क्वासिस्टेटिक सन्निकटन: Difference between revisions
m (added Category:Vigyan Ready using HotCat) |
No edit summary |
||
(One intermediate revision by one other user not shown) | |||
Line 38: | Line 38: | ||
==टिप्पणियाँ == | ==टिप्पणियाँ == | ||
<references /> | <references /> | ||
[Category:Concepts in physi | |||
[[Category:Created On 26/05/2023]] | [[Category:Created On 26/05/2023]] | ||
[[Category:Vigyan Ready]] | [[Category:Machine Translated Page]] | ||
[[Category:Templates Vigyan Ready]] | |||
[[Category:भौतिकी में अवधारणाएँ]] | |||
[[Category:विद्युत चुंबकत्व]] |
Latest revision as of 12:55, 14 June 2023
क्वासिस्टेटिक सन्निकटन विभिन्न डोमेन और विभिन्न अर्थों को संदर्भित करता है। सबसे आम स्वीकृति में अर्धस्थैतिक सन्निकटन उन समीकरणों को संदर्भित करता है जो एक स्थिर रूप रखते हैं (समय व्युत्पन्न सम्मिलित नहीं करते हैं) तथापि कुछ मात्राओं को समय के साथ धीरे-धीरे बदलने की अनुमति हो। विद्युत चुंबकत्व में यह गणितीय मॉडल को संदर्भित करता है जिसका उपयोग उन उपकरणों का वर्णन करने के लिए किया जा सकता है जो महत्वपूर्ण मात्रा में विद्युत चुम्बकीय तरंगों का उत्पादन नहीं करते हैं। उदाहरण के लिए विद्युत नेटवर्क में कैपेसिटर और कॉइल है ।
अवलोकन
क्वासिस्टैटिक सन्निकटन को इस विचार के माध्यम से समझा जा सकता है कि समस्या के स्रोत पर्याप्त रूप से धीरे-धीरे बदलते हैं जिससे प्रणाली को हर समय संतुलन में रखा जा सकता है । इस सन्निकटन को मौलिक विद्युत चुंबकत्व द्रव यांत्रिकी मैग्नेटोहाइड्रोडायनामिक्स ऊष्मप्रवैगिकी जैसे क्षेत्रों पर प्रयुक्त किया जा सकता है और सामान्यतः अतिशयोक्तिपूर्ण आंशिक अंतर समीकरण द्वारा वर्णित प्रणालियों में स्थानिक और समय व्युत्पन्न दोनों सम्मिलित हैं। सरल स्थितियों में अर्धस्थैतिक सन्निकटन की अनुमति तब दी जाती है जब विशिष्ट लौकिक मापदंड से विभाजित विशिष्ट स्थानिक मापदंड विशेषता वेग से बहुत छोटा होता है जिसके साथ सूचना प्रसारित होती है। [1] समस्या तब और जटिल हो जाती है जब कई लंबाई और समय के मापदंड सम्मिलित होते हैं। शब्द की सख्त स्वीकृति में अर्धस्थैतिक स्थिति एक ऐसी स्थिति से मेल खाता है जहां सभी समय के डेरिवेटिव को उपेक्षित किया जा सकता है। चूँकि कुछ समीकरणों को अर्धस्थैतिक माना जा सकता है जबकि अन्य नहीं हैं, जिसके कारण एक प्रणाली अभी भी गतिशील है। ऐसे स्थितियों में कोई आम सहमति नहीं है।
द्रव गतिकी
द्रव गतिकी में केवल अर्ध- हीड्रास्टाटिक्स (जहां कोई समय व्युत्पन्न शब्द उपस्थित नहीं है) को अर्ध-स्थैतिक सन्निकटन माना जाता है। प्रवाह को सामान्यतः गतिशील और साथ ही ध्वनिक तरंग के प्रसार के रूप में माना जाता है।
ऊष्मप्रवैगिकी
ऊष्मप्रवैगिकी में अर्धस्थैतिक शासनों और गतिशील लोगों के बीच एक अंतर सामान्यतः संतुलन उष्मागतिकी बनाम गैर-संतुलन उष्मागतिकी के संदर्भ में किया जाता है। जैसा कि विद्युत चुंबकत्व में कुछ मध्यवर्ती स्थितियां भी उपस्थित होती हैं; उदाहरण के लिए गैर-संतुलन ऊष्मप्रवैगिकी या स्थानीय संतुलन ऊष्मप्रवैगिकी देखें।
विद्युत चुंबकत्व
मौलिक विद्युत चुंबकत्व में मैक्सवेल समीकरणों के कम से कम दो सुसंगत अर्ध-स्थैतिक सन्निकटन हैं: अर्ध- इलेक्ट्रोस्टाटिक्स और मैग्नेटोस्टैटिक्स दो गतिशील युग्मन शब्दों के सापेक्ष महत्व पर निर्भर करते हैं।[2] इन अनुमानों को समय स्थिरांक मूल्यांकन का उपयोग करके प्राप्त किया जा सकता है या गैलिलियन विद्युत चुंबकत्व के रूप में दिखाया जा सकता है।[3]
मंद समय बिंदु
एम्पीयर लॉ या अधिक सामान्य बायोट-सावर्ट कानून जैसे मैग्नेटोस्टैटिक्स समीकरणों में स्थिर विद्युत धाराओं द्वारा उत्पादित चुंबकीय क्षेत्रों को हल करने की अनुमति मिलती है। अधिकांशतः तथापि कोई समय परिवर्ती धाराओं (त्वरित आवेश) या गतिमान आवेश के अन्य रूपों के कारण चुंबकीय क्षेत्र की गणना करना चाह सकता है। कड़ाई से बोलते हुए इन स्थितियों में उपरोक्त समीकरण अमान्य हैं क्योंकि पर्यवेक्षक पर मापे गए क्षेत्र में मंद समय पर मापी गई दूरी को सम्मिलित करना चाहिए जो कि अवलोकन समय से क्षेत्र (प्रकाश की गति से यात्रा) के लिए लगने वाले समय को घटा देता है। पर्यवेक्षक तक पहुँचें विचार किए जाने वाले प्रत्येक बिंदु के लिए विलंबित समय भिन्न होता है इसलिए परिणामी समीकरण अधिक जटिल होते हैं; संभावना के संदर्भ में समस्या को तैयार करना अधिकांशतः आसान होता है; मंद क्षमता और जेफिमेंको के समीकरण देखें।
इस दृष्टि से अर्धस्थैतिक सन्निकटन मंद समय के अतिरिक्त समय का उपयोग करके या समकक्ष रूप से यह मान कर प्राप्त किया जाता है कि प्रकाश की गति अनंत है। पहले आदेश के लिए जेफिमेंको के चुंबकीय क्षेत्र समीकरण की दोनों नियमो के अतिरिक्त केवल बायोट-सावर्ट के नियम का उपयोग करने की गलती को समाप्त कर दिया गया है[4]
टिप्पणियाँ
- ↑ G. Rubinacci, F. Villone March 2002: link for download
- ↑ Haus & Melcher. "स्टैटिक्स और क्वासिटस्टैटिक्स की सीमाएं" (PDF). ocs.mit.edu. MIT OpenCourseWare. Retrieved 5 February 2016.
- ↑ Le Bellac, M.; Lévy-Leblond, J.-M. (1973). "Galinean electromagnetism". Nuovo Cimento B. 14 (2): 217–233. Bibcode:1973NCimB..14..217L. doi:10.1007/BF02895715. S2CID 123488096.
- ↑ Griffiths, David J., Introduction to Electrodynamics -3rd Ed., 1999.
[Category:Concepts in physi