करौबी लिफाफा: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(2 intermediate revisions by 2 users not shown)
Line 63: Line 63:


* {{Citation | last1=Balmer | first1=Paul | last2=Schlichting | first2=Marco | title=Idempotent completion of triangulated categories | url=https://www.math.ucla.edu/~balmer/research/Pubfile/IdempCompl.pdf | year=2001 | journal=[[Journal of Algebra]] | issn=0021-8693 | volume=236 | issue=2 | pages=819–834 | doi=10.1006/jabr.2000.8529| doi-access=free }}
* {{Citation | last1=Balmer | first1=Paul | last2=Schlichting | first2=Marco | title=Idempotent completion of triangulated categories | url=https://www.math.ucla.edu/~balmer/research/Pubfile/IdempCompl.pdf | year=2001 | journal=[[Journal of Algebra]] | issn=0021-8693 | volume=236 | issue=2 | pages=819–834 | doi=10.1006/jabr.2000.8529| doi-access=free }}
[[Category: श्रेणी सिद्धांत]]


[[Category: Machine Translated Page]]
[[Category:Created On 25/05/2023]]
[[Category:Created On 25/05/2023]]
[[Category:Machine Translated Page]]
[[Category:Templates Vigyan Ready]]
[[Category:श्रेणी सिद्धांत]]

Latest revision as of 15:51, 6 June 2023

गणित में एक श्रेणी (गणित) सी का करौबी लिफाफा (या कॉची पूर्णता या बेवकूफ पूर्णता) एक सहायक श्रेणी के माध्यम से सी के बेवकूफों का वर्गीकरण है। पूर्ववर्ती श्रेणी के करौबी लिफाफे को लेने से छद्म-अबेलियन श्रेणी मिलती है, इसलिए निर्माण को कभी-कभी छद्म-अबेलियन पूर्णता कहा जाता है। इसका नाम फ्रांसीसी गणितज्ञ मैक्स करौबी के नाम पर रखा गया है।

एक श्रेणी सी को देखते हुए, सी का एक बेवकूफ एक एंडोमोर्फिज्म है

साथ

.

एक बेकार e: A → A को 'विभाजित' कहा जाता है यदि कोई वस्तु B है और रूपवाद f: A → B है, g : B → A इस प्रकार है कि e = g f और 1B = f g

'सी' का 'करौबी लिफाफा', जिसे कभी-कभी 'विभाजित (सी)' लिखा जाता है, वह श्रेणी है जिसकी वस्तुएं फॉर्म (ए, ई) के जोड़े हैं जहां ए 'सी' की वस्तु है और सी का एक आदर्श है, और जिसका आकार त्रिगुण है

कहाँ सी संतोषजनक का एक आकार है (या समकक्ष ).

विभाजित (सी) में रचना सी के रूप में है, लेकिन पहचान रूपवाद पर विभाजित (सी) में है , पर पहचान के बजाय ।

श्रेणी सी विभाजित (सी) में पूरी तरह से और ईमानदारी से एम्बेड होती है। विभाजित (सी) में प्रत्येक बेवकूफ विभाजित होता है, और विभाजित (सी) इस संपत्ति के साथ सार्वभौमिक श्रेणी है।

एक श्रेणी सी के करौबी लिफाफे को इसलिए सी के पूरा होने के रूप में माना जा सकता है जो बेवकूफों को विभाजित करता है।

श्रेणी सी के करौबी लिफाफे को समान रूप से पूर्ण उपश्रेणी के रूप में परिभाषित किया जा सकता है (प्रीशेफ (श्रेणी सिद्धांत) सी पर) प्रतिनिधित्व करने योग्य फ़ैक्टरों के पीछे हटना। सी पर प्रीशेव की श्रेणी विभाजित (सी) पर प्रीशेव की श्रेणी के बराबर है।

करौबी लिफाफे में ऑटोमोर्फिसम 

विभाजित (सी) में एक ऑटोमोर्फिज्म फॉर्म का है , उलटा के साथ संतुष्टि देने वाला:

अगर पहले समीकरण में ढील दी जाए तो बस है , तो f एक आंशिक स्वाकारता है (प्रतिलोम g के साथ)। 'विभाजित (सी)' में ए (आंशिक) जुड़ाव एक स्व-उलटा (आंशिक) ऑटोमोर्फिज्म है।

उदाहरण

  • यदि C में उत्पाद हैं, तो एक तुल्याकारिता दी गई है मानचित्रण , विहित मानचित्र से बना है समरूपता का, आंशिक समावेशन (गणित) है।
  • यदि C एक त्रिकोणीय श्रेणी है, तो करौबी लिफाफा विभाजित (C) को त्रिकोणीय श्रेणी की संरचना से संपन्न किया जा सकता है, जैसे कि कैनोनिकल फ़ंक्टर C → विभाजित (C) एक त्रिकोणीय फ़ंक्टर बन जाता है।[1]
  • करौबी लिफाफे का उपयोग कई श्रेणियों के मकसद (बीजीय ज्यामिति) के निर्माण में किया जाता है।
  • करौबी लिफ़ाफ़ा निर्माण आसन्न मज़दूरों के लिए अर्ध-संबंध लेता है।[2] इस कारण करौबी लिफाफा का उपयोग अनटाइप्ड लैम्ब्डा कैलकुलस के मॉडल के अध्ययन में किया जाता है। एक विस्तारित लैम्ब्डा मॉडल (एक मोनोइड, जिसे एक श्रेणी के रूप में माना जाता है) का करौबी लिफाफा कार्टेशियन बंद है।[3][4]
  • किसी भी रिंग के ऊपर प्रक्षेपी मॉड्यूल की श्रेणी मुक्त मॉड्यूल की पूर्ण उपश्रेणी का करौबी लिफाफा है।
  • किसी भी पैराकॉम्पैक्ट स्पेस पर वेक्टर बंडलों की श्रेणी तुच्छ बंडलों की पूरी उपश्रेणी का करौबी लिफाफा है। यह वास्तव में सेरे-स्वान प्रमेय द्वारा पिछले उदाहरण का एक विशेष घटना है और इसके विपरीत इस प्रमेय को पहले इन दोनों तथ्यों को साबित करके सिद्ध किया जा सकता है, यह अवलोकन कि वैश्विक खंड फ़ैक्टर तुच्छ वेक्टर बंडलों के बीच एक समानता है और मुफ्त मॉड्यूल खत्म और फिर करौबी लिफाफे की सार्वभौमिक संपत्ति का उपयोग करना।

संदर्भ

  1. Balmer & Schlichting 2001
  2. Susumu Hayashi (1985). "Adjunction of Semifunctors: Categorical Structures in Non-extensional Lambda Calculus". Theoretical Computer Science. 41: 95–104. doi:10.1016/0304-3975(85)90062-3.
  3. C.P.J. Koymans (1982). "Models of the lambda calculus". Information and Control. 52: 306–332. doi:10.1016/s0019-9958(82)90796-3.
  4. DS Scott (1980). "Relating theories of the lambda calculus". To HB Curry: Essays in Combinatory Logic.