मोलर सान्द्रता: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(7 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{Short description|Measure of concentration of a chemical}}
{{Short description|Measure of concentration of a chemical}}
{{Redirect-distinguish|मोलरिटी|मोललता|मोलरता}}
{{Infobox physical quantity
{{Infobox physical quantity
| name = मोलर सांद्रता
| name = मोलर सांद्रता
Line 9: Line 8:
| symbols = {{mvar|c}}
| symbols = {{mvar|c}}
| unit = mol/m<sup>3</sup>
| unit = mol/m<sup>3</sup>
| otherunits = मोल/ली
| otherunits = mol/L
| dimension = विकिडेटा
| dimension = विकिडेटा
| extensive =
| extensive =
Line 17: Line 16:
| derivations = {{math|1=''c'' = ''n''/''V''}}
| derivations = {{math|1=''c'' = ''n''/''V''}}
}}
}}
मोलर सघनता (जिसे मोलरिटी, मात्रा सघनता या पदार्थ सघनता भी कहा जाता है) एक रासायनिक प्रजाति की सघनता का एक विकल्प है | विशेष रूप से एक विलयन ([[रसायन विज्ञान]]) में विलेय, घोल की प्रति इकाई मात्रा में [[पदार्थ की मात्रा]] के संदर्भ में रसायन विज्ञान में, मोलरिटी के लिए सबसे अधिक उपयोग की जाने वाली इकाई मोल (इकाई) प्रति [[लीटर]] की संख्या है \ जिसका इकाई प्रतीक मोल/लीटर या मोल (इकाई)/[[डेसीमीटर|डेसीमीटर<sup>3</sup>]] है। एसआई इकाई में 1 मोल/लीटर की सांद्रता वाले समाधान को 1 मोलर कहा जाता है | जिसे सामान्यतः 1 M के रूप में निर्दिष्ट किया जाता है।
मोलर सान्द्रता (जिसे मोलरिटी, मात्रा सघनता या पदार्थ सघनता भी कहा जाता है) एक रासायनिक प्रजाति की सघनता का एक विकल्प है। विशेष रूप से एक विलयन ([[रसायन विज्ञान]]) में विलेय, घोल की प्रति इकाई मात्रा में [[पदार्थ की मात्रा]] के संदर्भ में रसायन विज्ञान में, मोलरिटी के लिए सबसे अधिक उपयोग की जाने वाली इकाई मोल (इकाई) प्रति [[लीटर]] की संख्या है। जिसका इकाई प्रतीक mol/L या mol/dm[[डेसीमीटर|<sup>3</sup>]] है। एसआई इकाई में 1 mol/L की सांद्रता वाले समाधान को 1 मोलर कहा जाता है। जिसे सामान्यतः 1 M के रूप में निर्दिष्ट किया जाता है।


== परिभाषा ==
== परिभाषा ==
मोलर सघनता या मोलरिटी को सामान्यतः विलयन (रसायन) के प्रति लीटर विलेय के मोल्स की इकाइयों में व्यक्त किया जाता है ।<ref>{{Cite book|title=परिचयात्मक रसायन शास्त्र अनिवार्य है|last=Tro, Nivaldo J.|date=6 January 2014|isbn=9780321919052|edition= Fifth|location=Boston|pages=457|oclc=857356651}}</ref> व्यापक अनुप्रयोगों में उपयोग के लिए, इसे विलयन के प्रति इकाई आयतन में पदार्थ की मात्रा, या प्रजातियों के लिए उपलब्ध प्रति इकाई आयतन के रूप में परिभाषित किया जाता है | जिसे लोअरकेस c द्वारा दर्शाया जाता है ।<ref name="GoldBook">{{GoldBookRef|title=amount concentration, ''c''|file=A00295}}</ref>
मोलर सान्द्रता या मोलरिटी को सामान्यतः विलयन (रसायन) के प्रति लीटर विलेय के मोल्स की इकाइयों में व्यक्त किया जाता है ।<ref>{{Cite book|title=परिचयात्मक रसायन शास्त्र अनिवार्य है|last=Tro, Nivaldo J.|date=6 January 2014|isbn=9780321919052|edition= Fifth|location=Boston|pages=457|oclc=857356651}}</ref> व्यापक अनुप्रयोगों में उपयोग के लिए, इसे विलयन के प्रति इकाई आयतन में पदार्थ की मात्रा, या प्रजातियों के लिए उपलब्ध प्रति इकाई आयतन के रूप में परिभाषित किया जाता है। जिसे लोअरकेस c द्वारा दर्शाया जाता है ।<ref name="GoldBook">{{GoldBookRef|title=amount concentration, ''c''|file=A00295}}</ref>
:<math>c = \frac{n}{V} = \frac{N}{N_\text{A}\,V} = \frac{C}{N_\text{A}}.</math>
:<math>c = \frac{n}{V} = \frac{N}{N_\text{A}\,V} = \frac{C}{N_\text{A}}.</math>
यहाँ, <math>n</math> मोल्स में विलेय की मात्रा है | <ref name=kaufman/> <math>N</math> आयतन <math>V</math> में उपस्थित [[कण संख्या]]ओं की संख्या है \ सामान्यतः और <math>N_\text{A}</math> [[अवोगाद्रो स्थिरांक]] है | 2019 के बाद {{physconst|NA|ref=no}} से स्पष्ट रूप से परिभाषित किया गया है | अनुपात <math>\frac{N}{V}</math> [[संख्या घनत्व]] <math>C</math> है |
यहाँ, <math>n</math> मोल्स में विलेय की मात्रा है। <ref name=kaufman/> <math>N</math> आयतन <math>V</math> में उपस्थित [[कण संख्या]]ओं की संख्या है। सामान्यतः और <math>N_\text{A}</math> [[अवोगाद्रो स्थिरांक]] है। 2019 के बाद {{physconst|NA|ref=no}} से स्पष्ट रूप से परिभाषित किया गया है। अनुपात <math>\frac{N}{V}</math> [[संख्या घनत्व]] <math>C</math> है।


[[ऊष्मप्रवैगिकी]] में मोलर की सघनता का उपयोग अधिकांशतः सुविधाजनक नहीं होता है | क्योंकि अधिकांश समाधानों की मात्रा [[थर्मल विस्तार]] के कारण [[तापमान]] पर थोड़ा निर्भर करती है। यह समस्या सामान्यतः तापमान सुधार गुणांक को प्रारंभ करके, या सघनता के तापमान-स्वतंत्र माप जैसे [[मोलिटी|मोललता]] का उपयोग करके हल की जाती है ।<ref name=kaufman>{{Cite book| author = Kaufman, Myron| title = ऊष्मप्रवैगिकी के सिद्धांत| page = 213| publisher = CRC Press| year = 2002| isbn = 0-8247-0692-7}}</ref>
[[ऊष्मप्रवैगिकी]] में मोलर की सघनता का उपयोग अधिकांशतः सुविधाजनक नहीं होता है। क्योंकि अधिकांश समाधानों की मात्रा [[थर्मल विस्तार]] के कारण [[तापमान]] पर थोड़ा निर्भर करती है। यह समस्या सामान्यतः तापमान सुधार गुणांक को प्रारंभ करके, या सघनता के तापमान-स्वतंत्र माप जैसे [[मोलिटी|मोललता]] का उपयोग करके हल की जाती है ।<ref name=kaufman>{{Cite book| author = Kaufman, Myron| title = ऊष्मप्रवैगिकी के सिद्धांत| page = 213| publisher = CRC Press| year = 2002| isbn = 0-8247-0692-7}}</ref>


पारस्परिक मात्रा अशक्त पड़ने (मात्रा) का प्रतिनिधित्व करती है | जो ओस्टवाल्ड के अशक्त पड़ने के नियम में प्रकट हो सकती है।
पारस्परिक मात्रा अशक्त पड़ने (मात्रा) का प्रतिनिधित्व करती है। जो ओस्टवाल्ड के अशक्त पड़ने के नियम में प्रकट हो सकती है।


; औपचारिकता या विश्लेषणात्मक सघनता
; औपचारिकता या विश्लेषणात्मक सघनता
यदि एक आणविक इकाई समाधान में अलग हो जाती है, तो सघनता समाधान में मूल रासायनिक सूत्र को संदर्भित करती है | मोलर की सघनता को कभी-कभी औपचारिक सघनता या औपचारिकता (f''<sub>A</sub>) कहा जाता है।) या विश्लेषणात्मक सघनता (''c''<sub>A</sub>). उदाहरण के लिए, यदि एक सोडियम कार्बोनेट समाधान ({{chem2|Na2CO3}}) की औपचारिक सांद्रता c({{chem2|Na2CO3}}) = 1 मोल/लीटर, मोलर सांद्रता c({{chem2|Na+}}) = 2 मोल/लीटर और c({{chem2|CO3(2−)}}) = 1 मोल/लीटर हैं | क्योंकि नमक इन आयनों में अलग हो जाता है।<ref name="Harvey_2020">{{Cite web |title=2.2: एकाग्रता|last=Harvey |first=David |work=Chemistry LibreTexts |date=2020-06-15 |access-date=2021-12-15 |url= https://chem.libretexts.org/Courses/BethuneCookman_University/B-CU%3A_CH-345_Quantitative_Analysis/Book%3A_Analytical_Chemistry_2.1_(Harvey)/02%3A_Basic_Tools_of_Analytical_Chemistry/2.02%3A_Concentration}}</ref>''
यदि एक आणविक इकाई समाधान में अलग हो जाती है, तो सघनता समाधान में मूल रासायनिक सूत्र को संदर्भित करती है। मोलर की सघनता को कभी-कभी औपचारिक सघनता या औपचारिकता (f''<sub>A</sub>) कहा जाता है।) या विश्लेषणात्मक सघनता (''c''<sub>A</sub>). उदाहरण के लिए, यदि एक सोडियम कार्बोनेट समाधान ({{chem2|Na2CO3}}) की औपचारिक सांद्रता c({{chem2|Na2CO3}}) = 1 mol/L, मोलर सांद्रता c({{chem2|Na+}}) = 2 mol/L और c({{chem2|CO3(2−)}}) = 1 mol/L हैं | क्योंकि नमक इन आयनों में अलग हो जाता है।<ref name="Harvey_2020">{{Cite web |title=2.2: एकाग्रता|last=Harvey |first=David |work=Chemistry LibreTexts |date=2020-06-15 |access-date=2021-12-15 |url= https://chem.libretexts.org/Courses/BethuneCookman_University/B-CU%3A_CH-345_Quantitative_Analysis/Book%3A_Analytical_Chemistry_2.1_(Harvey)/02%3A_Basic_Tools_of_Analytical_Chemistry/2.02%3A_Concentration}}</ref>''


== इकाइयां ==
== इकाइयां ==
[[इकाइयों की अंतर्राष्ट्रीय प्रणाली]] (एसआई) में मोलर की सघनता के लिए जुटना (माप की इकाइयाँ) मोल (इकाई) / [[मीटर|मीटर3]] है | चूँकि, यह अधिकांश प्रयोगशाला उद्देश्यों के लिए असुविधाजनक है और अधिकांश रासायनिक साहित्य पारंपरिक रूप से मोल (इकाई)/डेसीमीटर<sup>3 का उपयोग करते हैं। जो मोल (इकाई)/[[लीटर]] के समान है। इस पारंपरिक इकाई को अधिकांशतः मोलर कहा जाता है और इसे एम अक्षर से दर्शाया जाता है | उदाहरण के लिए:
[[इकाइयों की अंतर्राष्ट्रीय प्रणाली]] (एसआई) में मोलर की सघनता के लिए जुटना (माप की इकाइयाँ) mol/m<sup>3</sup> है। चूँकि, यह अधिकांश प्रयोगशाला उद्देश्यों के लिए असुविधाजनक है और अधिकांश रासायनिक साहित्य पारंपरिक रूप से mol/dm3 का उपयोग करते हैं। जो mol/L के समान है। इस पारंपरिक इकाई को अधिकांशतः मोलर कहा जाता है और इसे m अक्षर से दर्शाया जाता है। उदाहरण के लिए:
: (इकाई)/मीटर<sup>3</sup> = 10<sup>−3</sup> मोल (इकाई)/डेसीमीटर<sup>3</sup> = 10<sup>−3</sup> मोल (इकाई)/लीटर = 10<sup>−3</sup> एम = 1 एमएम = 1 एमएमओएल/एल।
: mol/m<sup>3</sup> = 10<sup>−3</sup> mol/dm3 = 10<sup>−3</sup> mol/L = 10<sup>−3</sup> m = 1 mm = 1 mmol/L।


[[एसआई उपसर्ग]] [[मेगा]]- के साथ भ्रम से बचने के लिए, जिसका एक ही संक्षिप्त नाम है | छोटे कैप्स ᴍ या [[इटैलिक|इटैलिका]]इज़्ड एम का उपयोग पत्रिकाओं और पाठ्यपुस्तकों में भी किया जाता है।<ref>{{cite web |url=https://tex.stackexchange.com/questions/191114/typography-of-unit-symbols-for-molar-and-liter-in-siunitx |title=सियुनिटेक्स में मोलर और लीटर के लिए इकाई प्रतीकों की टाइपोग्राफी|website=TeX - LaTeX Stack Exchange}}</ref>
[[एसआई उपसर्ग]] [[मेगा]]- के साथ भ्रम से बचने के लिए, जिसका एक ही संक्षिप्त नाम है। छोटे कैप्स ᴍ या [[इटैलिक|इटैलिका]]इज़्ड m का उपयोग पत्रिकाओं और पाठ्यपुस्तकों में भी किया जाता है।<ref>{{cite web |url=https://tex.stackexchange.com/questions/191114/typography-of-unit-symbols-for-molar-and-liter-in-siunitx |title=सियुनिटेक्स में मोलर और लीटर के लिए इकाई प्रतीकों की टाइपोग्राफी|website=TeX - LaTeX Stack Exchange}}</ref>


उप-गुणक जैसे मिलिमोलर में एसआई उपसर्ग से पहले की इकाई होती है |
उप-गुणक जैसे मिलिमोलर में एसआई उपसर्ग से पहले की इकाई होती है।


{| class="wikitable" style="text-align:center;" border="0"
{| class="wikitable" style="text-align:center;" border="0"
Line 45: Line 44:
! colspan="2" | संकेंद्रण
! colspan="2" | संकेंद्रण
|-
|-
! (मोल/लीटर)
! (mol/L)
! (मोल / एम 3)
! (मोल / m 3)
|-
|-
|मिलीमोलर
|मिलीमोलर
|मिमी
|mM
|10<sup>−3</sup>
|10<sup>−3</sup>
|10<sup>0</sup>=1
|10<sup>0</sup>=1
|-
|-
|माइक्रोमोलर
|माइक्रोमोलर
|माइक्रोन
|μM
|10<sup>−6</sup>
|10<sup>−6</sup>
|10<sup>−3</sup>
|10<sup>−3</sup>
|-
|-
|नैनोमोलर
|नैनोमोलर
|एनएम
|nM
|10<sup>−9</sup>
|10<sup>−9</sup>
|10<sup>−6</sup>
|10<sup>−6</sup>
|-
|-
|पिकोमोलर
|पिकोमोलर
|पी एम
|pM
|10<sup>−12</sup>
|10<sup>−12</sup>
|10<sup>−9</sup>
|10<sup>−9</sup>
|-
|-
|फेमटोमोलर
|फेमटोमोलर
|एफएम
|fM
|10<sup>−15</sup>
|10<sup>−15</sup>
|10<sup>−12</sup>
|10<sup>−12</sup>
|-
|-
|एटोमोलर
|एटोमोलर
|एएम
|AM
|10<sup>−18</sup>
|10<sup>−18</sup>
|10<sup>−15</sup>
|10<sup>−15</sup>
|-
|-
|ज़ेप्टोमोलर
|ज़ेप्टोमोलर
|जेडएम
|ZM
|10<sup>−21</sup>
|10<sup>−21</sup>
|10<sup>−18</sup>
|10<sup>−18</sup>
|-
|-
|योक्टोमोलर
|योक्टोमोलर
|वाईएम
|YM
|10<sup>−24</sup><br />(6 particles per 10 L)
|10<sup>−24</sup><br />(प्रति 10 एल में 6 कण)
|10<sup>−21</sup>
|10<sup>−21</sup>
|-
|-
|रोंटोमोलर
|रोंटोमोलर
|आरएम
|RM
|10<sup>−27</sup>
|10<sup>−27</sup>
|10<sup>−24</sup>
|10<sup>−24</sup>
|-
|-
|क्वेक्टोमोलर
|क्वेक्टोमोलर
|क्यूएम
|QM
|10<sup>−30</sup>
|10<sup>−30</sup>
|10<sup>−27</sup>
|10<sup>−27</sup>
Line 102: Line 101:


=== [[संख्या एकाग्रता|संख्या सघनता]] ===
=== [[संख्या एकाग्रता|संख्या सघनता]] ===
संख्या सघनता में रूपांतरण <math>C_i</math> द्वारा दिया गया है |
संख्या सघनता में रूपांतरण <math>C_i</math> द्वारा दिया गया है।


:<math>C_i = c_i N_\text{A},</math>
:<math>C_i = c_i N_\text{A},</math>
Line 108: Line 107:


=== मास सघनता ===
=== मास सघनता ===
बड़े मापदंड पर सघनता में रूपांतरण (रसायन विज्ञान) <math>\rho_i</math> द्वारा दिया गया है |
बड़े मापदंड पर सघनता में रूपांतरण (रसायन विज्ञान) <math>\rho_i</math> द्वारा दिया गया है।


:<math>\rho_i = c_i M_i,</math>
:<math>\rho_i = c_i M_i,</math>
जहाँ <math>M_i</math> घटक <math>i</math> का मोलर द्रव्यमान है |
जहाँ <math>M_i</math> घटक <math>i</math> का मोलर द्रव्यमान है।


=== मोल - अंश ===
=== मोल - अंश ===
Line 119: Line 118:
जहाँ <math>\overline{M}</math> समाधान का औसत मोलर द्रव्यमान है, <math>\rho</math> समाधान का [[घनत्व]] है।
जहाँ <math>\overline{M}</math> समाधान का औसत मोलर द्रव्यमान है, <math>\rho</math> समाधान का [[घनत्व]] है।


कुल मोलर सघनता पर विचार करके एक सरल संबंध प्राप्त किया जा सकता है, अर्थात् मिश्रण के सभी घटकों के मोलर की सांद्रता का योग है |
कुल मोलर सान्द्रता पर विचार करके एक सरल संबंध प्राप्त किया जा सकता है, अर्थात् मिश्रण के सभी घटकों के मोलर की सांद्रता का योग है।


:<math>x_i = \frac{c_i}{c} = \frac{c_i}{\sum_j c_j}.</math>
:<math>x_i = \frac{c_i}{c} = \frac{c_i}{\sum_j c_j}.</math>
=== मास अंश ===
=== मास अंश ===
[[द्रव्यमान अंश (रसायन विज्ञान)]] में रूपांतरण <math>w_i</math> द्वारा दिया गया है |
[[द्रव्यमान अंश (रसायन विज्ञान)]] में रूपांतरण <math>w_i</math> द्वारा दिया गया है।


:<math>w_i = c_i \frac{M_i}{\rho}.</math>
:<math>w_i = c_i \frac{M_i}{\rho}.</math>
=== मोललता ===
=== मोललता ===
बाइनरी मिश्रण के लिए, मोललता में रूपांतरण <math>b_2</math> है |
बाइनरी मिश्रण के लिए, मोललता में रूपांतरण <math>b_2</math> है।


:<math>b_2 = \frac{c_2}{\rho - c_1 M_1},</math>
:<math>b_2 = \frac{c_2}{\rho - c_1 M_1},</math>
जहां विलायक पदार्थ 1 है, और विलेय पदार्थ 2 है।
जहां विलायक पदार्थ 1 है, और विलेय पदार्थ 2 है।


एक से अधिक विलेय वाले विलयनों के लिए रूपांतरण है |
एक से अधिक विलेय वाले विलयनों के लिए रूपांतरण है।


:<math>b_i = \frac{c_i}{\rho - \sum_{j\neq i} c_j M_j}.</math>
:<math>b_i = \frac{c_i}{\rho - \sum_{j\neq i} c_j M_j}.</math>
Line 141: Line 140:


=== मोलर सांद्रता और आंशिक मोलर मात्रा के उत्पादों का योग ===
=== मोलर सांद्रता और आंशिक मोलर मात्रा के उत्पादों का योग ===
इन मात्राओं के बीच उत्पादों का योग एक के समान है |
इन मात्राओं के बीच उत्पादों का योग एक के समान है।
:<math>\sum_i c_i \overline{V_i} = 1.</math>
:<math>\sum_i c_i \overline{V_i} = 1.</math>
=== मात्रा पर निर्भरता ===
=== मात्रा पर निर्भरता ===
मोलर की सघनता मुख्य रूप से तापीय विस्तार के कारण विलयन के आयतन में परिवर्तन पर निर्भर करती है। तापमान के छोटे अंतराल पर निर्भरता है |
मोलर की सघनता मुख्य रूप से तापीय विस्तार के कारण विलयन के आयतन में परिवर्तन पर निर्भर करती है। तापमान के छोटे अंतराल पर निर्भरता है।


:<math>c_i = \frac {c_{i,T_0}}{1 + \alpha\Delta T},</math>
:<math>c_i = \frac {c_{i,T_0}}{1 + \alpha\Delta T},</math>
Line 181: Line 180:
== यह भी देखें ==
== यह भी देखें ==
* मोललता
* मोललता
* [[परिमाण के आदेश (दाढ़ एकाग्रता)|परिमाण के आदेश (मोलर सघनता)]]
* [[परिमाण के आदेश (दाढ़ एकाग्रता)|परिमाण के आदेश (मोलर सान्द्रता)]]


== संदर्भ ==
== संदर्भ ==
Line 189: Line 188:
* [http://www.physiologyweb.com/calculators/molar_solution_concentration_calculator.html Molar Solution Concentration Calculator]
* [http://www.physiologyweb.com/calculators/molar_solution_concentration_calculator.html Molar Solution Concentration Calculator]
* [http://web.lemoyne.edu/~giunta/chm151L/vinegar.html Experiment to determine the molar concentration of vinegar by titration]
* [http://web.lemoyne.edu/~giunta/chm151L/vinegar.html Experiment to determine the molar concentration of vinegar by titration]
{{Mole concepts}}
{{Chemical solutions}}


{{DEFAULTSORT:Molar Concentration}}
[[Category:Collapse templates|Molar Concentration]]
[[Category: रासायनिक गुण]] [[Category: पदार्थ की मात्रा]]  
[[Category:Created On 18/05/2023|Molar Concentration]]
 
[[Category:Infobox templates|physical quantity]]
 
[[Category:Lua-based templates]]
 
[[Category:Machine Translated Page|Molar Concentration]]
[[Category: Machine Translated Page]]
[[Category:Navigational boxes| ]]
[[Category:Created On 18/05/2023]]
[[Category:Navigational boxes without horizontal lists|Molar Concentration]]
[[Category:Pages with script errors|Molar Concentration]]
[[Category:Short description with empty Wikidata description|Molar Concentration]]
[[Category:Sidebars with styles needing conversion|Molar Concentration]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]

Latest revision as of 13:27, 15 June 2023

मोलर सांद्रता
सामान्य प्रतीक
c
Si   इकाईmol/m3
अन्य इकाइयां
mol/L
अन्य मात्राओं से
व्युत्पत्तियां
c = n/V
आयामविकिडेटा

मोलर सान्द्रता (जिसे मोलरिटी, मात्रा सघनता या पदार्थ सघनता भी कहा जाता है) एक रासायनिक प्रजाति की सघनता का एक विकल्प है। विशेष रूप से एक विलयन (रसायन विज्ञान) में विलेय, घोल की प्रति इकाई मात्रा में पदार्थ की मात्रा के संदर्भ में रसायन विज्ञान में, मोलरिटी के लिए सबसे अधिक उपयोग की जाने वाली इकाई मोल (इकाई) प्रति लीटर की संख्या है। जिसका इकाई प्रतीक mol/L या mol/dm3 है। एसआई इकाई में 1 mol/L की सांद्रता वाले समाधान को 1 मोलर कहा जाता है। जिसे सामान्यतः 1 M के रूप में निर्दिष्ट किया जाता है।

परिभाषा

मोलर सान्द्रता या मोलरिटी को सामान्यतः विलयन (रसायन) के प्रति लीटर विलेय के मोल्स की इकाइयों में व्यक्त किया जाता है ।[1] व्यापक अनुप्रयोगों में उपयोग के लिए, इसे विलयन के प्रति इकाई आयतन में पदार्थ की मात्रा, या प्रजातियों के लिए उपलब्ध प्रति इकाई आयतन के रूप में परिभाषित किया जाता है। जिसे लोअरकेस c द्वारा दर्शाया जाता है ।[2]

यहाँ, मोल्स में विलेय की मात्रा है। [3] आयतन में उपस्थित कण संख्याओं की संख्या है। सामान्यतः और अवोगाद्रो स्थिरांक है। 2019 के बाद 6.02214076×1023 mol−1 से स्पष्ट रूप से परिभाषित किया गया है। अनुपात संख्या घनत्व है।

ऊष्मप्रवैगिकी में मोलर की सघनता का उपयोग अधिकांशतः सुविधाजनक नहीं होता है। क्योंकि अधिकांश समाधानों की मात्रा थर्मल विस्तार के कारण तापमान पर थोड़ा निर्भर करती है। यह समस्या सामान्यतः तापमान सुधार गुणांक को प्रारंभ करके, या सघनता के तापमान-स्वतंत्र माप जैसे मोललता का उपयोग करके हल की जाती है ।[3]

पारस्परिक मात्रा अशक्त पड़ने (मात्रा) का प्रतिनिधित्व करती है। जो ओस्टवाल्ड के अशक्त पड़ने के नियम में प्रकट हो सकती है।

औपचारिकता या विश्लेषणात्मक सघनता

यदि एक आणविक इकाई समाधान में अलग हो जाती है, तो सघनता समाधान में मूल रासायनिक सूत्र को संदर्भित करती है। मोलर की सघनता को कभी-कभी औपचारिक सघनता या औपचारिकता (fA) कहा जाता है।) या विश्लेषणात्मक सघनता (cA). उदाहरण के लिए, यदि एक सोडियम कार्बोनेट समाधान (Na2CO3) की औपचारिक सांद्रता c(Na2CO3) = 1 mol/L, मोलर सांद्रता c(Na+) = 2 mol/L और c(CO2−3) = 1 mol/L हैं | क्योंकि नमक इन आयनों में अलग हो जाता है।[4]

इकाइयां

इकाइयों की अंतर्राष्ट्रीय प्रणाली (एसआई) में मोलर की सघनता के लिए जुटना (माप की इकाइयाँ) mol/m3 है। चूँकि, यह अधिकांश प्रयोगशाला उद्देश्यों के लिए असुविधाजनक है और अधिकांश रासायनिक साहित्य पारंपरिक रूप से mol/dm3 का उपयोग करते हैं। जो mol/L के समान है। इस पारंपरिक इकाई को अधिकांशतः मोलर कहा जाता है और इसे m अक्षर से दर्शाया जाता है। उदाहरण के लिए:

mol/m3 = 10−3 mol/dm3 = 10−3 mol/L = 10−3 m = 1 mm = 1 mmol/L।

एसआई उपसर्ग मेगा- के साथ भ्रम से बचने के लिए, जिसका एक ही संक्षिप्त नाम है। छोटे कैप्स ᴍ या इटैलिकाइज़्ड m का उपयोग पत्रिकाओं और पाठ्यपुस्तकों में भी किया जाता है।[5]

उप-गुणक जैसे मिलिमोलर में एसआई उपसर्ग से पहले की इकाई होती है।

नाम संक्षिप्त संकेंद्रण
(mol/L) (मोल / m 3)
मिलीमोलर mM 10−3 100=1
माइक्रोमोलर μM 10−6 10−3
नैनोमोलर nM 10−9 10−6
पिकोमोलर pM 10−12 10−9
फेमटोमोलर fM 10−15 10−12
एटोमोलर AM 10−18 10−15
ज़ेप्टोमोलर ZM 10−21 10−18
योक्टोमोलर YM 10−24
(प्रति 10 एल में 6 कण)
10−21
रोंटोमोलर RM 10−27 10−24
क्वेक्टोमोलर QM 10−30 10−27

संबंधित मात्राएँ

संख्या सघनता

संख्या सघनता में रूपांतरण द्वारा दिया गया है।

जहाँ अवोगाद्रो नियतांक है।

मास सघनता

बड़े मापदंड पर सघनता में रूपांतरण (रसायन विज्ञान) द्वारा दिया गया है।

जहाँ घटक का मोलर द्रव्यमान है।

मोल - अंश

मोल - अंश में रूपांतरण द्वारा दिया गया है

जहाँ समाधान का औसत मोलर द्रव्यमान है, समाधान का घनत्व है।

कुल मोलर सान्द्रता पर विचार करके एक सरल संबंध प्राप्त किया जा सकता है, अर्थात् मिश्रण के सभी घटकों के मोलर की सांद्रता का योग है।

मास अंश

द्रव्यमान अंश (रसायन विज्ञान) में रूपांतरण द्वारा दिया गया है।

मोललता

बाइनरी मिश्रण के लिए, मोललता में रूपांतरण है।

जहां विलायक पदार्थ 1 है, और विलेय पदार्थ 2 है।

एक से अधिक विलेय वाले विलयनों के लिए रूपांतरण है।

गुण

मोलर की सांद्रता का योग - संबंधों को सामान्य बनाना

मोलर की सांद्रता का योग कुल मोलर की सघनता देता है, अर्थात् मिश्रण के मोलर द्रव्यमान द्वारा विभाजित मिश्रण का घनत्व या किसी अन्य नाम से मिश्रण के मोलर की मात्रा का व्युत्क्रम एक आयनिक विलयन में, आयनिक शक्ति लवणों की मोलर सांद्रता के योग के समानुपाती होती है।

मोलर सांद्रता और आंशिक मोलर मात्रा के उत्पादों का योग

इन मात्राओं के बीच उत्पादों का योग एक के समान है।

मात्रा पर निर्भरता

मोलर की सघनता मुख्य रूप से तापीय विस्तार के कारण विलयन के आयतन में परिवर्तन पर निर्भर करती है। तापमान के छोटे अंतराल पर निर्भरता है।

जहाँ एक संदर्भ तापमान पर मोलर की सघनता है, मिश्रण का थर्मल विस्तार गुणांक है।

उदाहरण

  • 11.6 g of NaCl is dissolved in 100 g of water. The final mass concentration ρ(NaCl) is
    ρ(NaCl) = 11.6 g/11.6 g + 100 g = 0.104 g/g = 10.4 %.

    इस तरह के एक समाधान की मात्रा 104.3mL है (मात्रा प्रत्यक्ष रूप से देखने योग्य है); इसकी घनत्व की गणना 1.07 (111.6g/104.3mL) की जाती है

    समाधान में NaCl की मोलर सांद्रता इसलिए है

    c(NaCl) = 11.6 g/58 g/mol / 104.3 mL = 0.00192 mol/mL = 1.92 mol/L।
    यहाँ, 58 g/mol NaCl का मोलर मास है।
  • रसायन विज्ञान में एक विशिष्ट कार्य पानी में NaCl के 2mol/L समाधान के 100 एमएल (= 0.1 एल) की तैयारी है। आवश्यक नमक का द्रव्यमान है
    m(NaCl) = 2 mol/L × 0.1 L × 58 g/mol = 11.6 g।
    घोल बनाने के लिए, 11.6 g NaCl को वॉल्यूमेट्रिक फ्लास्क में रखा जाता है, कुछ पानी में घोला जाता है, इसके बाद और पानी मिलाया जाता है जब तक कि कुल मात्रा 100 मिली तक नहीं पहुंच जाती।
  • जल का घनत्व लगभग 1000 g/L है और इसका दाढ़ द्रव्यमान 18.02 g/mol (या 1/18.02 = 0.055 mol/g) है। इसलिए, पानी की दाढ़ की सघनता है
    c(H2O) = 1000 g/L/18.02 g/mol ≈ 55.5 mol/L।
    इसी तरह, ठोस हाइड्रोजन की सांद्रता (मोलर द्रव्यमान = 2.02 g/mol) है
    c(H2) = 88 g/L/2.02 g/mol = 43.7 mol/L.
    शुद्ध आज़मियम टेट्रॉक्साइड की सांद्रता (मोलर द्रव्यमान = 254.23 g/mol) है
    c(OsO4) = 5.1 kg/L/254.23 g/mol = 20.1 mol/L।
  • बैक्टीरिया में एक विशिष्ट प्रोटीन, जैसे ई. coli, की लगभग 60 प्रतियां हो सकती हैं, और एक जीवाणु की मात्रा लगभग 10−15 L होती है। इस प्रकार, संख्या एकाग्रता 'सी' है:C = 60 / (10−15 L) = 6×1016 L−1. मोलर सान्द्रता होती है
    c = C/NA = 6×1016 L−1/6×1023 mol−1 = 10−7 mol/L = 100 nmol/L.
  • रक्त परीक्षण के लिए संदर्भ रेंज, मोलारता एकाग्रता द्वारा क्रमबद्ध:

यह भी देखें

संदर्भ

  1. Tro, Nivaldo J. (6 January 2014). परिचयात्मक रसायन शास्त्र अनिवार्य है (Fifth ed.). Boston. p. 457. ISBN 9780321919052. OCLC 857356651.{{cite book}}: CS1 maint: location missing publisher (link)
  2. IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "amount concentration, c". doi:10.1351/goldbook.A00295
  3. 3.0 3.1 Kaufman, Myron (2002). ऊष्मप्रवैगिकी के सिद्धांत. CRC Press. p. 213. ISBN 0-8247-0692-7.
  4. Harvey, David (2020-06-15). "2.2: एकाग्रता". Chemistry LibreTexts. Retrieved 2021-12-15.
  5. "सियुनिटेक्स में मोलर और लीटर के लिए इकाई प्रतीकों की टाइपोग्राफी". TeX - LaTeX Stack Exchange.

बाहरी संबंध