनुनाद <math>\left(\frac{n}{m} = 4\right)</math> अक्सर संख्यात्मक अस्थिरता का कारण बनता है, जिससे टाइमस्टेप के आकार पर प्रतिबंध लग जाता है
जहाँ n और m अनुनाद क्रम का वर्णन करने वाले पूर्णांक हैं। वेरलेट समाकलन के लिए चौथे क्रम तक अनुनाद <math>\left(\frac{n}{m} = 4\right)</math> अधिकांशतः संख्यात्मक अस्थिरता का कारण बनता है, जिससे टाइमस्टेप के आकार पर प्रतिबंध लग जाता है
:<math>\Delta t < \frac{\sqrt{2}}{\omega} \approx 0.225p</math>
:<math>\Delta t < \frac{\sqrt{2}}{\omega} \approx 0.225p</math>
जहां ω प्रणाली में सबसे तेज गति की आवृत्ति है और पी इसकी अवधि है।<ref name="Schlick">Schlick T. (2002). ''Molecular Modeling and Simulation: An Interdisciplinary Guide''. Interdisciplinary Applied Mathematics series, vol. 21. Springer: New York, NY, USA. {{ISBN|0-387-95404-X}}. See pp420-430 for complete derivation.</ref> अधिकांश जैव-आण्विक प्रणालियों में सबसे तेज़ गति में [[हाइड्रोजन]] परमाणुओं की गति शामिल होती है; इस प्रकार हाइड्रोजन गति को प्रतिबंधित करने के लिए बाधा एल्गोरिदम का उपयोग करना आम है और इस प्रकार सिमुलेशन में उपयोग किए जा सकने वाले अधिकतम स्थिर समय कदम को बढ़ाता है। हालांकि, क्योंकि भारी-परमाणु गतियों के समय के पैमाने हाइड्रोजन गतियों से व्यापक रूप से भिन्न नहीं होते हैं, व्यवहार में यह समय चरण में केवल दो गुना वृद्धि की अनुमति देता है। ऑल-एटम बायोमोलेक्युलर सिमुलेशन में सामान्य अभ्यास अनियंत्रित सिमुलेशन के लिए 1 [[ गुजरने ]] (एफएस) के समय चरण का उपयोग करना है और प्रतिबंधित सिमुलेशन के लिए 2 एफएस है, हालांकि कुछ प्रणालियों या पैरामीटर के विकल्पों के लिए बड़े समय के चरण संभव हो सकते हैं।
जहां ω प्रणाली में सबसे तेज गति की आवृत्ति होती है और P इसकी अवधि है।<ref name="Schlick">Schlick T. (2002). ''Molecular Modeling and Simulation: An Interdisciplinary Guide''. Interdisciplinary Applied Mathematics series, vol. 21. Springer: New York, NY, USA. {{ISBN|0-387-95404-X}}. See pp420-430 for complete derivation.</ref> अधिकांश जैव-आण्विक प्रणालियों में सबसे तेज़ गति में [[हाइड्रोजन]] परमाणुओं की गति के रूप में सम्मलित होती है; इस प्रकार हाइड्रोजन गति को प्रतिबंधित करने के लिए बाधा कलनविधि का उपयोग करना सामान्यतः है और इस प्रकार सिमुलेशन में उपयोग किए जाने वाले अधिकतम स्थिर समय कदम को बढ़ाता है। चूंकि, क्योंकि भारी-परमाणु गतियों के समय के पैमाने हाइड्रोजन गतियों से व्यापक रूप से भिन्न नहीं होते हैं और इस प्रकार व्यवहार में यह समय चरण में केवल दो गुना वृद्धि की अनुमति देता है। ऑल-एटम बायोमोलेक्युलर सिमुलेशन में सामान्य अभ्यास अनियंत्रित सिमुलेशन के लिए 1 [[फेमटोसेकंड]] (एफएस) के समय चरण का उपयोग करता है और प्रतिबंधित सिमुलेशन के लिए 2 फेमटोसेकंड एफएस का उपयोग करता है, चूंकि कुछ प्रणालियों या पैरामीटर के विकल्पों के लिए बड़े समय के चरण संभव रूप में हो सकते हैं।
 
कार्य (गणित) के मूल्यांकन में खामियों के कारण ऊर्जा बहाव भी हो सकता है, आमतौर पर सिमुलेशन मापदंडों के कारण जो कम्प्यूटेशनल गति के लिए सटीकता का त्याग करते हैं। उदाहरण के लिए, [[इलेक्ट्रोस्टैटिक]] बलों के मूल्यांकन के लिए कटऑफ योजनाएं हर बार कदम के साथ ऊर्जा में व्यवस्थित त्रुटियों का परिचय देती हैं, क्योंकि यदि पर्याप्त चिकनाई का उपयोग नहीं किया जाता है तो कण कटऑफ त्रिज्या में आगे और पीछे चलते हैं। [[ कण जाल इवाल्ड ]] समेशन इस प्रभाव का एक समाधान है, लेकिन अपनी खुद की कलाकृतियों का परिचय देता है। सिम्युलेटेड की जा रही प्रणाली में त्रुटियां विस्फोटक के रूप में विशेषता वाले ऊर्जा बहाव को भी प्रेरित कर सकती हैं जो कलाकृतियां नहीं हैं, लेकिन प्रारंभिक स्थितियों की अस्थिरता को दर्शाती हैं; यह तब हो सकता है जब उत्पादन गतिशीलता शुरू करने से पहले प्रणाली को पर्याप्त संरचनात्मक न्यूनीकरण के अधीन नहीं किया गया हो। व्यवहार में, ऊर्जा बहाव को समय के साथ प्रतिशत वृद्धि के रूप में मापा जा सकता है, या प्रणाली में दी गई मात्रा में ऊर्जा जोड़ने के लिए आवश्यक समय के रूप में।
 
ऊर्जा बहाव के व्यावहारिक प्रभाव सिमुलेशन स्थितियों पर निर्भर करते हैं, [[थर्मोडायनामिक पहनावा]] सिम्युलेटेड किया जा रहा है, और अध्ययन के तहत सिमुलेशन का इरादा उपयोग; उदाहरण के लिए, जहां तापमान स्थिर रखा जाता है, वहां कैनोनिकल पहनावा की तुलना में [[माइक्रोकैनोनिकल पहनावा]] के सिमुलेशन के लिए ऊर्जा बहाव के बहुत अधिक गंभीर परिणाम होते हैं। हालांकि, यह दिखाया गया है कि लंबे समय तक माइक्रोकैनोनिकल पहनावा सिमुलेशन महत्वहीन ऊर्जा बहाव के साथ किया जा सकता है, जिसमें लचीले अणु शामिल हैं जो बाधाओं और इवाल्ड योगों को शामिल करते हैं।<ref name="Hammonds_2020">{{cite journal |last=Hammonds |first=KD |author2=Heyes DM |year=2020 |title=शास्त्रीय NVE आणविक गतिकी सिमुलेशन में शैडो हैमिल्टनियन: लंबे समय तक स्थिरता का मार्ग|journal=Journal of Chemical Physics |volume=152 |issue=2 |pages=024114_1–024114_15 |doi=10.1063/1.5139708 |pmid=31941339|s2cid=210333551 }}</ref><ref name="Hammonds_2021" />ऊर्जा बहाव को अक्सर सिमुलेशन की गुणवत्ता के एक उपाय के रूप में उपयोग किया जाता है, और [[प्रोटीन डाटा बैंक]] के अनुरूप आणविक गतिशीलता प्रक्षेपवक्र डेटा के एक बड़े भंडार में नियमित रूप से रिपोर्ट किए जाने के लिए एक गुणवत्ता मीट्रिक के रूप में प्रस्तावित किया गया है।<ref name="Sansom">{{cite journal | last1=Murdock | first1=Stuart E. | last2=Tai | first2=Kaihsu | last3=Ng | first3=Muan Hong | last4=Johnston | first4=Steven |last5=Wu | first5=Bing | last6=Fangohr | first6=Hans | last7=Laughton | first7=Charles A. | last8=Essex | first8=Jonathan W. | last9=Sansom | first9=Mark S. P. |display-authors=5| title=बायोमोलेक्युलर सिमुलेशन के लिए गुणवत्ता आश्वासन| journal=Journal of Chemical Theory and Computation | publisher=American Chemical Society (ACS) | volume=2 | issue=6 | date=2006-10-03 | issn=1549-9618 | doi=10.1021/ct6001708 | pages=1477–1481| pmid=26627017 | url=https://eprints.soton.ac.uk/44507/1/Murd_06.pdf }}</ref>


ऊर्जा अपवाह, कंप्यूटर की गति के लिए सटीकता का त्याग करने के सिमुलेशन मानकों के कारण ऊर्जा कार्यों के मूल्यांकन में खामियों के परिणामस्वरूप भी हो सकता है। उदाहरण के लिए, [[इलेक्ट्रोस्टैटिक]] बलों के मूल्यांकन के लिए कटऑफ कार्यक्रम ऊर्जा में क्रमबद्ध व्यवस्थित त्रुटियों का लागू करते हैं, क्योंकि यदि पर्याप्त चिकनाई का उपयोग नहीं किया जाता है तो कण कटऑफ त्रिज्या में आगे और पीछे चलते हैं। इस आशय का [[ कण जाल इवाल्ड |कण जाल इवाल्ड]] समेशन प्रभाव का समाधान है, लेकिन उसमें अपने स्वयं की कलाकृतियों का परिचय देता है। इस प्रणाली में सिम्युलेटेड की जा रही त्रुटियों से ऊर्जा विस्फोटक के रूप में ऊर्जा अपवाह को भी प्रेरित कर सकती हैं जो "विस्फोटक" होती है, जो कलात्मक नहीं होती लेकिन प्रारंभिक स्थितियों की अस्थिरता को दर्शाती हैं; यह तब हो सकता है जब उत्पादन गतिशीलता शुरू करने से पहले प्रणाली को पर्याप्त संरचनात्मक न्यूनीकरण के अधीन नहीं किया गया हो और इस प्रकार व्यवहार में ऊर्जा अपवाह को समय के साथ प्रतिशत वृद्धि के रूप में या प्रणाली में दी गई ऊर्जा की मात्रा को जोड़ने के लिए आवश्यक समय के रूप में मापा जा सकता है।


ऊर्जा अपवाह के व्यावहारिक प्रभाव सिमुलेशन स्थितियों पर निर्भर करते हैं और इस प्रकार [[थर्मोडायनामिक पहनावा|ऊष्मा गतिकी एन्सेम्बल]] सिम्युलेटेड किया जा रहा है और अध्ययन के अनुसार सिमुलेशन का उपयोग होता है; उदाहरण के लिए जहां तापमान स्थिर रखा जाता है वहां कैनोनिकल एन्सेम्बल की तुलना में [[माइक्रोकैनोनिकल पहनावा|माइक्रोकैनोनिकल]] एन्सेम्बल के सिमुलेशन के लिए ऊर्जा अपवाह के बहुत अधिक गंभीर परिणाम होते हैं। चूंकि, यह दिखाया गया है कि लंबे समय तक माइक्रोकैनोनिकल एन्सेम्बल सिमुलेशन महत्वहीन ऊर्जा अपवाह के साथ किया जा सकता है, जिसमें लचीले अणु के रूप में सम्मलित होते है, जो बाधाओं और इवाल्ड योगों के रूप में सम्मलित होते हैं।<ref name="Hammonds_2020">{{cite journal |last=Hammonds |first=KD |author2=Heyes DM |year=2020 |title=शास्त्रीय NVE आणविक गतिकी सिमुलेशन में शैडो हैमिल्टनियन: लंबे समय तक स्थिरता का मार्ग|journal=Journal of Chemical Physics |volume=152 |issue=2 |pages=024114_1–024114_15 |doi=10.1063/1.5139708 |pmid=31941339|s2cid=210333551 }}</ref><ref name="Hammonds_2021" />ऊर्जा अपवाह को अधिकांशतः सिमुलेशन की गुणवत्ता के उपाय के रूप में उपयोग किया जाता है और [[प्रोटीन डाटा बैंक]] के अनुरूप आणविक गतिशीलता प्रक्षेपवक्र डेटा के एक बड़े भंडार में नियमित रूप से रिपोर्ट किए जाने के लिए एक गुणवत्ता मीट्रिक के रूप में प्रस्तावित किया गया है।<ref name="Sansom">{{cite journal | last1=Murdock | first1=Stuart E. | last2=Tai | first2=Kaihsu | last3=Ng | first3=Muan Hong | last4=Johnston | first4=Steven |last5=Wu | first5=Bing | last6=Fangohr | first6=Hans | last7=Laughton | first7=Charles A. | last8=Essex | first8=Jonathan W. | last9=Sansom | first9=Mark S. P. |display-authors=5| title=बायोमोलेक्युलर सिमुलेशन के लिए गुणवत्ता आश्वासन| journal=Journal of Chemical Theory and Computation | publisher=American Chemical Society (ACS) | volume=2 | issue=6 | date=2006-10-03 | issn=1549-9618 | doi=10.1021/ct6001708 | pages=1477–1481| pmid=26627017 | url=https://eprints.soton.ac.uk/44507/1/Murd_06.pdf }}</ref>
==संदर्भ==
==संदर्भ==
<references />
<references />
Line 28: Line 26:
===अग्रिम पठन===
===अग्रिम पठन===
* Sanz-Serna JM, Calvo MP. (1994). ''Numerical Hamiltonian Problems''. Chapman & Hall, London, England.
* Sanz-Serna JM, Calvo MP. (1994). ''Numerical Hamiltonian Problems''. Chapman & Hall, London, England.
[[Category: आणविक गतिकी]] [[Category: संख्यात्मक अंतर समीकरण]] [[Category: संख्यात्मक कलाकृतियाँ]]


[[Category: Machine Translated Page]]
[[Category:Created On 23/05/2023]]
[[Category:Created On 23/05/2023]]
[[Category:Machine Translated Page]]
[[Category:Templates Vigyan Ready]]
[[Category:आणविक गतिकी]]
[[Category:संख्यात्मक अंतर समीकरण]]
[[Category:संख्यात्मक कलाकृतियाँ]]

Latest revision as of 15:17, 6 June 2023

यांत्रिक प्रणालियों के कंप्यूटर सिमुलेशन में समय के साथ बंद प्रणाली की कुल ऊर्जा में क्रमिक परिवर्तन ऊर्जा अपवाह के रूप में है। यांत्रिकी के नियमों के अनुसार ऊर्जा गतिमान स्थिर रूप में बनी रहनी चाहिए और उसे परिवर्तित नहीं होनी चाहिए। चूंकि, सिमुलेशन में ऊर्जा कम समय के पैमाने पर उतार-चढ़ाव कर सकती है और इस प्रकार संख्यात्मक साधारण अंतर समीकरण की कलाकृतियों के कारण बहुत लंबे समय के पैमाने पर बढ़ या घट सकती है, जो परिमित समय Δt चरण के उपयोग के साथ उत्पन्न होती है। यह कुछ सीमा तक फ्लाइंग आइस क्यूब समस्या के समान होती है, जिसके द्वारा ऊर्जा के समविभाजन पर नियंत्रण में संख्यात्मक त्रुटियां कंपन ऊर्जा में बदल सकती हैं।

और इस प्रकार विशेष रूप से ऊर्जा में तेजी से वृद्धि होने की प्रवृत्ति को अंतःबोध के द्वारा सहज रूप से समझा जा सकता है क्योंकि प्रत्येक चरण में एक छोटे से पर्टर्बेशन δv को वास्तविक वेग vtrue के रूप में प्रस्तुत किया जाता है, जो v के साथ असंबंधित है और जो सरल समाकलन विधियों के लिए सही रूप में होता है और इस प्रकार ऊर्जा में द्वितीय क्रम में वृद्धि होती है।

क्रॉस टर्म में v · δv शून्य रूप में होते है, क्योंकि इनमे कोई संबंध नहीं है।

ऊर्जा अपवाह सामान्यतः डैम्पिंग संख्यात्मक समाकलन योजनाओं के लिए पर्याप्त रूप में होता है, जैसे कि रँग-कुट्टा समूह पूरक रूप में नहीं है और जो सामान्यतः समघाती समाकलन का प्रयोग आणविक गतिशीलता में किया जाता है, जैसे कि वेरलेट समाकलक समूह बहुत लंबे समय के पैमाने पर ऊर्जा में वृद्धि प्रदर्शित करते हैं, चूंकि इनमे त्रुटि लगभग स्थिर रहती है। ये समाकलक वास्तव में प्रणाली के हैमिल्टनियन यांत्रिकी को पुन: उत्पन्न नहीं करते हैं; इसके अतिरिक्त वे नजदीकी से संबंधित शैडो हैमिल्टनियन को पुन: निर्माण करते हैं जिनके परिमाण के कई वर्गों को वे अधिक बारीकी से संरक्षित करते हैं।[1][2] और इस प्रकार वास्तविक हैमिल्टनियन के लिए ऊर्जा संरक्षण की सटीकता समय के चरण पर निर्भर करते हैं।[3] एक संमिश्रण के संशोधित हेमिल्टनियन से परिकलित ऊर्जा वास्तविक हैमिल्टनियन के रूप में होती है।

ऊर्जा का प्रवाह पैरामीट्रिक अनुनाद के समान है, इस परिमित असतत टाइमस्टेपिंग योजना के परिणामस्वरूप वेग अपडेट की आवृत्ति के निकट आवृत्ति के साथ गति के गैर-भौतिक सीमित नमूने के रूप में होते है। इस प्रकार अधिकतम चरण आकार पर प्रतिबंध जो किसी दिए गए प्रणाली की गति के सबसे तेज़ मौलिक मोड की अवधि के समानुपाती होता है। एक प्राकृतिक आवृत्ति ω के साथ गति के लिए कृत्रिम अनुनाद पेश की जाती है जब वेग की आवृत्ति अद्यतन, ω से संबंधित होती है,

जहाँ n और m अनुनाद क्रम का वर्णन करने वाले पूर्णांक हैं। वेरलेट समाकलन के लिए चौथे क्रम तक अनुनाद अधिकांशतः संख्यात्मक अस्थिरता का कारण बनता है, जिससे टाइमस्टेप के आकार पर प्रतिबंध लग जाता है

जहां ω प्रणाली में सबसे तेज गति की आवृत्ति होती है और P इसकी अवधि है।[4] अधिकांश जैव-आण्विक प्रणालियों में सबसे तेज़ गति में हाइड्रोजन परमाणुओं की गति के रूप में सम्मलित होती है; इस प्रकार हाइड्रोजन गति को प्रतिबंधित करने के लिए बाधा कलनविधि का उपयोग करना सामान्यतः है और इस प्रकार सिमुलेशन में उपयोग किए जाने वाले अधिकतम स्थिर समय कदम को बढ़ाता है। चूंकि, क्योंकि भारी-परमाणु गतियों के समय के पैमाने हाइड्रोजन गतियों से व्यापक रूप से भिन्न नहीं होते हैं और इस प्रकार व्यवहार में यह समय चरण में केवल दो गुना वृद्धि की अनुमति देता है। ऑल-एटम बायोमोलेक्युलर सिमुलेशन में सामान्य अभ्यास अनियंत्रित सिमुलेशन के लिए 1 फेमटोसेकंड (एफएस) के समय चरण का उपयोग करता है और प्रतिबंधित सिमुलेशन के लिए 2 फेमटोसेकंड एफएस का उपयोग करता है, चूंकि कुछ प्रणालियों या पैरामीटर के विकल्पों के लिए बड़े समय के चरण संभव रूप में हो सकते हैं।

ऊर्जा अपवाह, कंप्यूटर की गति के लिए सटीकता का त्याग करने के सिमुलेशन मानकों के कारण ऊर्जा कार्यों के मूल्यांकन में खामियों के परिणामस्वरूप भी हो सकता है। उदाहरण के लिए, इलेक्ट्रोस्टैटिक बलों के मूल्यांकन के लिए कटऑफ कार्यक्रम ऊर्जा में क्रमबद्ध व्यवस्थित त्रुटियों का लागू करते हैं, क्योंकि यदि पर्याप्त चिकनाई का उपयोग नहीं किया जाता है तो कण कटऑफ त्रिज्या में आगे और पीछे चलते हैं। इस आशय का कण जाल इवाल्ड समेशन प्रभाव का समाधान है, लेकिन उसमें अपने स्वयं की कलाकृतियों का परिचय देता है। इस प्रणाली में सिम्युलेटेड की जा रही त्रुटियों से ऊर्जा विस्फोटक के रूप में ऊर्जा अपवाह को भी प्रेरित कर सकती हैं जो "विस्फोटक" होती है, जो कलात्मक नहीं होती लेकिन प्रारंभिक स्थितियों की अस्थिरता को दर्शाती हैं; यह तब हो सकता है जब उत्पादन गतिशीलता शुरू करने से पहले प्रणाली को पर्याप्त संरचनात्मक न्यूनीकरण के अधीन नहीं किया गया हो और इस प्रकार व्यवहार में ऊर्जा अपवाह को समय के साथ प्रतिशत वृद्धि के रूप में या प्रणाली में दी गई ऊर्जा की मात्रा को जोड़ने के लिए आवश्यक समय के रूप में मापा जा सकता है।

ऊर्जा अपवाह के व्यावहारिक प्रभाव सिमुलेशन स्थितियों पर निर्भर करते हैं और इस प्रकार ऊष्मा गतिकी एन्सेम्बल सिम्युलेटेड किया जा रहा है और अध्ययन के अनुसार सिमुलेशन का उपयोग होता है; उदाहरण के लिए जहां तापमान स्थिर रखा जाता है वहां कैनोनिकल एन्सेम्बल की तुलना में माइक्रोकैनोनिकल एन्सेम्बल के सिमुलेशन के लिए ऊर्जा अपवाह के बहुत अधिक गंभीर परिणाम होते हैं। चूंकि, यह दिखाया गया है कि लंबे समय तक माइक्रोकैनोनिकल एन्सेम्बल सिमुलेशन महत्वहीन ऊर्जा अपवाह के साथ किया जा सकता है, जिसमें लचीले अणु के रूप में सम्मलित होते है, जो बाधाओं और इवाल्ड योगों के रूप में सम्मलित होते हैं।[1][2]ऊर्जा अपवाह को अधिकांशतः सिमुलेशन की गुणवत्ता के उपाय के रूप में उपयोग किया जाता है और प्रोटीन डाटा बैंक के अनुरूप आणविक गतिशीलता प्रक्षेपवक्र डेटा के एक बड़े भंडार में नियमित रूप से रिपोर्ट किए जाने के लिए एक गुणवत्ता मीट्रिक के रूप में प्रस्तावित किया गया है।[5]

संदर्भ

  1. 1.0 1.1 Hammonds, KD; Heyes DM (2020). "शास्त्रीय NVE आणविक गतिकी सिमुलेशन में शैडो हैमिल्टनियन: लंबे समय तक स्थिरता का मार्ग". Journal of Chemical Physics. 152 (2): 024114_1–024114_15. doi:10.1063/1.5139708. PMID 31941339. S2CID 210333551.
  2. 2.0 2.1 {{cite journal |last=Hammonds |first=KD |author2=Heyes DM |year=2021 |title=शास्त्रीय NVE आणविक गतिकी सिमुलेशन में शैडो हैमिल्टनियन जिसमें कूलम्ब इंटरैक्शन शामिल है|journal=Journal of Chemical Physics |volume=154 |issue=17 |pages=174102_1–174102_18 |doi=10.1063/5.0048194 |pmid=34241067 |bibcode=2021JChPh.154q4102H |issn=0021-9606 |doi-access=free}
  3. Engle, Robert D.; Skeel, Robert D.; Drees, Matthew (2005). "छाया हैमिल्टनियन के साथ ऊर्जा बहाव की निगरानी करना". Journal of Computational Physics. Elsevier BV. 206 (2): 432–452. Bibcode:2005JCoPh.206..432E. doi:10.1016/j.jcp.2004.12.009. ISSN 0021-9991.
  4. Schlick T. (2002). Molecular Modeling and Simulation: An Interdisciplinary Guide. Interdisciplinary Applied Mathematics series, vol. 21. Springer: New York, NY, USA. ISBN 0-387-95404-X. See pp420-430 for complete derivation.
  5. Murdock, Stuart E.; Tai, Kaihsu; Ng, Muan Hong; Johnston, Steven; Wu, Bing; et al. (2006-10-03). "बायोमोलेक्युलर सिमुलेशन के लिए गुणवत्ता आश्वासन" (PDF). Journal of Chemical Theory and Computation. American Chemical Society (ACS). 2 (6): 1477–1481. doi:10.1021/ct6001708. ISSN 1549-9618. PMID 26627017.



अग्रिम पठन

  • Sanz-Serna JM, Calvo MP. (1994). Numerical Hamiltonian Problems. Chapman & Hall, London, England.