कंकाल (श्रेणी सिद्धांत): Difference between revisions

From Vigyanwiki
(text)
No edit summary
 
(2 intermediate revisions by 2 users not shown)
Line 40: Line 40:
* अदामेक, जिरी, हेरलिच, होर्स्ट, और स्ट्रेकर, जॉर्ज ई. (1990)। [http://www.tac.mta.ca/tac/reprints/articles/17/tr17.pdf ''सार और ठोस श्रेणियाँ'']. मूल रूप से जॉन विली एंड संस द्वारा प्रकाशित. {{isbn|0-471-60922-6}}. (now free on-line edition)
* अदामेक, जिरी, हेरलिच, होर्स्ट, और स्ट्रेकर, जॉर्ज ई. (1990)। [http://www.tac.mta.ca/tac/reprints/articles/17/tr17.pdf ''सार और ठोस श्रेणियाँ'']. मूल रूप से जॉन विली एंड संस द्वारा प्रकाशित. {{isbn|0-471-60922-6}}. (now free on-line edition)
* रॉबर्ट गोल्डब्लाट (1984)। टोपोई, तर्क का श्रेणीबद्ध विश्लेषण (तर्कशास्त्र में अध्ययन और गणित की नींव, 98). उत्तर-हॉलैंड। डोवर प्रकाशन द्वारा 2006 में पुनर्मुद्रित है।
* रॉबर्ट गोल्डब्लाट (1984)। टोपोई, तर्क का श्रेणीबद्ध विश्लेषण (तर्कशास्त्र में अध्ययन और गणित की नींव, 98). उत्तर-हॉलैंड। डोवर प्रकाशन द्वारा 2006 में पुनर्मुद्रित है।
[[Category: श्रेणी सिद्धांत]]


 
[[Category:Articles with hatnote templates targeting a nonexistent page]]
 
[[Category: Machine Translated Page]]
[[Category:Created On 25/05/2023]]
[[Category:Created On 25/05/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:श्रेणी सिद्धांत]]

Latest revision as of 15:49, 6 June 2023

गणित में, एक श्रेणी (श्रेणी सिद्धांत) की न्यूनतम संख्या एक उपश्रेणी है, जो स्थूलतः, इसमें कोई बाहरी समरूपता नहीं है। निश्चित अर्थ में, एक श्रेणी की न्यूनतम संख्या श्रेणियों की श्रेणी का सबसे छोटा समतुल्य है, जो मूल के सभी श्रेणीगत गुणों को दर्शाता है। वास्तव में, दो श्रेणियां श्रेणियों की तुल्यता हैं यदि उनके पास श्रेणियों के न्यूनतम संख्या का समरूपता है। एक श्रेणी को न्यूनतम संख्या कहा जाता है यदि समाकृतिकता वस्तु अनिवार्य रूप से समान हैं।

परिभाषा

श्रेणी C की एक न्यूनतम संख्या समतुल्यता (श्रेणी सिद्धांत) D है जिसमें कोई भी दो अलग-अलग वस्तुएं समरूपी नहीं हैं। इसे सामान्यतः एक उपश्रेणी माना जाता है। विस्तार से, C का न्यूनतम संख्या एक श्रेणी D है जैसे कि:

  • D, C की एक उपश्रेणी है: D की प्रत्येक वस्तु C की एक वस्तु है

वस्तुओं की प्रत्येक जोड़ी के लिए D1 और D2 D का, D में आकारिता C में आकारिता हैं, अर्थात

और D में पहचान और रचनाएं C में उनका प्रतिबंध हैं।

  • C में D का समावेश पूर्ण उपश्रेणी है, जिसका अर्थ है कि वस्तुओं की प्रत्येक जोड़ी के लिए d1 और D2 D के हम समानता के उपरोक्त उपसमुच्चय संबंध को शक्तिशाली करते हैं:
  • C में D को सम्मिलित करना अनिवार्य रूप से प्रक्षेपण कारक है: प्रत्येक C-वस्तु कुछ D-वस्तु के लिए समरूपी है।
  • D न्यूनतम संख्या है: कोई भी दो अलग-अलग D-वस्तु समरूपी नहीं हैं।

अस्तित्व और विशिष्टता

यह एक बुनियादी तथ्य है कि हर छोटी श्रेणी में एक न्यूनतम संख्या होती है; अधिक सामान्यतः, प्रत्येक सुलभ श्रेणी में एक ढांचा होता है। (यह पसंद के स्वयंसिद्ध के बराबर है।) इसके अतिरिक्त, हालांकि एक श्रेणी में कई अलग-अलग न्यूनतम संख्या हो सकती हैं, कोई भी दो न्यूनतम संख्या श्रेणियों के समरूपतावाद हैं, इसलिए श्रेणियों के समरूपता तक, श्रेणी की न्यूनतम संख्या अद्वितीय (गणित) है।

न्यूनतम संख्या का महत्व इस तथ्य से आता है कि वे (श्रेणियों के समरूपतावाद तक), श्रेणियों के तुल्यता के तुल्यता संबंध के अंतर्गत श्रेणियों के तुल्यता वर्गों के विहित प्रतिनिधि हैं। यह इस तथ्य से अनुसरण करता है कि श्रेणी C का कोई भी न्यूनतम संख्या C के समतुल्य है, और यह कि दो श्रेणियां समतुल्य हैं यदि और केवल यदि उनके पास समरूपी न्यूनतम संख्या हैं।

उदाहरण

  • सभी सम्मुच्चय (गणित) के उपश्रेणी में न्यूनतम संख्या के रूप में सभी बुनियादी संख्या की उपश्रेणी है।
  • सदिश स्थल की श्रेणी K- निश्चित क्षेत्र पर सभी सदिश समष्टि का सदिश (गणित) सभी शक्तियों से युक्त उपश्रेणी है, जहां α कोई मुख्य संख्या है, एक न्यूनतम संख्या के रूप में; किसी भी परिमित m और n के लिए, मानचित्र K में प्रविष्टियों के साथ ठीक n × m आव्यूह (गणित) हैं।
  • 'फिनसेट', सभी परिमित सम्मुच्चयों की श्रेणी में 'फिनऑर्ड', सभी परिमित क्रमिक संख्याओं की श्रेणी, एक न्यूनतम संख्या के रूप में है।
  • सभी सुव्यवस्थित सम्मुच्चयों में न्यूनतम संख्या के रूप में सभी क्रमिक संख्याओं की उपश्रेणी होती है।
  • एक पूर्व आदेश, यानी एक छोटी श्रेणी जैसे कि वस्तुओं की प्रत्येक जोड़ी के लिए , सम्मुच्चय या तो एक तत्व है या खाली है, न्यूनतम संख्या के रूप में आंशिक रूप से आदेशित सम्मुच्चय है।

यह भी देखें

संदर्भ

  • अदामेक, जिरी, हेरलिच, होर्स्ट, और स्ट्रेकर, जॉर्ज ई. (1990)। सार और ठोस श्रेणियाँ. मूल रूप से जॉन विली एंड संस द्वारा प्रकाशित. ISBN 0-471-60922-6. (now free on-line edition)
  • रॉबर्ट गोल्डब्लाट (1984)। टोपोई, तर्क का श्रेणीबद्ध विश्लेषण (तर्कशास्त्र में अध्ययन और गणित की नींव, 98). उत्तर-हॉलैंड। डोवर प्रकाशन द्वारा 2006 में पुनर्मुद्रित है।